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Abstract

In this paper, the oscillatory behavior of the solutions for a class of nonlinear mechanical system
with delay is investigated. By means of mathematical analysis method, some sufficient conditions
to guarantee the oscillation of the solution are obtained. Computer simulations are provided to
demonstrate our results.
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1 Introduction

It is well known that stability and oscillations are two research topics for many mechanical systems
[1-20]. In [1], Rabeloa et al. investigated a two-degree-of-freedom mechanical model with damping
which subjects the time delay. This model consists of a primary system attached to the ground
by a suspension that includes damping and spring, and a damped secondary mass coupled to
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the primary system by a spring with nonlinear characteristics. The mathematical model for this
mechanical system is as follows:

y′′
1 + ω2

1y1 + α12y
2
1 + α13y

3
1 + ζ1y

′
1 + ζ2y

′
1y

2
1 − α21y2 + ζ3(y

′
1(t− τ)− y′

2(t− τ))
+α22(y1 − y2)

2 + α23(y1 − y2)
3 = F1 cos(Ω1t) + y2F2 cos(Ω2t)

y′′
2 (t) + ω2

2(y2 − y1) + β22(y2 − y1)
2 + β23(y2 − y1)

3 + ζ4(y
′
2(t− τ)− y′

1(t− τ)) = 0.
(1)

where ω1, ω2 are natural frequencies; Ω1,Ω2 represent the forcing frequencies; ζ1, ζ2, ζ3, ζ4 represent
the damping parameters; α12, α13, α21, α22, α23 are stiffness parameters; F1, F2 represent parameters
of the external excitation force amplitudes. Under the restricted conditions for small damping, for
small amplitudes of external excitation and weak stiffness of nonlinearities, that is, for a small
parameter of perturbation ε (0 < ε ≪ 1):

αij = O(ε), i = 1, 2, j = 1, 2, 3;Fi = O(ε), i = 1, 2; ζi = O(ε), i = 1, · · · , 4;β2j = O(ε), j = 1, 2. (2)

The authors have investigated the stability of the solutions by using the method of computational
and numerical analysis. The solution was obtained by using the integration of equations of motions
performing a Fourth Order Runge-Kutta Method. The behavior of a nonlinear main system with
nonlinear secondary system also have been investigated to many cases of resonances.

On the other hand, under what conditions the system will appear oscillation is also important.
Therefore, in this paper we discuss the oscillatory behavior of the solution for the model (1). Our
result indicates that if the autonomous system associated with (1) has an oscillatory solution, then
there exists an oscillatory solution of system (1) since F1 cos(Ω1t) + y2F2 cos(Ω2t) is an external
periodic force.

2 Preliminaries

For convenience, system (1) can be written as an equivalent four dimensional first order system:
x′
1 = x2,

x′
2 = −ω2

1x1 − α12x
2
1 − α13x

3
1 − ζ1x2 − ζ2x

2
1x2 + α21x3 − ζ3(x2(t− τ)− x4(t− τ))

−α22(x1 − x3)
2 − α23(x1 − x3)

3 + F1 cos(Ω1t) + x3F2 cos(Ω2t),
x′
3 = x4,

x′
4 = −ω2

2(x3 − x1)− β22(x3 − x1)
2 − β23(x3 − x1)

3 − ζ4(x4(t− τ)− x2(t− τ)).

(3)

Corresponding to system (3), we have the following autonomous system:
x′
1 = x2,

x′
2 = −ω2

1x1 − α12x
2
1 − α13x

3
1 − ζ1x2 − ζ2x

2
1x2 + α21x3 − ζ3(x2(t− τ)− x4(t− τ))

−α22(x1 − x3)
2 − α23(x1 − x3)

3,
x′
3 = x4,

x′
4 = −ω2

2(x3 − x1)− β22(x3 − x1)
2 − β23(x3 − x1)

3 − ζ4(x4(t− τ)− x2(t− τ)).

(4)

The system (4) can be expressed in the following matrix form:

x′(t) = Ax(t) +Bx(t− τ) + f(x(t)) (5)

where x = (x1, x2, x3, x4)
T , x(t − τ) = (x1(t − τ), x2(t − τ), x3(t − τ), x4(t − τ))T , A and B both

are 4 by 4 matrices, and f(x(t)) is a 4 by 1 vector:

A = (aij)4×4 =


0 1 0 0

−ω2
1 −ζ1 α21 0

0 0 0 1
0 −ω2

2 ω2
2 0

 ,
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B = (bij)4×4 =


0 0 0 0
0 −ζ3 0 ζ3
0 0 0 0
0 ζ4 0 −ζ4

 ,

f(x) =


0

−α12x
2
1 − α13x

3
1 − ζ2x

2
1x2 − α22(x1 − x3)

2 − α23(x1 − x3)
3

0
−β22(x3 − x1)

2 − β23(x3 − x1)
3

 .

The linearized system of (5) is
x′(t) = Ax(t) +Bx(t− τ) (6)

Lemma 1 If β2
22 − 4α13β23 < 0, α2

12 − 4α13(ω
2
1 − α21) < 0, then there exists a unique equilibrium

point for system (4) (or (5)).

Proof An equilibrium point x∗ = [x∗
1, x

∗
2, x

∗
3, x

∗
4]

T of system (4) is a constant solution of the
following algebraic equation

x∗
2 = 0,

−ω2
1x

∗
1 − α12x

∗2
1 − α13x

∗3
1 − ζ1x

∗
2 − ζ2(x

∗
1)

2x∗
2 + α21x

∗
3

−ζ3(x
∗
2 − x∗

4)− α22(x
∗
1 − x∗

3)
2 − α23(x

∗
1 − x∗

3)
3 = 0,

x∗
4 = 0,

−ω2
2(x

∗
3 − x∗

1)− β22(x
∗
3 − x∗

1)
2 − β23(x

∗
3 − x∗

1)
3 − ζ4(x

∗
4 − x∗

2) = 0.

(7)

Noting that x∗
2 = 0, x∗

4 = 0, so system (7) changes to the following:{
ω2
1x

∗
1 + α12x

∗2
1 + α13x

∗3
1 − α21x

∗
3 + α22(x

∗
1 − x∗

3)
2 + α23(x

∗
1 − x∗

3)
3 = 0,

ω2
2(x

∗
3 − x∗

1) + β22(x
∗
3 − x∗

1)
2 + β23(x

∗
3 − x∗

1)
3 = 0.

(8)

We shall prove that x∗
1 = 0, x∗

3 = 0. Indeed, from the second equation of (8), we have x∗
3 − x∗

1 = 0,
or β23(x

∗
3 − x∗

1)
2 + β22(x

∗
3 − x∗

1) + ω2
2 = 0. Condition β2

22 − 4α13β23 < 0 implies that there are no
real roots of equation β23(x

∗
3 −x∗

1)
2 +β22(x

∗
3 −x∗

1)+ω2
2 = 0. Thus, we only have x∗

3 −x∗
1 = 0. From

x∗
3 − x∗

1 = 0 we obtain x∗
1(α13x

∗2
1 + α12x

∗
1 − α21 + ω2

1) = 0. Condition α2
12 − 4α13(ω

2
1 − α21) < 0

implies that there are no real roots of equation α13x
∗2
1 + α12x

∗
1 + ω2

1 − α21 = 0. Therefore, we have
x∗
1 = 0, x∗

3 = 0. system (4) only have a zero equilibrium point.

Lemma 2 If the trivial solution of system (6) is unstable, then the trivial solution of (5) is
unstable.

Proof Obviously, system (5) and (6) both have trivial solution. f(x) is a higher order infinitesimal
when x → 0. Therefore, the trivial solution of system (6) is unstable, then the trivial solution of
system (5) is unstable.

3 Oscillatory Behavior of the Solutions

Theorem 1 Assume that all solutions of system (3) are bounded. If zero is the unique equilibrium
point of system (6) for selecting parameter values. Let α1, α2, α3, α4 and β1, β2, β3, β4 be characteristic
values of matrix A and B, respectively. If there exists some positive αk, or Re(αk) > 0, then the
unique equilibrium point of system (6) is unstable. System (3) generates an oscillatory solution.

Proof Since αi and βi (i = 1, 2, 3, 4) are characteristic values of matrix A and B, respectively,
then the characteristic equation corresponding to system (6) is the following:

Π4
i=1(λ− αi − βie

−λτ ) = 0 (9)
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So, we are led to an investigation of the nature of the roots for some k, k ∈ {1, 2, 3, 4}

λ− αk − βke
−λτ = 0 (10)

Noting that there exists a zero characteristic value of system B. Without loss of generality, we
assume that αk > 0, or Re(αk) > 0, βk = 0. Then (10) changes to

λ− αk = 0 (11)

Since αk > 0, or Re(αk) > 0, this means that there is a positive (or a positive real part )
characteristic value of system (6). Therefore, the trivial solution of system (6) is unstable. According
to Lemma 2, the trivial solution of (5) is unstable. The boundedness of the solutions of system
(5) and the instability of unique equilibrium point will force system (5) to generate an oscillatory
solution. Since F1 cos(Ω1t) + y2F2 cos(Ω2t) is a periodic external force, implying that system (3)
has an oscillatory solution.

Theorem 2 Let k = max{|ζ3|, |ζ4|}, µ(A) = max1≤j≤4[ajj +
∑4

i=1,i̸=j |aij |] [21]. Assume that
system (3) has a unique equilibrium point and all solutions of system (3) are bounded. If the
following inequality holds:

µ(A) + k > 0 (12)

then system (3) has an oscillatory solution.

Proof Let y(t) =
∑4

i=1 |xi(t)|, from (6) we have

y′(t) ≤ µ(A)y(t) + ky(t− τ) (13)

Consider the scalar differential equation

z′(t) = µ(A)z(t) + kz(t− τ) (14)

According to the comparison theorem of differential equation, we have y(t) ≤ z(t). For equation
(14), the characteristic equation associated with (14) is given by

λ = µ(A) + ke−λτ (15)

We claim that there exists a positive characteristic root of equation (15). Indeed, let g(λ) =
λ − µ(A) − ke−λτ . Then g(λ) is a continuous function of λ. From condition (12), we have g(0) =
−µ(A) − k < 0. On the other hand, limλ→+∞ e−λτ → 0. Thus, there exists a suitably large
positive λ, say λ1 such that g(λ1) = λ1 − µ(A) − ke−λ1τ > 0. According to the Intermediate
Value Theorem, there exists a λ∗, where λ∗ ∈ (0, λ1) such that g(λ∗) = 0. In other words, λ∗ is
a positive characteristic root of equation (15), implying that the trivial solution of equation (14)
is unstable. Since y(t) ≤ z(t), this means that the trivial solution of equation (13) is unstable. It
suggested that system (3) has an oscillatory solution.

Theorem 3 Assume that system (3) has a unique equilibrium point and all solutions of system (3)
are bounded. If the following inequality holds for selecting time delay τ :

keτ > e|µ(A)|τ (16)

then system (3) has an oscillatory solution.

Proof We shall prove that the trivial solution of equation (14) is unstable. Suppose this is not
the case, then the characteristic equation (15) will have a real nonpositive root, say λ0 < 0 such
that

λ0 = µ(A) + ke−λ0τ (17)
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Thus,

|λ0| ≥ ke−λ0τ − |µ(A)| = ke|λ0|τ − |µ(A)| (18)

or

|λ0|+ |µ(A)| ≥ ke|λ0|τ = ke(|λ0|+|µ(A)|)τe−|µ(A)|τ (19)

Noting that e(|λ0|+|µ(A)|)τ ≥ e(|λ0|+ |µ(A)|)τ, thus

|λ0|+ |µ(A)| ≥ ke(|λ0|+ |µ(A)|)τe−|µ(A)|τ (20)

So we have

1 ≥ (keτ)e−|µ(A)|τ (21)

The inequality (21) contradicts (16). Therefore, the trivial solution of equation (14) is unstable.
Implying that system (3) has an oscillatory solution.

4 Simulation Results

The simulation is based on the equivalent system (3) of (1), first the parameters are selected as
follows: α12 = 0.03, α13 = 0.04, α21 = 0.87, α22 = 0.35, α23 = 0.025;β22 = 0.98, β23 = 1.32; ζ1 =
0.05, ζ2 = 0.08, ζ3 = 0.04, ζ4 = 2;ω1 = 2.25, ω2 = 6.35;Ω1 = 0.45,Ω2 = 0.55;F1 = 0.6, F2 =
0.3. The time delay τ = 0.185. Then the characteristic values of A = [0 1 0 0;−2.252 −
0.05 0.87 0; 0 0 0 1; 0 − 6.352 0] are 5.9319, 0.3650 ± 2.2340i,−6.7119. Since there is a
positive characteristic value (5.9319) of matrix A, the condition of Theorem 1 are satisfied. One can
check that the conditions of Theorem 2 are also satisfied. There exists an oscillatory solution for
system (3). However, the oscillatory amplitude of the solution is small (see Fig.1). Then we change
ω1 = 2.15, ω2 = 2.35,Ω1 = 1.85,Ω2 = 1.55, the other parameters are kept as before, both oscillatory
amplitude and frequency of the solution are changed (see Fig.2), implying that the values of ω1, ω2,
Ω1, and Ω2 affect the oscillatory amplitude and frequency of the solution greatly. In order to see
the effect of time delay, we use the parameters in figure 1 and change the time delay τ from 0.185
to 0.225 and 0.285, respectively. One can see that both the oscillatory amplitude and frequency are
changed, implying that time delay affects amplitude and frequency of the oscillation (see Fig.3).
We pointed out that the condition of Lemma 1 is not satisfied based on selecting parameter values.
This means that Lemma 1 only is a sufficient condition.
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5 Conclusion

In this paper, we have discussed the oscillatory behavior of the solutions for a class of nonlinear
mechanical system with delay. Based on mathematical analysis method, we provided some sufficient
conditions to guarantee the oscillation of the solutions. Some simulations are provided to indicate
the effectness of the criterion.

Competing Interests

Author has declared that no competing interests exist.

6



Feng; ARJOM, 7(2): 1-8, 2017; Article no.ARJOM.37180

References

[1] Rabeloa M, Silvaa L, Borgesa R, Gonalvesa R. Henriqueb M. Computational and numerical
analysis of a nonlinear mechanical system with bounded delay [J]. International Journal of
Non-Linear Mechanics. 2017;91(1):36-57.

[2] Tang YG, Li N, Liu MM, Lu Y, Wang WW. Identification of fractional-order systems with
time delays using block pulse functions [J]. Mechanical Systems and Signal Processing.
2017;91:382-394.

[3] Ji JC, Zhou J. Coexistence of two families of sub-harmonic resonances in a time-delayed
nonlinear system at different forcing frequencies [J]. Mechanical Systems and Signal Processing.
2017;93(1):151-163.

[4] Pietri DB, Meglio FD. Prediction-based control of linear input-delay system subject to
state-dependent state delay-Application to suppression of mechanical vibrations in drilling
[J]. IFAC PaperOnLine. 2016;49(8):111-117.

[5] Kammer AS, Olgac N. Delayed-feedback vibration absorbers to enhance energy harvesting
[J]. Journal of Sound and Vibration. 2016;363(17):54-67.

[6] Sipahi R, Kucera V, Vyhlidal T. Stability analysis and control design of a vibration control
system with uncertain and tunable delays [J]. IFAC PaperOnLine. 2015;48(12):123-128.

[7] Ulsoy AG. Time-delayed vibration control of two degree-of-freedom mechanical system for
improved stability margins [J]. IFAC PaperOnLine. 2015;48(12):1-6.

[8] Saberi L, Nahvi H. Vibration analysis of a nonlinear system with a nonlinear absorber under
the primary and super-harmonic resonances [J]. IJE Transactions C: Aspects. 2014;27(3):499-
508.

[9] Saeed NA, El-Gannini WA, Eissa M. Nonlinear time delay saturation-based controller for
suppression of a nonlinear beam vibrations [J]. Applied Mathematical Modelling. 2013;37:8846-
8864.

[10] Zhao YY, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system
[J]. Journal of Sound and Vibration. 2007;308:212-230.

[11] Xu J. Advances of research on vibration control (in Chinese) [J]. Chinese Quarterly of
Mechanics. 2015;36(4):547-565.

[12] Sayed M, Hamed YS, Amer YA. Vibration reduction and stability of non-linear systems
subjected to external and parametric excitation forces under a non-linear absorber [J].
International Journal of Contemporary Mathematics. 2011;6(22):1051-1070.

[13] Amer YA. Vibration control of ultrasonic cutting via dynamic absorber [J]. Chaos, Solitons
Fractals. 2007;33:1703-1710.

[14] Borges RA, Lima AM, Steffen V. Robust optimal design of a nonlinear dynamic vibration
absorber combining sensitivity analysis [J]. Shock Vibration. 2010;17(4-5):507-520.

7



Feng; ARJOM, 7(2): 1-8, 2017; Article no.ARJOM.37180

[15] Eissa M, Sayed M. A comparison between active and passive vibration control of a non-linear
simple pendulum part II: longitudinal tuned absorber and negative Gφ̃ and Gφ feedback [J].
Mathematical and Computational Applications. 2006;11(2):151-162.

[16] Sun YX, Xu J. Experiments and analysis for a controlled mechanical absorber considering
delay effect [J]. Journal of Sound and Vibration. 2015;339:25-37.

[17] Amer YA, EL-Sayed AT, Kotb AA. Nonlinear vibration and of the Duffing oscillator to
parametric excitation with time delay feedback [J]. Nonlinear Dynamics. 2016;85(4):2497-2505.

[18] Lu W, Liu Y. Vibration control for the primary resonance of the Duffing oscillator by a time
delay state feedback [J]. International Journal of Nonlinear Science. 2009;8:324-328.

[19] El-Ganaini WA, Elgohary HA. Vibration suppression via time-delay absorber described by
non-linear differential equations [J]. Advanced Theory of Applied Mechanics. 2011;4(2):49-67.

[20] Zheng PX, Long XH. Active control of time-delay in cutting vibration [J]. Theoretical and
Applied Mechanics Letters. 2013;3(6):036003.

[21] Gopalsamy K. Stability and oscillations in delay differential equations of population dynaqmics,
Kluwer Academic, Boston; 1992.

——————————————————————————————————————————————–
c⃝ 2017 Feng; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/21994

8

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Oscillatory Behavior of the Solutions
	Simulation Results
	Conclusion

