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Abstract 
 

This study considers the effects of concentration based internal heat and vertical magnetic field on the 
onset of double diffusive convection in a horizontal porous layer using normal mode analysis. The normal 
mode analysis is used to find solutions for the fluid variables, the critical wave number and the critical 
Rayleigh number for the onset of convection with free-free boundaries. The results obtained are displayed 
graphically and in tables. The results show that the concentration based internal heat, �, hastens the onset 
of instability while the magnetic field, �� , and solutal Rayleigh number, �� , delays the onset of 
instability in the system for stationary and oscillatory convections. The influence of Lewis number, ��, 
and porosity, �, is also presented. 
 

 
Keywords: Double diffusive convection; concentration based internal heat; magnetic field; normal mode 

analysis. 
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1 Introduction 
 
The study of convective motions in the presence of two buoyancy driven components is an important 
phenomenon in the field of convection. The well-known Rayleigh-Benard  type problem has been the 
subject of several research interest from which convective instability limit of a fluid heated from below has 
been determined. In the study of the onset of double diffusive convective in a porous medium due to 
temperature and concentrative gradients, the relationship between the fluxes and the driving potentials are of 
intricate nature and has got applications in the behavior of fluids in earth's crust, oil reservoir modeling, 
biomechanics, nuclear waste repository, metallurgy crystal production, migration of moisture through air 
contained in fibrous insulation. Excellent reviews in the study of double diffusive convection in porous 
media can be found in [1,2,3,4,5,6,7]. 
  
Linear stability analysis was used to study the onset criterion of marginal and oscillatory convection, [8]. 
The onset of double diffusive reaction convection in a fluid layer heated and salted from below subject to 
chemical equilibrium on the boundaries with extension to nonlinear stability analysis was considered in [9]. 
The modified Darcy-Maxwell model for the momentum equation was used to study the onset of double 
diffusive convection [10]: the study noted that there is a competition between the process of viscoelasticity 
and diffusions that causes the convection to set in through oscillatory rather than stationary.  
 
There are situation in which convection can be triggered by internal heat source, for example convective flux 
in the earth’s crust is basically due to the internal heating of the multicomponent fluids saturating it. 
Nonlinear stability of double diffusive convection with throughflow and concentration based internal heat 
source was considered in [11]. The study observed that for downgrade throughflow, when the Peclet number 
is high, the effect of concentration based internal heat is significant. The effect of internal heat source on 
double diffusive convection in a couple stress fluid saturated horizontal anisotropic porous layer using linear 
and nonlinear stability analyses was studied in [12]. The results show that heat transport increased and mass 
transport decreased with increase in internal heat source parameter. Double diffusive Hadley-Prats flow with 
concentration based internal heat source using linear and nonlinear stability analyses was investigated in 
[13]. They showed that an increase in both the heat source and mass flow results in destabilization. Reviews 
on internal heat source in porous media can also be found in early studies, [14,15,16,17,18]. There is interest 
also, in the study of magnetohydrodynamics (MHD) flow and internal heat transfer on the performance of 
many systems using electrically conducting fluids; for example in geothermal energy extractions and nuclear 
reactors. Heat transfer effects on MHD flow through a porous medium was considered in [19]. The effect of 
internal heat generation or absorption on MHD free convection flow of an incompressible, electrically 
conducting fluid was found  to be significant, [20]; while [21,22] considers MHD flow of a visco-elastic 
fluid in a porous medium and showed that heat source and magnetic field have considerable effect on the 
flow regime. 
 
Although some work on double diffusive convection in porous medium with concentration based internal 
heat source is available, to the best of our knowledge, attention has not been given to the study of combined 
effect of concentration based internal heat source and vertical magnetic field on the onset of double diffusive 
convection in a horizontal porous layer. Therefore, the main aim of this study is to investigate the effect of 
vertical magnetic field on the onset of double diffusive convection in a horizontal porous layer with 
concentration based internal heat source using normal mode analysis.  This constitutes an important addition 
to the study of double diffusion in porous media. 
 

2 Mathematical Formulation 
 
We consider an infinite horizontal fluid-saturated porous layer with concentration based internal heat source 

confined between two parallel horizontal planes located at �∗ =
�

�
 and �∗ = −

�

�
, respectively, see Fig. 1. A 

Cartesian frame of reference (�∗,�∗,�∗) is chosen with the �∗-axis along the horizontal plate, and the �∗-axis 
vertically upwards, while the gravitational force �⃗  acts vertically downwards. Adverse temperature and 
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concentration gradient are applied across the porous layer in such a way that the lower plate is maintained at 
temperature ��(= �� + ��) and concentration ��(= �� + ��); while the upper plate is held at temperature 
�� and concentration �� respectively. Also, �� = (�� + ��) 2,⁄   �� = (�� + ��) 2⁄    with �� > ��, �� > ��. 
 

 
 

Fig. 1. Geometry of the flow region 
 

A magnetic field of strength ��⃗�  is applied vertically upwards in the �∗  direction in which the induced 
magnetic field is neglected on the account that the magnetic Reynolds number is small. Further, the internal 
heat source is assumed linearly with respect to solute concentration. Assuming the Oberbeck-approximation 
due to the density variations and employing the Darcy model and adopting the Lorentz force, the governing 
equations are [2,5]. 
 

 ∇���⃗∗.V��⃗∗ = 0                                                                                                                                                     (1) 
 

               ∇��⃗�∗ +
�

�
V��⃗∗ + �(�∗,�∗)�⃗ ��⃗ − ��(V��⃗

∗ × B��⃗∗)× B��⃗∗ = 0                                                                          (2) 

 

               �
��∗

��∗
+ �V��⃗∗.∇��⃗∗��∗ =∝� ∆

∗�∗ + �(�∗ − ��)                                                                                      (3) 

 

              ∅
��∗

��∗
+ �V��⃗∗.∇��⃗∗��∗ = ��∆

∗�∗                                                                                                                  (4) 

 
               �(�∗,�∗)= ��[1 − ��(�

∗ − ��)+ ��(�
∗ − ��)]                                                                              (5) 

 
with boundary conditions: 
 

� ∗ = 0,  �∗ = �� +
(�����)

�
,   �∗ = �� +

(�����)

�
  at �∗ = −

�

�
                                                                    (6) 

 

� ∗ = 0,�∗ = �� −
(�����)

�
,   �∗ = �� −

(�����)

�
  at �∗ = +

�

�
               (7) 

 

In the above equations    � = (���)� (���)� ,⁄   ∝ �= �� (���)�⁄ ,� =
�
(���)�

� , B��⃗∗ = (0,0,��) is the 

magnetic field and where V��⃗∗ = (�∗,�∗,� ∗) is the velocity, � is the dynamic viscosity, � is the permeability, 

��  is the thermal diffusivity, ��⃗ is the unit vector in the �∗ direction, �∗ is the temperature, �∗ is the solute 
concentration, ��  is the thermal expansion coefficient, ��  is the solute expansion coefficient, ��  is solute 
concentration diffusivity �∗  is the pressure, �  is the gravitational acceleration, �  is the a constant of 
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proportionality, arising from the internal heat source, ��  is the heat capacity, �� is the reference density ��
∗ 

is the reference temperature, �� is the reference solute concentration and � porosity parameter. Also,  B��⃗∗ is 
the magnetic field strength, �� is the electric conductivity. The subscripts �  ,� denote medium and fluid 
respectively. 
 
Using the following non-dimensional variables; 
 

                (�,�,�)=
�

�
(�∗,�∗,�∗),   � =

∝�

���
 �∗,   ��⃗ =

�

��
V��⃗∗,   � =

�

�� �
(�∗ + ����

∗),  ∇����⃗= ℎ∇∗����⃗ , 

                � = √�� �
�∗���

��
�,� =

�∗���

��
 ,� = ∅ �⁄ ,  �� = �� − ��,  �� = ��� �� ,                                         (8)  

 
the governing equations (1-5) and the boundary conditions (equations (6) and (7)) in dimensionless form 
become,  
 

                ∇��⃗��⃗.V��⃗ = 0                                                                                                                                                            (9)  
 

                ∇��⃗� + V��⃗ + ���(�,�,�)− ��� � ��⃗ + �����⃗ = 0                                                                               (10)  
 

��

��
+ √�� �V.���⃗ ∇�� = ∆� + √�� ��                                                                                                   (11) 

 

�
��

��
+ �V.���⃗ ∇�� =

�

��
∆�                                                                                                                                 (12) 

 

� = 0,� = +
�

�
,� = +

�

�
   at  � = −

�

�
                                                                                         (13)           

                                                         

 � = 0,� = −
�

�
,� = −

�

�
   at  � = +

�

�
               (14) 

 
The dimensionless quantities are  
 

�� = �
���������

���
= thermal Rayleigh number , �� =

��� ����(��)

���
= solutal Rayleigh number 

 

�� = �
��� ��

�

�
= Hartmann number (magnetic parameter), �� =

∝�

��
= Lewis number 

 

� =
���(��)

∝�(��)
= Internal heat source parameter, � =

�
�� = normalized porosity parameter. 

 

2.1 Basic state 
 
To study the stability of the system, we assume that the basic state denoted by ���(�),��(�),��(�)� is 
quiescent and superimpose small perturbations on the basic state in the form 
 

V��⃗ = (0,0,0)+ v�⃗,� = ��(�)+ �,� = ��(�)+ �,� = ��(�)+ �                                                  (15) 
 
Where �,�,�  denote the quantities at the perturbations and  the subscript, �, refers to the basic state. 
Substituting equation (15) into equations (9) - (12) and the boundary conditions (13) and (14) yield the basic 
state equations 
 

���

��
= √���� + �� ��                    (16a) 
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����

���
+ �√���� = 0                (16b) 

 
����

���
= 0                                                                    (16c) 

 

Subject to 

 

�� = �� = +
�

�
   ��   � = −

�

�
                                                                                                                  (17a)     

 

�� = �� = −
�

�
   ��   � = +

�

�
                                       (17b)  

 

Solving Equations (16a-c) subject to conditions (17a-b) yields 

 

�� =
�

��
(− 24 � − �� + 4���)                (18a) 

 

�� = − �                  (18b)     

                                                                                                                                

�� = ∫�−√���� + �������                                                                                                                 (18c)  

 

2.2 Linearized equations 
 
Substituting equations (16) and (18) into the governing equations, we obtain the linearized equations as  

 

∇��⃗��⃗.V��⃗ = 0                                                                                                                                                    (19) 

 

V��⃗ = −∇p − Ha�(�,�,�)+ √�����⃗ − �����⃗                                                                                (20)  

 
��

��
+ √���(�)� = ∆θ + γ√Raφ                                                                                                       (21) 

 

���
��

��
= ∆� + �                                                                                                                                     (22)  

 

� = 0 = � = �       on   � = ±
�

�
                                                                                                (23) 

 

where we have neglected the nonlinear terms in the system and �(�)= −
���

��
=

�

��
(24+ � − 12���) is the 

temperature gradient. 

 

Now, the pressure term in Equation (20) is eliminated by taking double curl and keeping only the �  - 
component. This equation yield 

 

∇�w + Ha�
���

���
= √Ra∇�

�θ −  Rs∇�
�φ                                                                                             (24)  

 

  � = 0 =
���

���
   on   � = ±  

�

�
   

           

where ∇�
�=

��

���
+

��

���
  is the Laplacian in the horizontal plane 
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3 Onset of Convection 
 
Equations (24), (21), (22) expressed as in the order 
 

∇��  +  ���
���

���
= √��∇�

�� − �� ∇�
��                (25a) 

 
��

��
+  √�� ƒ(�)� = ∇�� + �√���                                 (25b) 

 

���
��

��
−  ��� = ∇��                                                                                                                       (25c) 

 
now subject to the boundary conditions, 
 

� =
���

��
  =  � = � = 0       ��  � = ±

�

�
                                                                                    (26)  

 
constitute a linear boundary value problem that is solved using the method of normal mode analysis. 
 
Now, we assume a time dependent periodic disturbance of the form [23] 
 

�

� (�,�,�,�)
�(�,�,�,�)

�(�,�,�,�)
� = �Ω� �

� (�)
�(�)

Φ(�)
�  �(�,�)                                                                                    (27)  

 
where, Ω =  � + �� is the growth rate and is in general complex (with �,�  real) and �(�,�,) is a horizontal 
plane tilting the plane (�,�,) periodically. Substituting equation (27) into the eigenvalue problem (25) yields  
 

�
�� −  �� −  ��

� ��    ��√�� − ����

ƒ(�)√�� �� −  �� − Ω �√��

�� � ��−  �� − ��ℇΩ

� �
�
�
Φ
� = �

0
0
0
�                                  (28) 

 

� =
���

���
= � = Φ = 0,� = ±  

�

�
                                                                                

                                 

∇�
�� +  ��� = 0,     �, is the wave number, [24], and    � = 

�

��
           �� = 

��

���
  

 
Now, assuming the lowest eigen solutions of � (�),   �(�),   Φ(�) of the form,  
 

[� (�),�(�),Φ(�)]= [� �,��,Φ� ]sin� �                                                                                         (29)  
 
where  �� ,��,Φ�,   are constants. The eigenvalue problem (28) becomes  
 

A� ��= 0�                                                                                                                                                        (30)      
 
where  
 

              A� = �
�+ �����      −  ��√��        ����

− ƒ(�)√��         J+ Ω        − γ√Ra
− ��                    0              �+  � ��Ω

�   

 
              ��= (�� ,��,Φ�)

� ,     ��= (�,�,�)�    and   J= �� +  ��   
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The solvability of the eigenvalue problem given in equation (30) requires that  |�|= 0.  That is, for non-
trivial solution of system (30), we obtain the expression for the thermal Rayleigh number as; 
 

                �� =
(��Ω)(�������� �� ���� ��� ���� ��������ℇ Ω

��(�����(�� ��ℇ Ω)
                                                                             (31)          

 
In general, the growth rate � = �� + �� is a complex quantity. The system is stable of �� < 0 and unstable 
if �� > 0. 
 

3.1 Marginal stationary state  
 
For the validity of principle of exchange of instabilities to hold and for marginal stationary convection to 
occur we set � = 0.   Setting � = 0 in equation (31) yields the Rayleigh number for the stationary 
convection from which the conditions for stationary convection can be determined as   
 

               ��(��) = 
������� ��� ������ ���

��(�� ��
�

��  
(����)� )

                                                                                              (32) 

 
Now, the minimum wave number (critical wave number) for the onset of stationary convection is obtained 
by putting  � = �� and then minimizing equation  (32) using 
 

             
���(��) 

���
�  = 0                                                                                                                         (33) 

 
Equation (33) after simplification yields the following 8th order polynomial in ��  
    
            �� ��

� + �� ��
� + �� ��

� + �� ��
� + �� = 0                                           (34) 

 
where  
 

�� = −24 (1 + ���) (24�� � +  �� (24+ �))�� 
 
�� = −48(1 + ���)�� 
 
�� =  24��(24��(3�� + �� ��)� − ���((24+ �)�� − 24�� � ��))  
 
�� =  48 (24�� � + (24+ �)�� ) 
 
�� = 24(24+ �)  

 
The solution of equation (34) yields eight roots of which only one root is real and is equal to p. Substituting 
�� = p in equation (32) yields the critical Rayleigh number for stationary convection in the presence of 
magnetic and internal heat source parameters as 
 

               ���(��)=
��p�����(��������� ��)

�� �� ��p�(����)
                                    (35) 

 
In the absence of internal heat source, �, and magnetic field parameter, ��,  equation, (35) reduces to 
 
              ���(��)= 4�� + �� ��                                                    (36)  
 
which is the same result obtained by [25]. Further for �� = 0, equation (36) becomes 
 
             ���(��)= 4p�                   (37) 
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which corresponds to the classical result of [26] and [27] for single component convection in a porous layer. 
 

3.2 Marginal oscillatory convection  
 
For marginal oscillatory convection, the real part of W, must be equal to zero (i.e. �� = 0). Therefore, setting 
W = �� in equation (31) we obtain the expression for the marginal oscillatory Rayleigh number as 
 

       ��(��)= 
(����) �p������������� ����� �� �(p������)

��(�� �������� �� �)
       

                    = �� + �� ��                       (38) 
 
Where: 
 

�� =
�

��
�
������� ������

�����(������� �)���

���
� ����

�  �� �                            (39) 

 

�� =
�

��
�
���(��������)����(���������

�

���
� ����

� �� �                            (40) 

 
�= �� + p�  
 
��� = p�����+ �� + �� �� �� = (p���� + �)�+ �� �� ��  
 
��� = ���(p���� + �)  
 
��� = �� � + ��= �� � + �

��
(24+ �)  

 
��� = ���� = �

��
(24+ �)���  

 
Since ��(��) is a physical quality it must be real. Therefore for marginal oscillatory stability � ≠ 0, hence 
△�= 0. By setting △�= 0 in equation (38), and after simplification gives an expression for the frequency of 
oscillation as  
 

       �� =
�����������(��������)

������
                                              (41) 

 
Now, substituting ∆�= 0 in equation (38), we get, 
 

      ��(��) = 
(�����)�������(�����������) 

��� ���
 + 

��

��  
                                                                   (42) 

 

where   � =
����

�� 
 

 
In the absence of �� and �,   
 

   ��(��) = 
(�����) 

���
 
�������

�
 

��
 + 

��

�  
                                              (43) 

 
Equation (43) corresponds to the result of [25] and [28]. Equation (42) gives the oscillatory neutral Rayleigh 
number; ��(��) with critical oscillatory Rayleigh number, ���(��) as 
 

    ���(��) = 
(�����)�����������������

�� � ���
 +

��

��  
                                             (44)             
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4 Discussion of Results 
 
The effects of concentration based internal heat source and magnetic field on the onset of double diffusive 
convection in a horizontal porous layer heated from below is analyzed using normal mode analysis. The 
expression for the Rayleigh numbers for the stationary and oscillatory convections are given in Equations 
(32) and (42), respectively. The effects of magnetic field parameter, ��  and the internal heat source 
parameter, �, on the stationary thermal Rayleigh number, ��(��) are shown in Tables 1 and 2. It is observed 
from Table 1 that in the presence of solute and concentration based internal heat the Rayleigh number for 
stationary convection decreases. More so, increase in the heat parameter further decreases the Rayleigh 
number. The heat parameter therefore has a destabilizing effect on the system. In the absence of magnetic 
field parameter, ��, this result is in agreement with the result reported in [16].  
 

Table 1. Thermal Rayleigh number values for �� = �,�� = �,  and variations in internal heat and 
�� 

 

        �� = �, �=0,        �� = ��,� = �        �� = ��, �=5 
a ��(��) a ��(��) a ��(��) 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

143.395 
138.025 
133.317 
129.18 
125.54 
122.334 
119.508 
117.02 
114.831 
112.909 

2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

138.982 
134.349 
130.295 
126.743 
123.626 
120.89 
118.489 
116.384 
114.541 
112.934 

2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

101.016 
98.0949 
95.563 
93.368 
91.466 
89.8205 
88.4009 
87.1811 
86.139 
85.2557 

 

Table 2 shows that increase in magnetic parameter, ��, (from  0 to 2) with the heat parameter fixed, leads to 
increased values of �� for stationary convection. This is an indication that the onset of instability in the 
system is delayed. Therefore, the presence of solute and increased magnetic field parameter stabilizes the 
system.  
 

Table 2. Thermal Rayleigh number values for � = �,�� = �,  and variations in �� and �� 
 

      �� = �, �� = �      �� = �, �� = �     �� = ��, �� = � 
� ��(��) a ��(��) � ��(��) 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

41.5746 
40.9088 
40.3911 
40.0038 
39.7317 
39.5624 
39.4854 
39.4917 
39.574 
39.7255 

2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

60.7315 
59.1649 
57.8418 
56.7308 
55.8056 
55.0445 
54.4291 
53.9438 
53.5753 
53.3124 

2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

153.395 
148.025 
143.317 
139.18 
135.54 
132.334 
129.508 
127.02 
124.831 
122.909 

 

Fig. 2 shows the influence of magnetic field parameter, �� on the thermal Rayleigh number, �� for fixed 
values of �� = 10,� = 5 and �� = 1. It is observed that increase in the magnetic field increases the thermal 
Rayleigh number, for the stationary mode. This implies that magnetic field stabilizes the system.  
 

Fig. 3 depicts the effect of magnetic field parameter, ��, on oscillatory convection for fixed values of 

� = 0.5, �� = 10 and � = 0.5, where it is evident that increases in magnetic field increases the thermal 
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Rayleigh number for oscillatory convection. Hence the magnetic field parameter, ��, delays the onset of 
instability in the system.  
 

 
 

Fig. 2. Variation of thermal Rayleigh number for various values of the magnetic parameter, ��  for 
stationary convection 

 

 
Fig. 3. Variation of thermal Rayleigh number for various values of the magnetic parameter, ��,  for 

oscillatory convection 
 

 
 

Fig. 4. Variation of the thermal Rayleigh number with solutal Rayleigh number for various values of 
magnetic field in stationary convection 
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Fig. 4 shows a linear relationship between the thermal Rayleigh number, ��, and the solutal Rayleigh 
number,��, for variations in the magnetic field parameter, ��. Increase in the magnetic field parameter 
increases the thermal Rayleigh number, which  indicates that the magnetic field parameter stabilizes the 
system for stationary convection. This is because the magnetic field couples together with temperature and 
concentration field to inhibit double diffusive effects. Also, Fig. 5 presents a linear relationship between the 
thermal Rayleigh number and the solutal Rayleigh number for variations in internal heat source, � , in 
stationary convection. The variations show that the thermal Rayleigh number decreases with increase in 
internal heat source parameter, indicating that the internal heat source has the tendency to destabilize the 
system. In the absence of magnetic field, this is in agreement with earlier results of [16]. The instability is 
more pronounced at higher values of the solutal Rayleigh number.  
 

 
 
Fig. 5. Variation of the thermal Rayleigh number with solutal Rayleigh number for various values of 

internal heat source parameter in stationary convection 
 

 
Fig. 6. Variation of the thermal Rayleigh number with solutal Rayleigh number for various values of 

the Lewis number in stationary convection 
 
Fig. 6 shows a linear relationship between the thermal Rayleigh number and the solutal Rayleigh number for 
variations in Lewis number, ��. Increase in the Lewis number increases the thermal Rayleigh number which 
in essence has the effect of stabilizing the system for stationary mode. In this case, increase in the solutal 
Rayleigh number promotes the stability of the system. Fig. 7 depicts the effect of the Lewis number,��, on 
the system for oscillatory convection. It is observed that increase in the Lewis number decreases the critical 
thermal Rayleigh number, indicating that the Lewis number destabilizes the system in oscillatory mode. This 
is so because the diffusivity of heat is greater than that of the solute for �� > 1. Moreso, the results shows 
the fact that the oscillatory instability is caused by the difference in the rates of heat and mass. 
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Fig. 7. Variation of the thermal Rayleigh number for various values of the Lewis number in oscillatory 

convection 
 

 
 

Fig. 8. Variation of the thermal Rayleigh number for various values of the porosity parameter in 
oscillatory convection 

 
The effect of porosity, �, on the oscillatory convection is shown in Fig. 8. Increase in the porosity parameter 
decreases the thermal Rayleigh number. This shows that increasing porosity has the effect of destabilizing 
the system. This effect is more pronounced for small values of the porosity parameter. Fig. 9 depicts the 
effect of internal heat parameter on the system for oscillatory convection. We find that the thermal number 
decreases as the internal heat parameter increases, indicating that increase in internal heat parameter hastens 
the onset of instability for oscillatory convection. 
 

 
 

Fig. 9. Variation of the thermal Rayleigh number for various values of the internal heat source in 
oscillatory convection 
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Fig. 10. Variation of the thermal Rayleigh number for various values of the solutal Rayleigh number 

in stationary convection 
 

Figs. 10 and 11 depicts the effect of solutal Rayleigh number, ��, on stationary and oscillatory convection, 
respectively. It is observed in Fig. 10 that for fixed values of the parameters, ��,� and ��, increase in the 
solutal Rayleigh number leads to increase in the thermal Rayleigh number, ��. This indicates that the solutal 
Rayleigh number stabilizes the system. Fig. 11, shows that for fixed values of ��,�,�  and �� , ( for 
oscillatory convection), the solutal Rayleigh number exerts stability on the system. In the absence of �� and 
�, this finding is in agreement with [25]. 
 

 
 
Fig. 11. Variation of the thermal Rayleigh number for various values of the solutal Rayleigh number 

in oscillatory convection 
 

5 Conclusion 
 
In this article, we have presented the results of the combined effects of concentration based internal heat 
source,  vertical magnetic field, Lewis number and porosity on double diffusive convection in a horizontal 
porous layer using normal mode analysis. The result of our study shows that increase in the internal heat 
parameter, �, hastens the onset of instability for stationary and oscillatory mode.  Increase in the porosity, �, 
destabilizes the system for oscillatory mode, while increase in the magnetic field and solutal Rayleigh 
number increases the Rayleigh number for both stationary and oscillatory modes which in effect leads to the 
stability  of the system. The presence of solute and increase in the magnetic field further stabilizes the 
system. Increase in the Lewis number ,��, stabilizes the system for stationary mode while it destabilizes the 
system for oscillatory mode. 
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