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Abstract

In this paper, we will solve the Logistic and Riccatfeliéntial equations usinglM, shifted Chebyshewt
spectral fourth kind methods and Hermite collocation method. Wherean from the numerical results
we obtained to conclude that the solution using these three appsoeonverge to the exact solution is
excellent. We note that we can apply the proposed methaisv® other problems in engineering and

physics.
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1 Introduction

There are a number of analytical and approximation methdds solve the nonlinear
differential equation of betweenW%IM and the method is present by He [1]. There are usefi@relifces
and correction of functions to solve nonlinear equations [P8ifferential equations does not require the
presence of small parameters, and not to be heterogené&busespect to the dependent variable and its
derivatives. This technique provides parity in functionst timeet the exact solution of the problem.
Theproblem is solved without the need for discretizatiovasfables. Therefore, in some problems, the
round of errors is not affected by one error that you atoerperience with large computer memory. The
proposed scheme provides a solution to the problem in addlose, the difference method such as Limited
[9] provides approximation ingrid points only. This procedwra ipowerful tool to solve various kinds of
problems, such as, as used to solve the delay diffdrenigations in [10], with these advantages of VIM
corresponded to some negatives for example, the main objeiftitteis paper is to introduce a new
amendment to this method to overcome defects and increasatéhef convergence of this method.
Methods of solution based on orthogonal polynomials known as speettlabds. For example, the spectral
method of non-linear high-grade nonlinear differentiguaions [11,12], the spectral method to the
fractional diffusion equation [13]. The spectral method has praself to be the most suitable for computer
execution.

In this paper, we use the spectral method with the rewenit of the Chebyshev-collocation points, to obtain
the solution of the differential equation of numerical ldgssts very accurate numerical. The logistic model
of the differential equation iscontinuous at the time idé&scribed as the normal differential equation.
Hermite polynomials are widely used in numerical companatOne of the advantages of using Hermite
polynomials as a tool for expansion functions is the good septation of smooth functions by finite

Hermite expansion provided that the functia(t) is infinitely differentiable. The logistic model was

proposed by the Belgian mathematician Pierre Verhuisti838 [14]. There are many variations in
population modeling [15-17]. A classic example of anarchitabi®r in a dynamic system [14]. Themodel
shows population growth and population density [18]. the solugiots therate of population growth

constant and does not include curbing the spread of dmeéSood supply. The curve of the solution
increases exponentially and is the maximumabsorptive itg{dd8], N is the population, r is the rate of

population growth andlis the carrying capacity.

The Riccati differential equatiofRDE) is named after the Italian Jacopo Francesco Rict&#G-1754).
Reed book contains [19-25] On the basic theory of the Ricqagt®mn, With applications for random
operations, Optimal control, Propagation problems and applisadf important engineering sciences today
are considered a classic, strong stability, optimal chmtetwork synthesis, applications include the latest in
areas suchas financial mathematics [26]. This equatiorbe solved using the classical numerical method
such as, the Euler method, the Rung Kutta method, and tir&Bawi and others in [25-28].

The main goal in this article is concerned with the apfibo of VIM and Chebyshev-spectral and Hermite
methods to obtain the numerical solution of the LogiRiccati, differential equation of the form
The Logistic differential equation [24]

du(t)
dt

= pu(t)(1 —u®)), t>0, p>0 D

We also assume an initial condition

u(0) = uy, uy > 0. (2)

Uo

The exact solution to this problem is givenuty) = Cvse-rrrmg:
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The Riccati differential equation

du(t)
dt

+u?(t)—1=0, t>0, 3)

We also assume an initial condition
u(0) = u®. (4

2t_
The exact solution to this problemet = 0 is u(t) = %

1.1 Applications of logistic differential equation

Is a model of population growth. Allow(t) population size and t time wheseonstant growth rate. The
differential equation of logistics is used in medicitee model tumors. Consider this application as an
extension mentioned above in ecologft) Size of tumors in time.

There are applications in various fields of the logisticslel among them;

i. Neural Networks. Logistic Models are often used in neural networks to introdooérnearity in the
model and or to clamp signals within a specific rangpopularneural net element computes a linear
combination of its input signals, and applies abounded logistidifumto the result; this model can
be seen as a smoothed variant of the classical thresholzhne

ii. Statistics: Logistic functions are used in several roles in stasisffirstly, they arethe cumulative
distribution function of the logistic family of distributiorBecondly, they are used in logistic
regression to model how the probability of an event may be affdteone or more explanatory
variables.

iii. Chemistry: the concentration of reactants and products in autgtiatadactions follows the logistic
function.

iv. Physics: it is applied in Fermi distribution in the sense that libgistic function determines the
statistical distribution of fermions over the energy staté a system in thermal equilibrium. In
particular, it is the distribution of the probabilities tlesich possible energy level is occupied by
fermions, according to Fermi Dirac statistics.

v. Linguistics: in linguistic, the logistic function can be used to model legg change, an innovation
that was at first marginal but has now become more univeesddipted.

vi. Economics: the logistic function can be used to illustrate the progw#sghe diffusion of an
innovation, infrastructures and energy source substitutiontharle ofwork in the economy as well
as with the long economic cycle.

The paper is organized as follows: Section 2, we impleiviBvit -technique for solving non-linear Logistic
differential equation. In Section 3, we implement VIMtaique for solving non-linear Riccati differential
equation. In Section 4, solution procedure using theeshdhebyshev-spectral method fourth kind Logistic,
Riccati differential equation. In section 5, we study s@maperties of the Hermite polynomials. In section6,
the Hermite method to solve numerically the non-lineagistic, Riccati differential equation. In section 7,
the paper ends with a brief conclusion.

The existence and uniqueness for the Logistic differieadjaation in [24].

The Convergence analysis for the Logistic equation ®M is satisfy in [24].
The maximum absolute error for the Logistic equatiorhefdpproximate solution in [24].
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2 VIM-techniqueto Non-linear Logistic Differential Equation
In this section, we implemeMM -technique for solving non-linear Logistic differential etijoa(1).
Step 1.Solve Eq.(1) by using VIM; We rewrite Eq.(1) in the feoling operator form
Lu = p(u—u?), )

Where L = %is linear bounded operator, i.e., it is possible to find nuniber 0 such that|l L, I< k |l
u [.TheVIM gives the possibility to write the solution of Eq.(5}wihe aid of the correction functional
t
2 (©) = n(0) + [ 2 i+ (& - )l ©)
0

Making the above correction functional stationary, and notitiagdii,, = 0 we obtain

t
St 1 () = Sup(t) + 3 j Aty + (@2 — W)ldr
0

— S, () + j 361, d = B (8) + A5, ]y j 3 (Ol6w,ldr = 0
0 0

Wheredii, is considered as a restricted variation &&,, = 0 ; yields the following stationary conditions
A)=0, 14+A1) l;.e=0 (7

Eq.(7) is called Lagrange-Euler equation with its boundzowdition. The Lagrange multiplier can be
identified by solving this equation aér) = —1. Now, the following variational iteration formulamc be
obtained

Upyq = Up(t) — ft[un + p(urzt —uyldt, n=0 (8)
0

We start with an initial approximation, and by using tlegation formula (8), we can obtain directly the
other components of the solution. The successive approrimati n > 1 of the solutionu will be readily
obtained upon using the obtained Lagrange multiplier and ing asy selective function,Consequently,
the exact solution may be obtained by using

u = lim u,. 9

n—-w

Using the recurrence formula (8), we can obtain the compts of the approximate solution of(1) [24].

uy(t) = 0.85,
u,(t) = 0.85 + 0.06375¢,
u,(t) = 0.85 + 0.06375t — 0.0222t2 — 0.00202¢3,
u;(t) = 0.85 + 0.06375t + 0.00974t3 + 0.00205t* — 0.0001t°> — 0.00004t® — 0.000002¢7,

Therefore, the complete approximate solution can be reabigined by the same iterative process .The
behavior of the approximate solution usMi/ is presented in Fig. 1.

From this figure, we can see thédM is invalid when applied in a large domain or the erfahis method
is more large. So, in the next steps we present a moabfidatVIM ; to improve the error.
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Step 2. Truncate the sequence's solution obtained/by; we have applied the method by using four-
iterations only, i.e., the approximate solution is

u(t) = u,(t). (10)
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Fig. 1. Comparison of the approximate solution using VIM and the exact solution in [0,1] and [0, 5]
3 VIM-techniqueto Non-linear Riccati Differential Equation

The procedure of the implementation is given by the folhgwsteps: In this section, we implem&fiM -
technique for solving non-linear Riccati differential edqumai(3)

Step 1. Solve Eq. (3) by using VIM; We rewrite Eq.(3) in thddwing operator form
Lu=1-u? (11)
wherd. = (;it is linear bounded operator, i.e., it is possible to find nurifhe 0 such thatl L, IS k |l u |l

TheVIM gives the possibility to write the solution of Eq.(11)htite aid of the correction functional

U1 () = un() + j A0 [ty — 1 + @2]dr (12)
0

Making the above correction functional stationary, artitimy thatdi,, = 0 we obtain

t
Sy, (1) = Su,(t) + 6f A, — 1+ #2]dr
0

Sty () = Sy (6) + 6 j A [, — 1]dr
0

Wheredii, is considered as a restricted variation &é,, = 0, yields the following stationary conditions

A)=0, 1+4+A1) l,2.=0 (13)
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Eq. (13) is called Lagrange-Euler equation with its boundandition. The Lagrange multiplier can be
identified by solving this equation a€7) = —1. Now, the following variational iteration formula can be
obtained

Uppq (B) = u, (1) — ft[un —1+uldr, n=0 (14)
0

We start with an initial approximation, and by using theatien formula (14), we canobtain directly the
other components of the solution. The successive approrimsati n > 1 of the solutionu will be readily

obtained upon using the obtained Lagrange multiplier and ing a1y selective function®Consequently,
the exact solution maybe obtained by using

u = lim u,. (15)
n—-ow

Using the recurrence formula (14), we can obtain the compondnttheo approximate solution
of(3)

uy(t) =0,

uy () =t,

u,(t) =t — 0.333333¢3,

us(t) =t — 0.333333t3 — 0.133333¢t° — 0.015873t7,
u,(t) =t — 0.333333¢t3 4 0.133333t> + 0.022222t7
—0.006349t° — 0.002578t11,

4 Solution Procedure Using the Shifted Chebyshev-spectral Method
Fourth Kind

In this section procedure using the Chebyshev-spectralbohévhsolve numerically the Logistic differential
equation (1).The well known Chebyshev polynomials [13,28]d&fined on the interval [-1,1]

The Chebyshev polynomialg, (t) and W, (t)of the third and fourth kinds are polynomials tirdefined,
respectively, by [23]

cos (n + %)
(D) = ———5
CcoS 3
And
. 1
sinin+ =5
Wn(t) - M
sinz

wheret = cos 6.

In fact the polynomial$},(t)and W, (t)are rescaling of two particular Jacobi polynomiajg'ﬁ)(t)for the
two non symmetric special casgs= —a = iiThey are given explicitly

By

And
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2n 11
mw=%ﬁﬁﬂm
(%)
It is readily seen that
Wo () = (D" (=0).

In this section, we sugges(t) be expressed in chebyshev series

m

u() ~ Z a W, (). (16)

n=0
4.1 Chebyshev fourth kind for solving logistic differential equation

In this section, we introduce a discretization formul@l9fusing the chebyshev collocation method to make
this aim, we approximate(t) as

m

Un(©) = ) @ (0, (17)

n=0

From Equations (1)and (16) we have

m m m
Daw ©=p) aWi©1-) el © | (18)
n=0 n=0 n=0
We now collocate Eq. (18) at pointst, as
m m m
z a, Wy (t,) = pz a, Wy (t,)[ 1 - z a Wy (t,) |. (19)
n=0 n=0 n=0

For suitable collocation points we use roots of shiftedb@sleev polynomialt/;; (t). Also, by substituting
Eqg. (17) in the given initial condition (2) we can find thddaling equation

m

n(®) = ) @y ©

m

Ug = Z a, Wy (0)

n=0

m
o= ) (-'a,

n=0

D e, =, (20)
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The system of Egs. (19) - (20), is a non-linear systéifin + 1)algebraic equations which can be solved,
for the unknownsa,, n = 0,1, ..., m using a suitable method. Consequent(y) given in Eq. (1) can be
calculated. In our computational we use the Newtons iteration method to solve the resulting non-linear
system of algebraic equations.

0.9s | 0.98
0.96 4 096 o
0.94 0.94
0924 0.92
oo |7 0.50 4
083/’ 0ss-

0.85l" 086

T T T T 1 T T T T 1
2 4 6 5 1o 2 4 6 8 10
t i

Fig. 2. Comparison of the exact solution and the approximate solution using VIM and Chebyshev-
spectral method, whereu, = 0.85,p = 0.5 with m = 2 (left) and m = 4 (right)

Now, to illustrate the applicability of the proposeéthod we implement the method with= 4, and we
approximate solution as
4

u(t) = z a, W, (0. 1)

n=0

Using Eq. (19) we have

4 4

Z a, Wy (t,) = pi a Wy ()| 1- Z a Wy (t,) |, (22)
n=0

n=0 n=0

With p = 0,1,2,3 wheret,, are roots of the shifted Chebyshev polynorifigi(t) which is the approximate
solution of the problem (1). The exact solution of the Lagiifferential equation(1) is

Ug
(1 —ugle Pt +uy

u(t) =

(23)

The obtained numerical results by means of the Chebyshevapeaethod is shown in Figs. 2 and 3. Fig. 2
presents behavior of the approximate solution and the sghdton, whereu, = 0.85,p = 0.5 at different
values of m#f = 2 (left) andn = 4 (right)). Fig. 3presents behavior of the approximate mwutith the
exact solution, at different valueswf andu, = 0.85 andp = 0.2

From these figures we can conclude that our approximatdosolusing Chebyshev-spectral method is in
excellent agreement with the exact values.

4.2 Chebyshev fourth kind for solving Riccati differential equation

In this section, we introduce a discretization formdlé3) using the chebyshev collocation method to make
this aim, we approximate(t) as From Equations (3)and (16) we have
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i a Wy () =1- i a, Wy (t) (24)

We now collocate Eq. (24) at pointst, as

a Wy (t,)=1- a Wy (t,) (25)

For suitable collocation points we use roots of shiftedb@$leev polynomialt; (t).Also, by substituting
Eq.(17) in the given initial condition (4) we can find fbowing equation

m

ul = Z a, W, (0)
n;l()

u = Z(_l)nan
n=0

Z(—l)"an _— (26)
n=0

The system of Eqgs. (25) - (26), is a non-linear systefmot+ 1) algebraic equationswhich can be solved,
for the unknownsg,,, n = 0,1, ..., m,using a suitable method.

0.9 1

0.8+

T T T 1
o 03 1 15 2
t

Fig. 3. Comparison of the exact solution and the appr oximate solution using Chebyshev-spectral
method, whereuy, = 0.85, p = 0.2

Consequently u(t) given in Eq.(3) can be calculated. In our computational wee
the Newton's iteration method to solve the resultinglim@ar system of algebraic equations.

Now, to illustrate the applicability of the proposed methadimplement the method with= 4 , and we
approximate solution as Eq. (21) Using Eq. (25) we have

4 4 2

a5 =1-( ) ey (1) @7)

n=0 n=0
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With p = 0,1,2,3 wheret,, are roots of the shifted Chebyshev polynoridfgi(t).
5 Some Properties of the Hermite Polynomials

In this section, the main aim of the presented paper isecoad with the application of the Hermite
collocation method to introduce the numerical simulationthef Logistic, Riccati differential equation. In
mathematics, the Hermite polynomials are classical ooalg polynomial sequence that arise in
probability, such as the Edge worth series; in combinatorscanaxample of an Appell sequence, obeying
the umbral calculus, in numerical analysis as Gausgisdrature; in finite element methods as shape
functions for beams, and in physics, where they give risthdoeigen states of the quantum harmonic
oscillator. They are also used in systems theoryimection with nonlinear operations on Gaussian noise.
They were defined by Laplace (1810) though in scarcely recagleiZorm, and studied in detail by
Chebyshev (1859). Chebyshevs work was overlooked and thieynamed later after Charles Hermite who
wrote on the polynomials in (1864) describing them as new. Thg wonsequently not new although in
later (1865) Hermite was the first to de.ne the multidisimmal polynomials [29-35].

Definition: The Hermite polynomials are given by [29]

— nt? " —t?
Hn(t) = (—1) e ﬁe
Some main properties of these polynomials are:
The Hermite polynomials evaluated at zero argurigii0) and are called Hermite number as follows: [29]

0, if nisodd,

nn
(-Dz22(n — D! if nis even,

H,(0) ={ (28)

Where (n — 1) is the double factorial. The polynomidi, (¢t) are orthogonal with respect to the weight
functionw(t) = e~t*with the following condition:

wan(t)Hm Ow(®)dt = Va2™n! 6.

In this article, the principal thought about the unearthliocation strategy is to acknowledge that the dark
resultu(t) could be approximated by a straight blend of a couple ebrebmits, called the trial limits, for
instance, orthogonal polynomials, as

n

=) ).

6 An Approximate Formula of the Fractional Derivative

The Hermite polynomials are defined on R and can berdeted with the aid of the following recurrence
formula [29-34].

H,,,(t) = 2tH,(t) — 2nH,_(t), Hy(t) =1, H(t)=2t, n=1.2,...

The analytic form of the Hermite polynomials of degreis given by

10
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lfJ (_ 1)k2n—2k

Hn(t) =n! £, — 2!

tn_Zk. (29)

In consequence, for the p-th derivatives of Hermite pmtyials the following relation hold:

n! n!

HP(t) = 27 Gy e O = Ty ©, Ty =2 s

(30)

The functionu(t) € Li,(t)(]R{), with a suitable weight functiom(t) = e‘tzmay be expressed in terms of
Hermite polynomials as follows

m

w(®) = ) cHy(® 31

k=0

Where the coefficients, are given by

& = o j_ OHO0Od, 1=01,. (32)

In practice, only the firsm 4+ 1) —terms of Hermite polynomials are considered. Thenwe hav

m

U (®) = ) ulin(©) (33)

n

The main approximate formula of the fractional derivais/ given in the following theorem.

Theorem Let u(t) be approximated by Hermite polynomials as (33) and also suppo8ethen

m 4
D (up () = Z n!z c B tn-2kal, (34)
n=q k=q

wheret = “ZandB%)is given by

B(q) _ (_1)k2‘n—2k
k() (n - 2k — q)!

Proof: since the non linear operation we have

DU(un(9)) = Y WD (Hy (), (35)

Itis clear thaD?H,(t) =0, n=0,1,..,q —1, g > 0 Therefore, fomn =q,q +1,...,m

Substituting equation (29) in (35) we have

11
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m 2]
-1 k2n—2k
D (un(t)) = Z nlc, Z mmtn-n_
n=0 k=0
“ %J (—1)k2"—2k
= n—-2k—
D (un (D) = ;n!kzocn =2k )] ¢ q @6

In this section, we implement the Hermite method to solve roatky the non-linear Logistic, Riccati
differential equation

6.1 Hermite method for solving logistic differential equation

In order to use the Hermite method we approxinedte with m = 2 as

2

w(®) = ) ce(e) 37)

k=0

substituting equations (33) , (34) in equation (1) we obtain

m t m m
DY B et =p > B0 1= ) 6
n=q k=q n=0 n=0

We now collocate Equation (38) @t + 1 — q) pointt,,p = 0,1,..,m —q as

m 13 m m
z n! Z anT(lfIk) thy 2l =p Z CuHn(tp) [1 - z Can(tp)] (39
n=q k=q n=0

n=0

(38)

For suitable collocation points we use roots of HermidiynomiaH (¢).In this case, the rootg of Hermite
polynomialH(t) are

to = 0.707106781187, t, = —0.707106781187,

Also, by substituting formula (37) in the initial condits (2) we can find

2
Z InCn = Uo (40)
n=0

Whereg,, = H,(0)and is defined in (28)

Equation (39) with of the initial conditions (40), giv€2m +2) of non-linear algebraic
equations which can be solved using the Newton iteration method.

6.2 Hermite method for solving Riccati differential

In order to use the Hermite method we approximé&te with m = 2 substituting equations (33) , (34) in
equation (3) we obtain

12
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2
(41)

m 14 m
Z n! Z N [Z cyHp ()
n=q

k=q n=0

We now collocate Equation (41) @k + 1 — q) pointst, ,p =0,1,..,m — qas

m l m 2
Z n! Z B = 1 — [z ann(tp)] (42)
n=q k=q n=0

For suitable collocation points we use roots of Hermite polyalati(t).In this case,the rootg of Hermite
polynomial H(t)are

t, = 0.707106781187, t, = —0.707106781187,

Also, by substituting formula (37) in the initial conditions (g can find

2
Zgncn =u’ (43)
n=0

whereg,, = H,(0)and is defined in (28)

Equation (42) with of the initial conditions (43), gi(2m + 2) of non-linear algebraic equations which can
be solved using the Newton iteration method.
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0.6 e
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I o
0.14 //
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0 T T T : !
0 02 0.4 0.6 08 1
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[ Cheb 4kd — — VIM — - — Hemmite|

Fig. 4. The comparison between VIM, Chebyshev fourth kind Her mite polynomial

7 Conclusions

In this article, we used three computational methods, hely-spectral method/IM and Hermite
collocation methods to solve numerically the Logisticd aRiccati differential equation. Using the
Chebyshev-collocation method, the Logistic, Riccati déffeial equation reduced to a non-linear system of
algebraic equations which solved by Newton iteration met¥& presented a numerical simulation of the
Logistic, Riccati differential equation with different vakiofm, the parametep and the initial values,.
From the obtained numerical results, we can concludetlibae three methods give us results in excellent
agreement with the exact solution.MiM it is evident that the overall errors can be made smayi@dding
new terms from the sequence (12), but in Chebyshev-spewthbd it is evident that the overall errors can
be made smaller by adding new terms from the series. Buomumerical results presented in all figures, it

13
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is easy to conclude that the solution continuously dependseoinitial condition and the value of the
parametepin the Logistic and Riccati differential equation.
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