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ABSTRACT

In this paper, we have determined the free energy of a binary alloy for any order and it is showed that
the number of equilibrium states of the system is obtained by the Taylor expansion to the 4-th order
choice. We explicitly determine the stable states of alloy which are characterized by the free energy.
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1 INTRODUCTION

1.1 Model to Study

Let us consider a binary alloy constituted of a
crystal structure1 of N sites randomly occupied
by NA atoms of type A and NB atoms of type B
[2] (fig. 1). Let us take the following data that
characterizes the model to study (fig. 1):

T : the absolute temperature.
CX = NX

N
: the X atom concentration.

εXY : the interaction between the species X and
Y .
PXY : the probability for which an atom of type X
has a neighbor of type Y .
z: the number of neighbors of each atom of type
X or Y .
kB : the Boltzmann constant.
S: the system entropy.
U : the internal energy of the system.

B

A 

Fig. 1. Binary alloy

If we note Ω the space of the possible positions,
then the number of permitted configurations is
nothing but:

card Ω = |Ω| = N !

NA!NB !

Based on this formula and the Stirling’s
approximation [1][3][4][5], we obtain the
expression (1.1) of the Boltzmann’s microscopic
entropy based on the concentration [6]:

S

N
= S0 − kB(cA ln cA + cB ln cB) (1.1)

With S0 = kB lnN .

1.2 Free Energy Formula
For the ideal case, that is to say the atoms of a
different species are in very weak interaction or
identical, the thing which be translated by:

εAB = εAA = εBB

This situation provides to suppose that the
internal energy U = U0 is independent of the
atoms arrangement in sites. Thus, giving a
reminder that the free energy formula is F =
U − TS, the free energy of the ideal solution is
obtained by the following formula [1][6][7][8]:

Eid = Fid
N

= U0
N

− TSid = U0
N

− T S
N

= E0 + kBT (cA ln cA + cB ln cB)

(1.2)

With E0 = U0
N

− kBT lnN . In the regular
case, the entropy always result from the randomly
acquisition of sites: the regular entropy notated
by Sreg is equal to Sid, that is to say Sreg =
Sid. Whereas, the internal energy considers
the interactions of neighboring species. The
probability laws of atoms can be written, for the
equiprobability and the symmetry reasons, as:{

PAB + PAA = PBA + PBB

cAPAB = cBPBA
(1.3)

The symmetry, equiprobability as well as the
interactions between the A and B species provide
to write the regular internal energy, which is
notated by Ureg, as [1][6][7][8]:

Ureg = 1
2
NcAz (PABεAB + PAAεAA)

+ 1
2
NcBz (PBAεBA + PBBεBB)

(1.4)

The 1
2

factor is used to not count the liaisons
twice. The relation (1.3) and the fact that
cA + cB = 1 provide, if we pose ε =
εAB − 1

2
(εAA + εBB), to obtain the following

expression:

Ureg = U0 +NzcAεPAB (1.5)

With a reasonable hypothesis which consists to
do the approximations of the average field by
their average values which provide to confuse
PAB with cB , the formulas overview of the regular

1In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms in a
crystal. A crystal structure is composed of a unit cell, a set of atoms arranged in a particular way;
which is periodically repeated in three dimensions on a lattice [1].
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internal energy and the entropy give us the free
energy of the regular solution:

Ereg = E0 + zcAcBε+ kBT (cA ln cA + cB ln cB)
(1.6)

Consequently, we are interested in this free
energy of the regular solution since the one of
the ideal solution is a particular case. Indeed, it
is enough to take ε = 0. Thereafter, to make
our paper easy to read, we use the following
notationn: Ereg = E.

2 FREE ENERGY AROUND
THE EQUILIBRIUM

2.1 Free Energy Formula Based
on the Order Parameter

Our purpose is to write E based on a parameter
which is linked to atoms concentration. For that,
we are going to exploit the symmetry compared
to 1

2
. Indeed, our function is the sum, to within a

constant, of two symmetric functions in relation to
1
2
, the term zcAcB = zε(cA−c2A) with cB = 1−cA,

and its derivative is worth zε(1 − 2cA), the other
term has kBT ln

(
cA

1−cA

)
as derivative. Both of

derivatives cancel each other out in cA = 1
2
. In

addition, it is about two even functions in relation
to this axis. We notice that E(1 − cA) = E(cA).
Let us consider:

η ∈
]
−1

2
,
1

2

[
Such as cA = 1

2
− η, it is evident that cB =

1
2
+ η. Based on this new parameter, called order

parameter, η the free energy for an atom can be
written as:

E(η) = E0 + z
(
1
4
− η2

)
ε

+kBT
[
1
2
ln

(
1
4
− η2

)
+ η ln

( 1
2
+η

1
2
−η

)] (2.1)

For the physicists, it is interesting to study
the variation of this energy, because the
equilibrium is characterized by its minimum. After
simplification of calculation, we have:

dE(η)

dη
= −2zεη + kBT ln

( 1
2
+ η

1
2
− η

)
(2.2)

d2E(η)

dη2
= 2

(
2kBT

1− 4η2
− zε

)
(2.3)

The critical temperature is obtained when we
have a perfect order, that is to say cA = cB = 1

2

where η = 0. The second derivative of the free
energy can be canceled d2E(η)

dη2 = 0 when η = 0
which implies that:

T = Tc =
zε

2kB
(2.4)

2.2 Justification of Order Word

It is good to notice that the justification of the
order word come from the sign of ε, itself is
in relation to η. Indeed, if ε > 0 the free
energy of the mixture is higher than that one
of phases, this corresponds to a segregation
tendency, the nature of the structure is in order.
On the other hand, if ε < 0 the structure has a
tendency to mixture that is to say a disorder. The
analysis of this free energy uses a polynomial
approximation, it is the aim of the following
section.

3 POLYNOMIAL APPROXI-
MATION AND CRITICAL
POINTS

3.1 Approximation

The η variable play a role of order parameter. In
the physical works and articles, even the Taylor
expansion of free energy is given to 2 or 4-th
order, and in accordance with the polynomial
canonical basis (1, x, x2, ..., xn). In this work we
propose the Taylor expansion to any order, hence
the following result [1][9][10][11]:

Lemma 3.1. The free energy to the n− th order
is approximated by:

E(η) = E1 + 2kB(T − Tc)η
2 + 4

3
kBTη

4

+kBT
∑n

k=3
(2η)2k

2k(2k−1)
+O(η2n+1).

(3.1)

With E1 = E0 + zε
4
+ kBT ln 2 = U0

N
+ kB

2
(Tc −

2 ln(N
2
).T ).

Proof. Since the intervening functions in the
energy given in (2.1) are C − n functions in their
definition field compared to η, the asymptotic

3
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expansion of the different terms to the n−th order
are:

1
2
ln

(
1
4
− η2

)
= − ln 2

− 1
2

(
4η2 + (2η)4

4
+ ...+ (2η)2n

2n
+O(η2n)

)
η ln

(
1
2
+ η

)
= −η ln 2

+η
(
2η − (2η)2

2
+ ...+ (−1)n−1 (2η)n

n
+O(ηn)

)
−η ln

(
1
2
+ η

)
= η ln 2

+η
(
2η + (2η)2

2
+ (2η)3

3
+ ...+ (2η)n

n
+O(ηn)

)
By replacing each term by its equivalent
expression, we obtain:

E(η) = E0 + zε
(
1
4
− η2

)
− kBT ln 2 + 2kBTη

2

+ 4
3
kBTη

4 + kBT
∑n

k=2
(2η)2k

2k(2k−1)
+O(η2n+1),

k ∈ N.

Let us put F0 = E1, F1 = 2kB(T − Tc), F2 =
4
3
kBT and Fk = kBT

2k(2k−1)
∀k ≥ 3.

The polynomial that gives the approximation to
the n− th order of the free energy can be written
as:

E(η) = F0+F1η
2+F2η

4+P (η)+O(η2n+1) (3.2)

With P (η) =
∑n

k=3 Fk.(2η)
2k ≥ 0 ∀η. Hence,

the lemma result.

3.2 Critical Points and Equilibrium
States[12][13][14][15][16]

3.2.1 Decomposition of the free
energy writing

Lemma 3.2. The E free energy to the 4−th order
based on η parameter can be written by:

E(η) = F0 + F1η
2 + F2η

4 +O(η4) (3.3)

It is enough to take O(η4) = P (η) =
(2η4)

∑n−1
k=3 Fk.(2η)

2k−4.

We notice that the free energy to the n− th order
can be written as a sum of two polynomials.

E(η) = E4(η) + P3(η) +O(η2n+1) (3.4)

Where E4(η) = F0 + F1η
2 + F2η

4 and P3(η) =∑n
k=3 Fk.(2η)

2k.

3.2.2 Justification of the 4− th order
choice

Theorem 3.3. For all n order,

minE(η) = minE4(η) (3.5)

Proof. It exists a such that 0 < a <
1

2
,

the free energy E is strictly increasing around]
−1

2
,−a

[
and

]
a,

1

2

[
. Therefore, there are

not any minimum of the free energy E in]
−1

2
,−a

[
∪

]
a,

1

2

[
. The question of minimal

energy comes up only in I = [−a, a]  
]
− 1

2
, 1
2

[
.

E4 and P are two continuous functions on I.
Since E4(η) ≥ minE4(η) and P (η) ≥ minP (η)
for all η ∈ I, so:

min (E4(η) + P (η)) ≥ minE4(η) + minP (η)
(3.6)

Let us suppose by absurd that:

min (E4(η) + P (η)) > minE4(η) + minP (η)

And let η0 be the point that realizes the minimum.
Since I is compact and E4 and P are continuous,
therefore the minimum in η0 is attended. Let ηn
a sequence that converges to η0, then E4(ηn) +
P (ηn) = (E4 + P ) (ηn). By passage to limit:

lim
ηn−→η0

[E4(ηn) + P (ηn)] = E4(lim ηn) + P (lim ηn)

= E4(η0) + P (η0)
= (E4 + P ) (η0)

Absurd. So:

min (E4(η) + P (η)) ≤ minE4(η) + minP (η)
(3.7)

By (3.6) and (3.7) we have:

min (E4(η) + P (η)) = minE4(η) + minP (η)
(3.8)

Well, P (η) =
∑n

k=3 Fk.(2η)
2k then,

P
′
(η) =

n∑
k=3

4kFk.(2η)
(2k−1)

Since 4kFk > 0 ∀k, so P
′
(η) = 0 ⇐⇒ η = 0.

Thus, the unique critical point of P is (0, 0).

P
′′
(η) =

n∑
k=3

8k(2k − 1)Fk.(2η)
(2k−2)
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Since k(2k − 1)Fk > 0 ∀k ≥ 3, then P
′′
(η) > 0

∀η ∈]0, 1
2
[, therefore P is strictly convex and the

unique minimum of P is 0. Hence,

minE(η) = minE4(η)

Which explain the fact to do the analysis of a
4 − th order Taylor expansion. We conclude that
the 4−th order is necessary and sufficient for the
stability study of the alloy.

After the justification of the 4 − th order choice,
we are going to study the stability for n = 4.

3.2.3 Study for the 4− th order case

Let us consider the free energy up to the 4 − th
order, and let F0, F1 and F2 be the coefficients
earlier defined. Since E is even, we do the
analysis in [0, 1

2
[. Let us put,

T ∗
c =

2U0

NkB(2 ln(
N
2
)− 1)

(3.9)

And,

T ∗∗
c =

U0

NkB ln(N
2
)
+

1

2 ln(N
2
)
Tc (3.10)

We have then:

Case where T = Tc, T = T ∗
c or T = T ∗∗

c

1. In the case where T = T ∗
c we have F0 =

F1 = 0. And E4(η) can be written as:

E4(η) =
8U0

3N(2 ln(N
2
)− 1)

η4 (3.11)

In that case,

minη E4 = E4(0) = 0 (3.12)

2. In the case where T = Tc, we have F1 =
0. Consequently E4(η) can be written as:

E4(η) = F0 + F1η
4 (3.13)

And,

minE4 = E4(0) = F0 = U0
N

+
(
1
2
− ln(N

2
)
)
kBTc

• If Tc < T ∗
c , then F0 > 0, therefore

E4(η) > 0 and it admits a unique value

η = 0 that realizes the minimal state,
consequently:

minη E4 = E4(0) = F0 (3.14)

• And if Tc > T ∗
c then F0 < 0. Let be

dE4(η)
dη

= 4F2η
3, E4(η) admits a unique

root, and:

minη E4 = E4(0) = F0 (3.15)

3. In the case where T = T ∗∗
c , then F0 = 0.

The free energy can be written as then:

E4(η) = F1η
2 + F2η

4 (3.16)

And,
dE4(η)

dη
= 2η(F1 + 2F2η

2) (3.17)

• If Tc < T ∗
c , then F1 > 0. Consequently,

E4(η) admits a unique root η = 0 that
realizes the minimum, then:

minη E4 = E4(0) = 0 (3.18)

• If Tc > T ∗
c , then F1 < 0:

minη E4 = E4(
√

−F1
2F2

) =
−F2

1
4F2

(3.19)

Case where T ̸= Tc, T ̸= T ∗
c or T ̸= T ∗∗

c

In this case, the free energy can be written as the
following form:

E4(η) = F0 + F1η
2 + F2η

4 (3.20)

And,

E
′
4(η) = 2η

(
F1 + 2F2η

2) (3.21)

1. If T > T ∗∗
c , then F0 > 0, so we have two

possible cases:

• If Tc < T ∗
c , then F1 > 0. Therefore,

minE4(η) = E4(0) = F0 = U0
N

+ kB
2

(
Tc − 2 ln(N

2
)T

) (3.22)

• On the other hand, if Tc > T ∗
c , then

F1 < 0. We distinguish two possibilities
then:
– If F0 <

F2
1

4F2
:

minη E4 = E4

(√
−F1
2F2

)
= F0 − F2

1
4F2

< 0 (3.23)

– if F0 >
F2
1

4F2
,

minη E4 = E4

(√
−F1
2F2

)
= F0 − F2

1
4F2

> 0 (3.24)

5
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Fig. 2. F0 = F1 = 0 Fig. 3. F1 > 0;F0 > 0

2. If T < T ∗∗
c , then F0 < 0, we distinguish:

• If Tc < T ∗
c , then F1 > 0. So, E4(η)

admits a unique root and (0, F0) as an
equilibrium point:

minη E4 = E4(0) = F0 (3.25)

• However, if Tc > T ∗
c , then:

minη E4 = E4

(√
−F1
2F2

)
= F0 − F2

1
4F2

< 0
(3.26)

3.3 Summary Table: Equilibrium
Values

It is evident that the signs of the coefficients F0

and F1 play a fundamental role to determine the
stability of the system, that is to say the minimum
of E. As we have previously seen:

minη E = minη E4

We summarize all of possible situations of the
free energy in the summary table (Table 1).

3.4 Possible Curves of Free
Energy

We represent all the possible situations of free
energy in the graphs ( fig. 2, 3, 4, 5, 6, 7, 8, 9, 10
and 11).

Remark 3.1. fundamental

1. We have proposed a logical procedure
to do analysis of free energy which
characterizes the stability of a binary alloy.
Indeed, the value of the temperature field
in relation to critical values of Tc, T ∗

c

and T ∗∗
c provide to determine the F0 and

F1 signs, nay their values, which have
facilitated to us to analyze the minimum
matter of free energy linked to the stability
of system.

2. The terms of minimal free energy are
always characterizes by U0, Tc and N .

Table 1. Summary table
F0 F1 Thermal field minη E

case 1 0 0 T = T ∗
c 0

case 2 + 0 T = Tc and Tc < T ∗
c

U0
N

+
(
1
2
− ln(N

2
)
)
kBTc

case 3 - 0 T = Tc and Tc > T ∗
c

U0
N

+
(
1
2
− ln(N

2
)
)
kBTc

case 4 0 + T = T ∗∗
c and Tc < T ∗

c 0

case 5 0 - T = T ∗∗
c and Tc > T ∗

c − 3
4
kB

(T−Tc)
2

T

case 6 + + T > T ∗∗
c and Tc < T ∗

c
U0
N

+ kB
2

(
Tc − 2 ln(N

2
)T

)
case 7 + - T > T ∗∗

c , Tc > T ∗
c and F0 <

F2
1

4F2

U0
N
+kB

[(
2− 3Tc

4T

)
Tc −

(
ln

(
N
2

)
+ 3

4

)
T
]

case 8 + - T > T ∗∗
c , Tc > T ∗

c and F0 >
F2
1

4F2

U0
N
+kB

[(
2− 3Tc

4T

)
Tc −

(
ln

(
N
2

)
+ 3

4

)
T
]

case 9 - + T < T ∗∗
c and Tc > T ∗

c
U0
N

+ kB
2

(
Tc − 2 ln(N

2
)T

)
case 10 - - T < T ∗∗

c and Tc > T ∗
c

U0
N
+kB

[(
2− 3Tc

4T

)
Tc −

(
ln

(
N
2

)
+ 3

4

)
T
]

6
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Fig. 4. F1 = 0;F0 > 0 Fig. 5. F1 = 0;F0 < 0

Fig. 6. F0 = 0;F1 > 0 Fig. 7. F0 = 0;F1 < 0

Fig. 8. F0 > 0;F1 < 0 et F0 <
F 2
1

4F0

Fig. 9. F0 > 0;F1 < 0 et F0 >
F 2
1

4F0

Fig. 10. F0 < 0;F1 < 0 Fig. 11. F0 < 0;F1 > 0
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4 CONCLUSIONS

In this article, we have obtained two results:

1. The first translates into the fact to show
that the 4 − th order Taylor expansion is
necessary and sufficient to approximate
the free energy of a binary alloy.

2. Finally, based on the continuity we
have determined the minimal states that
characterize the system stability.
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