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Abstract

We study the Homfly polynomial of periodic knotted trivalent plane graphs introduced in [1].
We show how periodicity of a knotted trivalent plane graphs is reflected in this polynomial. In
particular, we derive congruences of periodic knotted trivalent plane graphs in terms of this
polynomial invariant. These congruences yield criteria for periodicity of knotted trivalent plane
graphs.
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1 Introduction

Let p be an odd prime and Zp be the finite cyclic group of order p. A knotted trivalent graph is said
to be p-periodic of period p if there is an orientation preserving homeomorphism of S3 of order p,
with a circle as a set of fixed points that is disjoint from the knotted trivalent planar graph G, that
maps G onto itself setwise. By the positive resolution of the Smith conjecture [2], we can represent
the diagram of a p-periodic knotted trivalent graph G as the closure of a pth power of a knotted
trivalent graph, where the product of two knotted trivalent graphs is obtained by connecting the
top points of the second graph to the bottom points of the first one by a collection of parallel,
non-weaving strands. This defines an action of the group Zp on the knotted trivalent graph G by
a 2π/p-rotation.

Many congruences of periodic links have been given in terms of polynomial invariants such as the
Jones polynomial [3] and its 2-variable generalization [4, 5, 6, 7, 8, 9, 10], the Alexander polynomial
[11, 12, 13], and the twisted Alexander polynomials [14]. Different criteria of periodicity have
been found in terms of hyperbolic structures on knot complements [15], homology groups of cyclic
branched covers [16, 17], concordance invariants of Casson and Gordan [17], Khovanov homology
[18], link Floer homology [19] and the Heegaard Floer correction terms of the finite cyclic branched
covers of knots [20].

Our purpose in this paper is to explore periodicity of knotted trivalent plane graphs in terms of the
Homfly polynomial invariant defined in [1]. The congruences of periodic knotted trivalent graphs
are given in terms of this polynomial invariant. The restriction of these congruences to the case of
links yields congruences of periodic links in terms of this polynomial.

2 The Homfly Polynomial of Knotted Trivalent Graphs

The authors of [1] defined an invariant of colored, oriented, trivalent, plane graphs that can be
extended to an invariant of colored, oriented, trivalent, knotted graphs using the skein relations [1,
Section 3].

We recall the definition of the above invariant and refer the reader to [1] for further details.

Our trivalent plane graphs are oriented such that at each vertex two edges are ”in” and one edge is
”out” or two edges are ”out” and one edge is ”in”. The two in- or out-edges are called the legs of
the vertex and the one out- or in-edge is called the head of the vertex.

A coloring f of the graph is a map from the edge set to the set of positive integers less than or
equal to n ≥ 2 such that the sum of the colors of the legs is equal to the color of the head of that
vertex.

A state σ is an assignment of a subset A of N = {−n+1
2

, −n+3
2

, . . . , n−1
2

} denoted by σ(e) to each
edge e such that #(A) = f(e) and the union of the subsets assigned to the legs coincides with that
to its head, where #(A) is the number of elements of A and f(e) is the integer assigned to the edge
e from the given coloring f .

For any disjoint subsets A1 and A2 of N with n ≥ 2, we put π(A1, A2) = #{(a1, a2) ∈ A1×A2 | a1 >
a2}. The weight wt(v;σ) of a vertex with a given state σ is defined as follows:

wt(v;σ) = q
f(e1)f(e2)

4
−π(σ(e1),σ(e2))

2 ,

where q is an indeterminate, and e1 and e2 are left and right legs respectively with respect to the
orientation of G (See the following figure).
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Throughout this paper, diagrams that appear in one equation are identical except as indicated in
a small disk.

Now if we replace each edge e by f(e)-parallel edges and assign to each copy an element of the
subset determined by σ and connect at every vertex each pair of edges with the same element of
N , then we obtain a union of simple closed curves each of which equipped with the same element.
Hence, the rotation number of the state σ denoted by rot(σ) is defined as follows:

rot(σ) =
∑
C

σ(C) rot(C),

where the sum is taken over all simple closed curves C equipped with σ(C) ∈ N and rot(C) is 1 if
C is oriented counter-clockwise and -1 otherwise.

Now we define the mapping ⟨G⟩n to have value 1 for the empty graph and otherwise to be defined
as follows:

⟨G⟩n =
∑

σ:state

{
∏

v:vertex

wt(v;σ)}qrot(σ).

From definition, we conclude that this mapping is invariant under ambient isotopy of R2. Also, it
can be extended to the case of knotted colored plane graphs using the following skein relations:

⟨ ⟩
n

= q
1
2

⟨ ⟩
n

−

⟨ ⟩
n

(2.1)

and

⟨ ⟩
n

= q
−1
2

⟨ ⟩
n

−

⟨ ⟩
n

. (2.2)

Now we define a new mapping in terms of this mapping Pn(G) = q
−nw(G)

2 ⟨G⟩n for any trivalent
knotted plane graph G, where w(G) is the writhe of G. The last mapping is a specialization of the
Homfly polynomial invariant defined for links in [21] as a result of [1, Theorem3.2]. To be more
precise, it satisfies a skein relation of trivalent knotted plane graphs as follows:

q
n
2 Pn(G+)− q

−n
2 Pn(G−) = (q

1
2 − q

−1
2 )Pn(G0), (2.3)

where G+, G− and G0 are identical trivalent knotted plane graphs except near a crossing given by

the following scheme: , , , respectively.

3 Main Results

As a result of Equations 2.1 and 2.2, it is easy to see that Pn(G
′
)(q) = Pn(G)(q−1), where G

′
is

the mirror image of the knotted trivalent plane graph G. For the next result, we define the ideal I

of the ring Z[q±
1
2 ] generated by p and qp − 1.
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Theorem 3.1. For any p-periodic knotted trivalent plane graph G, we have Pn(G) ≡ Pn(Gν)
mod I, where Gν is the knotted trivalent graph G after interchanging all crossings of the orbit ν.
Therefore, we conclude that Pn(G) ≡ Pn(G

′
) mod I, where G

′
is the mirror image of G.

Proof. We apply Equations 2.1 and 2.2 to resolve all crossings of the orbit ν in G and the
corresponding crossings in Gν . By considering the state summations modulo p, we need only to
examine the contributions of the graph states that are p-periodic. We can pair the terms in both
summations in a way that the graph state in both terms is identical but with possibly different
coefficients. It is clear that these coefficients are scalar multiple of each other by a factor of ±q±p.
Therefore, we obtain ⟨G⟩n ≡ ⟨Gν⟩n mod I after applying the second relation of the ideal I. Now

the result follows since q
−nw(G)

2 ≡ q
−nw(Gν )

2 mod I since the difference in writhes of G and Gν is
±2p. Finally, we apply this to all orbits to obtain the second result.

The next result deals with the p-periodic trivalent knotted graph G and its quotient G∗. For this

purpose, we define a new ideal J of the ring Z[q±
1
2 ] that is generated by p and [n]p − [n], where

[n] = q
n
2 −q

−n
2

q
1
2 −q

−1
2

.

Theorem 3.2. For any p-periodic knotted trivalent graph G, we have Pn(G) ≡ (Pn(G∗))
p mod J .

Proof. We use induction on the number of orbits of trivalent vertices in G. In the case G has
zero orbits of trivalent vertices, then G represents a link diagram D of some link. Now there is
a one-to-one correspondence between the binary resolving tree of D in computing Pn(D) and the
binary resolving tree of D∗ in computing Pn(D∗). Now Equation 2.3 implies the result if we use
induction on the number of crossings and under the assumption that the result holds for crossing
changes.

Now if G contains (m + 1) orbits of trivalent vertices, then with the aid of the formulas given in
Equations 2.1 and 2.2, we obtain

G = q
p
2 G1 −G2 mod p,

for some p-periodic knotted plane trivalent graphs G1, and G2 of m pairs of trivalent vertices with
quotient knotted trivalent graph

G∗ = q
1
2G1∗ −G2∗,

where G1∗ and G2∗ are the quotient knotted trivalent graphs of G1 and G2 respectively. Finally,
the result follows from the induction hypothesis on each term.

The following results can be derived from the Theorem 3.2, but before we do so we need to analyze

the second relation of the ideal J . To simplify notation, we let u = q
1
2 . The second relation of the

ideal J modulo p can be written in terms of u as follows:[n
2
]−1∑

i=0

(un−(2i+1) + u−n+(2i+1))

p

−
[n
2
]−1∑

i=0

(un−(2i+1) + u−n+(2i+1)) =

[n
2
]−1∑

i=0

(
(un−(2i+1) + u−n+(2i+1))p − (un−(2i+1) + u−n+(2i+1))

)
Corollary 3.3. For any p-periodic knotted trivalent graph G, we have

1. If n is odd, then Pn(G) ≡ (Pn(G∗))
p mod (p, q2p − qp+1 − qp−1 + 1)
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2. If n is even, then Pn(G) ≡ (Pn(G∗))
p mod (p, qp − q

p+1
2 − q

p−1
2 + 1).

Proof. We prove the first case and the second case follows in the same manner. If n is odd, then
all the powers in each term of the above sum are even. In particular, we have

(u2m + u−2m)p − (u2m + u−2m) = (qm + q−m)p − (qm + q−m)

= qpm + q−pm − qm − q−m (mod p)

= q−pm(q2pm + 1− q(p+1)m − q(p−1)m)

= q−pm(q(p+1)m(q(p−1)m − 1)− (q(p−1)m − 1))

= q−pm(q(p+1)m − 1)(q(p−1)m − 1).

It is clear that the last polynomial is divisible by (qp+1 − 1)(qp−1 − 1) = q2p − qp+1 − qp−1 + 1.
The result follows since each of the above terms in the second relation of the ideal J is divisible by
q2p − qp+1 − qp−1 + 1.

Corollary 3.4. Let α and β denote a primitive
(
p−1
2

)
th-root of unity and

(
p+1
2

)
th-root of unity

respectively, then

1. Pn(G)(α) ≡ Pn(G∗)(α) (mod p)

2. Pn(G)(β) ≡ Pn(G∗)(β
−1) (mod p)

Proof. We prove the second case when n is odd and the other cases follow in the same manner. It

is clear that (q
p+1
2 − 1)(q

p−1
2 − 1) divides q2p − qp+1 − qp−1 + 1. Therefore, the second relation of

the ideal J is simply zero if q = β. Now from Theorem 3.2, we have Pn(G)(β) ≡ (Pn(G∗)(β))
p ≡

Pn(G∗)(β
p) ≡ Pn(G∗)(β

−1) (mod p), since βp = (β
p+1
2 )2β−1 = β−1.

Corollary 3.5. For any p-periodic knotted trivalent graph G, we have Pn(G) ≡ (Pn(G∗))
p

mod (p, q2n − qn+1 − qn−1 + 1).

Proof. We can obtain the same result in Theorem 3.2 after replacing the second relation in the

ideal J by [n]p−1 − 1 or equivalently (q
n
2 − q

−n
2 )p−1 − (q

1
2 − q

−1
2 )p−1. Now we analyze this relation

with u = q
1
2 and use the fact that

(
p−1
j

)
≡ (−1)j (mod p).

(un − u−n)p−1 − (u− u−1)p−1 =

p−1∑
j=0

(−1)jun(2j−p+1) −
p−1∑
j=0

(−1)ju(2j−p+1)

=

p−1
2∑

j=0

(−1)j
(
(un(2j−p+1) + u−n(2j−p+1))− (u(2j−p+1) + u−(2j−p+1))

)
.

Now each term of the above sum has the form (u2mn + u−2mn) − (u2m + u−2m) for some positive
integer m. We have

(u2mn + u−2mn)− (u2m + u−2m) = u−2mn(u4mn − u2mn+2m − u2mn−2m + 1)

= q−mn(q2mn − qmn+m − qmn−m + 1)

= q−mn(qmn+m − 1)(qmn−m − 1)

It is clear that the last expression is divisible by (qn+1 − 1)(qn−1 − 1) = (q2n − qn+1 − qn−1 + 1).
Therefore, the sum is divisible by (q2n − qn+1 − qn−1 + 1) since each term in the above sum is
divisible by this term.
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Corollary 3.6. For any p-periodic knotted trivalent graph G with p = n, we have either Pn(G)(q) ≡
(Pn(G∗))(q) mod (p, q2n − qn+1 − qn−1 +1) or Pn(G)(q) ≡ (Pn(G∗))(q

−1) mod (p, q2n − qn+1 −
qn−1 + 1).

Proof. The result follows since the second relation of the ideal implies that q is either a (p − 1)th
root of unity or (p+ 1)th root of unity.

Remark 3.1. The criterion in Theorem 3.1 is valid for all positive integers p ≥ 2 not necessarily for
odd primes. All knotted trivalent plane graphs pass this criterion for p = 2 since q = q−1 in this
case.

As an application, we want to see how to apply the criterion in Theorem 3.1 to obstruct periodicity
of an example of a knot.

Example 3.7. From the table in [1], we have P2(K) = −q
9
2 + q

5
2 + q

3
2 + q

1
2 , where K is the trefoil

knot while P2(K
′
) = −q

−9
2 +q

−5
2 +q

−3
2 +q

−1
2 . It is a simple exercise to show that P2(K) ≡ P2(K

′
)

mod I only if p = 3. Therefore, we can conclude that the trefoil is only 3-periodic.

4 Conclusion

We show that the Homfly polynomial of periodic knotted trivalent plane graphs introduced in [1]
satisfies some congruences. Therefore, the periodicity of a knotted trivalent plane graphs is reflected
in this polynomial. From this, we derive criteria for periodicity of knotted trivalent plane graphs.
For example, this leads to criteria for periodic links.
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