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ABSTRACT
In this paper we consider the coherent states which play an important role in quantum optics,
especially in laser physics and much work in this field. Here we connect the coherent states with
the Lucas numbers and Fibonacci numbers.

Keywords: Coherent state; lucas number.

1 INTRODUCTION

The term coherent state, also called Glauber
state, has been introduced by Roy J. Glauber

[1] in 1963 year. It is not strongly related to the
classical term coherence, and refers to a special
sort of pure quantum mechanical state of the light
field corresponding to a single resonator mode.
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We describe a dynamical system in terms of
a pair of complex operators a and a†, which
we call them as the annihilation and creation
operators. These operators, which obey the
following commutation relation

[a, a†] = 1,

play a fundamental role in descriptions of
systems of harmonic oscillators and quantized
fields. It is obvious from the algebraic properties
of the operators a and a† that we may construct
a sequence of states for the harmonic oscillator
system. These states labeled by |n⟩ satisfy the
identity

a|n⟩ =
√
n|n− 1⟩,

a†|n⟩ =
√
n+ 1|n+ 1⟩,

a†a|n⟩ = n|n⟩

(1.1)

for an nonnegative integer n. They are generated
from the state |0⟩ by the rule

|n⟩ = (a†)n√
n!

|0⟩. (1.2)

Let us now define for each complex number α the
displacement operator

D(α) = exp(αa† − ᾱa), (1.3)
which is unitary and obeys the relation

D†(α) = D−1(α) = D(−α).

When a and b commute with their commutator
c := [a, b] we have the well-known Kermack-
McCrae identity

exp(a+ b)

=



exp(−1

2
c) exp(a) exp(b),

if ab-ordered,

exp(
1

2
c) exp(b) exp(a),

if ba-ordered,

therefore we are led to

D(α)

= exp(−|α|2

2
) exp(αa†) exp(−ᾱa).

(1.4)

For each complex number α the coherent state
|α⟩ is defined by

|α⟩ = D(α)|0⟩. (1.5)

We note that the state |α⟩ is an eigenstate of the
operator a with eigenvalue α,

a|α⟩ = α|α⟩ and ⟨α|a† = ⟨α|ᾱ. (1.6)

By using Eqs. (1.2), (1.4), (1.5), and the fact
a|0⟩ = 0, we may relate the coherent states to
the states |n⟩ :

|α⟩
= D(α)|0⟩

= exp(−|α|2

2
) exp(αa†) exp(−ᾱa)|0⟩

= exp(−|α|2

2
) exp(αa†)|0⟩

= exp(−|α|2

2
)

∞∑
n=0

αn

√
n!

|n⟩

(1.7)

(see ([2], (2.23))).

In this paper we consider the coherent states
as the special states, that is, the eigenvalues α
and β of the eigenstates |α⟩ and |β⟩ respectively,
satisfy the coefficients conditions appearing in
Lucas numbers as follows :

α+ β =
1

2
(1 +

√
5) +

1

2
(1−

√
5) = 1, (1.8)

αβ =
1

2
(1 +

√
5) · 1

2
(1−

√
5) = −1, (1.9)

α2 = 1 + α, and β2 = 1 + β. (1.10)

We can set the Lucas numbers [3] by

Ln = αn + βn, (1.11)

where

α =
1

2
(1 +

√
5), β =

1

2
(1−

√
5). (1.12)

Depending on the above properties we obtain :
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Lemma 1.1. Let α and β be in (1.12). And let the
operator a apply to the coherent states |α⟩ and
|β⟩. Then

(a)

⟨β|α⟩ = exp(−5

2
),

(b)

⟨β| exp(5
2
a†) exp(

5

2
a)|α⟩ = 1.

Theorem 1.2. Let n ∈ N. Then

⟨β|
(
an + (a†)n

)
|α⟩ = Ln exp(−5

2
).

Theorem 1.3. Let n ∈ N. Then

n∑
m=0

⟨α|
(
an−m + (a†)n−m

)
|β⟩

× ⟨β|
(
am + (a†)m

)
|α⟩

= e−10 ((n+ 1)Ln + 2Fn+1) ,

where Fn :=
αn − βn

α− β
is the Fibonacci number.

2 PROOFS OF LEMMA 1.1,

THEOREM 1.2, AND THEOREM

1.3

Let N be the set of positive integers. Then we
define the Lucas numbers, Ln with n ∈ N, by

L0 = 2, L1 = 1,

and

Ln+2 = Ln+1 + Ln.

The very general functions studied by Lucas and
generalized by Bell [4], [5], are essentially the Ln

defined by (1.11) with α, β being the roots of the
quadratic equation x2 = Px−Q so that α+β = P
and αβ = Q.

Proof of Lemma 1.1. (a) First from the
definition of α and β in (1.12) we note
that

ᾱ = α and β̄ = β.

Then by (1.7), (1.8), (1.9), and (1.10) we
have

⟨β|α⟩

= ⟨m| exp(−|β|2

2
)

∞∑
m=0

β̄m

√
m!

× exp(−|α|2

2
)

∞∑
n=0

αn

√
n!

|n⟩

= exp(−β2

2
− α2

2
)

×
∞∑

m,n=0

βmαn

√
m!n!

⟨m|n⟩

= exp(−1

2
(β + 1 + α+ 1))

×
∞∑

m,n=0

βmαn

√
m!n!

δm,n

= exp(−3

2
)

∞∑
n=0

(αβ)n

n!

= exp(−3

2
) exp(−1)

= exp(−5

2
).

(b) By (1.6) and Lemma 1.1 (a) we have

⟨β| exp(5
2
a†) exp(

5

2
a)|α⟩

= exp(
5

2
β̄) exp(

5

2
α)⟨β|α⟩

= exp(
5

2
(β + α))⟨β|α⟩

= exp(
5

2
) exp(−5

2
)

= 1.

Proof of Theorem 1.2. From (1.6) and Lemma
1.1 (a) we obtain
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⟨β|
(
an + (a†)n

)
|α⟩

= ⟨β|an|α⟩+ ⟨β|(a†)n|α⟩
= αn⟨β|α⟩+ β̄n⟨β|α⟩
= (αn + βn)⟨β|α⟩

= Ln exp(−5

2
).

In Fig. 1, Fig. 2, and Fig. 3 we depict

⟨β|
(
an + (a†)n

)
|α⟩ = Ln exp(−5

2
)

in Theorem 1.2. Here we can know that as n
approaches to a large positive integer, the value
⟨β|

(
an + (a†)n

)
|α⟩ is bigger. And a transition

from the |α⟩ state to |β⟩ state behaves like a
step function. If ⟨β|

(
an + (a†)n

)
|α⟩ stands for

the probability then physically we should restrict
n = 0, 1, 2, 3, 4, 5 since the probability is greater
or equal to 0 and less than or equal to 1.

Fig. 1. Lne
−5/2 versus n (0 ≤ n ≤ 5)

Fig. 2. Lne
−5/2 versus n (5 ≤ n ≤ 10)

Fig. 3. Lne
−5/2 versus n (10 ≤ n ≤ 15)

To obtain the sums of the coherent states

⟨α|
(
an−m + (a†)n−m

)
|β⟩

× ⟨β|
(
am + (a†)m

)
|α⟩

in Theorem 1.3 we request the following identity :

n∑
m=0

LmLn−m = (n+ 1)Ln + 2Fn+1 (2.1)

(see [6]).

Proof of Theorem 1.3. From Theorem 1.2 and
(2.1) we have

n∑
m=0

⟨α|
(
an−m + (a†)n−m

)
|β⟩

× ⟨β|
(
am + (a†)m

)
|α⟩

=

n∑
m=0

⟨α|
(
an−m + (a†)n−m

)
|β⟩

× Lm exp(−5

2
)

=
n∑

m=0

Ln−m exp(−5

2
) · Lm exp(−5

2
)

= e−10
n∑

m=0

LmLn−m

= e−10 ((n+ 1)Ln + 2Fn+1) .
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In Fig. 4, Fig. 5, Fig. 6 and Fig. 7 we draw

n∑
m=0

⟨α|
(
an−m + (a†)n−m

)
|β⟩

× ⟨β|
(
am + (a†)m

)
|α⟩

= e−10 ((n+ 1)Ln + 2Fn+1)

in Theorem 1.3. In a similar manner to Figure 1,
they are bigger as n is larger and the pictures
jump abruptly at integer position but they grow
linearly at non-integer spot. And if

n∑
m=0

⟨α|
(
an−m + (a†)n−m

)
|β⟩

× ⟨β|
(
am + (a†)m

)
|α⟩

implies the sum of transition probabilities then
physically we should choose n = 0, 1, 2, · · · , 14
because the sum of probabilities is greater
or equal to 0 and less than or equal to
1. Furthermore if the number of transition
occurs many times then the probability variation
becomes smoothly compared to Fig. 1, Fig. 2
and Fig. 3.

Fig. 4. e−10 ((n+ 1)Ln + 2Fn+1) versus n
(0 ≤ n ≤ 5)

Fig. 5. e−10 ((n+ 1)Ln + 2Fn+1) versus n
(5 ≤ n ≤ 10)

Fig. 6. e−10 ((n+ 1)Ln + 2Fn+1) versus n
(10 ≤ n ≤ 15)

Fig. 7. e−10 ((n+ 1)Ln + 2Fn+1) versus n
(15 ≤ n ≤ 20)
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Next we analogize the coherent state |α2⟩ and
estimate the occupation number in Lemma 2.1.
In advance by referring to (1.7) we note that

|α2⟩ = exp(−|α2|2

2
)

∞∑
n=0

α2n

√
n!

|n⟩ (2.2)

is adequate since

⟨α2|α2⟩

= ⟨m| exp(−|α2|2

2
)

∞∑
m=0

ᾱ2m

√
m!

× exp(−|α2|2

2
)

∞∑
n=0

α2n

√
n!

|n⟩

= exp(−α4)

∞∑
m,n=0

α2mα2n

√
m!n!

δm,n

= exp(−α4)

∞∑
n=0

α4n

n!

= exp(−α4 + α4)

= 1.

Lemma 2.1. Let n ∈ N. Then

(a)

⟨β|a|α2⟩ = α2 exp(−2α− 2),

(b)

⟨β|a†a|α2⟩ = −α exp(−2α− 2).

Proof. (a) By (1.1) and (2.2) we observe that

⟨β|a|α2⟩

= ⟨m| exp(−|β|2

2
)

∞∑
m=0

β̄m

√
m!

· a

× exp(−|α2|2

2
)

∞∑
n=0

α2n

√
n!

|n⟩

= exp(−β2

2
− α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

⟨m|a|n⟩

= exp(−β2

2
− α4

2
)

×
∞∑

m=0

∞∑
n=1

βmα2n

√
m!n!

⟨m|
√
n|n− 1⟩

= exp(−β2 + α4

2
)

×
∞∑

m=0

∞∑
n=1

βmα2n

√
m!n!

√
nδm,n−1

= exp(−β2 + α4

2
)

×
∞∑

n=1

βn−1α2n√
(n− 1)!n!

√
n

= exp(−β2 + α4

2
)α2

∞∑
n=1

(βα2)n−1

(n− 1)!

= α2 exp(−β2 + α4

2
+ βα2)

then by (1.8), (1.9), (1.10) and the fact

α4 = (α2)2

= (α+ 1)2

= α2 + 2α+ 1

= 3α+ 2,

(2.3)

the above equation shows that

⟨β|a|α2⟩

= α2 exp(−β + 1 + 3α+ 2

2
− α)

= α2 exp(−β + 5α+ 3

2
)

= α2 exp(−2α− 2).

(b) In a similar style, by (1.1), (1.8), (1.9),
(1.10), (2.2), and (2.3) we interpret
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⟨β|a†a|α2⟩

= ⟨m| exp(−|β|2

2
)

∞∑
m=0

β̄m

√
m!

· a†a

× exp(−|α2|2

2
)

∞∑
n=0

α2n

√
n!

|n⟩

= exp(−β2

2
− α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

⟨m|a†a|n⟩

= exp(−β2

2
− α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

⟨m|n|n⟩

= exp(−β2 + α4

2
)

×
∞∑

m,n=0

βmα2n

√
m!n!

· nδm,n

= exp(−β2 + α4

2
)

∞∑
n=0

βnα2n

√
n!n!

· n

= exp(−β2 + α4

2
)βα2

×
∞∑

n=1

(βα2)n−1

(n− 1)!

= −α exp(−β2 + α4

2
+ βα2)

= −α exp(−2α− 2).

3 CONCLUSION

A product of quantum fields, or equivalently their
creation and annihilation operators, is usually
said to be normal ordered, also called Wick
order, when all creation operators(= a†) are to

the left of all annihilation operators(= a) in the
product. On the other hand, if the annihilation
operators are placed to the left of the creation
operators then we define antinormal order. Even
though the Wick order and Lucas numbers are
recursively, they are strictly different. Wick order
gives operators a sequence but Lucas numbers
do not provide an order, instead they present an
eigenvalue, an expectation value, etc., as a sort
of scalar quantity.
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