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ABSTRACT

A gauge transformation of a simple electromagnetic system is analyzed. The Hamiltonian which
is derived from the Dirac Lagrangian density is used for determining the state of an electron. The
fact that this Hamiltonian is free of time differential operators plays a key role in the analysis and
proves that this Hamiltonian is not invariant under a general gauge transformation. An application
of a specific gauge transformation illustrates this fact. These results call for a further analysis of
the role of gauge transformations in the theoretical structure of electrodynamics.
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1 INTRODUCTION

This work discusses a paradox that is obtained
from an application of a gauge transformation to a
simple electromagnetic system. Electrodynamics
is a widely studied sector of theoretical physics

and it is relevant to many physical disciplines,
ranging from solid state physics to astrophysics.
Therefore, the entire physical community is
expected to belong the the readership of this
work.
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A paradox is regarded as a useful tool for finding
out new properties and interrelations between
elements of a theory. A physical paradox
describes a hypothetical device and relevant
physical laws are assumed to determine the
behavior of the system. The outcome of a
paradox is an apparent contradiction. Such a
contradiction provides a motivation for a further
investigation of the relevant physical laws. This
kind of investigation generally contributes to a
better understanding of these laws. The following
lines briefly describe two well known paradoxes
which are used here as an illustration of this
matter.

In the 1930s, Einstein, Podolsky and Rosen
(EPR) described a quantum paradox of an action
at a distance [1]. They used a principle which
they called physical reality and regarded the
result as an indication that quantum mechanics
is an incomplete theory. For this reason, EPR put
forward the need for finding hidden parameters
that will promote quantum mechanics to the
status of a complete theory. Later Bohm and
Aharonov [2, 3] and Bell [4] have added elements
that were used in an experimental test of the
EPR idea. Experimental results support the
idea that there is a kind of quantum information
that propagates instantaneously (see [5] and
references therein). Thus, the apparent EPR
paradox has provided a motivation for acquiring
new information on how physical processes work.

In the 1960s Shockley and James presented
a paradox where a stationary system of a
charge and a magnet has an electromagnetic
nonzero linear momentum [6]. Soon after the
publication of this paradox, Coleman and Van
Vleck provided a general proof showing that
the system’s total linear momentum must be
balanced [7]. Later Comay has shown that an
explicit mechanical linear momentum exists in the
system. In particular, if a nonvanishing pressure
gradient exists along a closed loop of current then
effects related to the energy-momentum tensor
yield a nonzero mechanical linear momentum
[8]. This mechanical momentum balances the
electromagnetic linear momentum and also
supports the validity of Coleman and Van Vleck
general analysis. Thus, the Shockley and
James paradox has ended up with a better
understanding of elements of classical physics.

This paper discusses gauge transformations
in the quantum domain. In classical physics,
electro-dynamic equations of motion - namely,
Maxwell equations and the Lorentz force - are
independent of the 4-potentials. Therefore,
classical electrodynamics is invariant under a
gauge transformation. On the other hand,
quantum theories depend explicitly on the 4-
potentials. The analysis abides by physical laws
and proves that the Dirac Hamiltonian is not
invariant under a specific gauge transformation.
This outcome demonstrates the need for a
further analysis of the role of gauge in theoretical
physics.

The paradox of this work is described in the
second section. The third section contains the
conclusions. Expressions are written in units
where ~ = c = 1. The relativistic metric is
diagonal and its entries are (1,-1,-1,-1). Greek
indices run from 0 to 3.

2 THE PARADOX

The paradox described below arises from an
examination of a specific gauge transformation
that pertains to the state of an electron which
obeys the Dirac equation. To this end, let
us examine the Lagrangian density of a Dirac
electron [9, see p. 78]

LD = ψ̄[γµ(i∂µ − eAµ)−m]ψ, (2.1)

where Aµ = (V,A) denote the components of
the electromagnetic 4-potential [10, see p. 10]
or [11, see p. 48]. Here one sees that in this
equation, like in any other quantum equation, the
charge interacts with the 4-potential.

It is well known that the Lagrangian density of
(2.1) is invariant under the gauge transformation
Λ(x) which is an arbitrary function of the space-
time coordinates (denoted by x) [9, see p. 78]
and [12, see p. 345]

Aµ(x)→ Aµ(x) + Λ(x),µ ;

ψ(x)→ exp(−ieΛ(x))ψ(x). (2.2)

Here e is the electronic charge, which is a
dimensionless Lorentz scalar in the units where
~ = c = 1. Indeed, substituting (2.2) into (2.1),
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one finds that the contribution of the gauge 4-
potentials Λ(x),µ is canceled out by the additional
terms obtained from the partial differentiation of
exp(−ieΛ(x))ψ(x).

The symbol ψ(x) of the Dirac Lagrangian density
( 2.1) describes a general state of the given
Dirac particle, simply because this Lagrangian
density holds for all cases. The purpose of the
following discussion is to find out how a gauge
transformation affects specific solutions of the
Dirac equations. To this end, one must construct
the Hamiltonian and pick up the required solution
from the entire spectrum of its eigenfunctions.
The discussion presented below is dedicated to
this matter.

Let us turn to the paradox and examine a
motionless electron located at the vicinity of point
P in a field-free space. The Dirac Hamiltonian is
used for finding the time evolution of this electron.
(A quantum expression for the Hamiltonian is also
required by the Bohr correspondence principle.
Here the classical limit of quantum theories
should agree with classical physics. Evidently,
in classical physics energy is a well defined
quantity. Therefore, one requires that quantum
theories should have a self-consistent expression
for energy.) This Hamiltonian can be derived from
the Lagrangian density of (2.1) in the following
steps.

The Hamiltonian density H is derived from the
Lagrangian density by the well known Legendre
transformation

H =
∑
i

∂L
∂ψ̇ i

ψ̇i − L, (2.3)

where the index i runs on all functions. In the
specific case of a Dirac particle one obtains from
(2.1) and (2.3)

HD = ψ†[α · (−i∇− eA) + βm+ eV ]ψ, (2.4)

which is written here in the standard notation [10,
see p. 11]. The density of a Dirac particle is ψ†ψ
[10, see p. 9]. Thus, removing the density from
(2.4), one obtains the operator form of the Dirac
Hamiltonian

HD = [α · (−i∇− eA) + βm+ eV ]. (2.5)

This Hamiltonian stands on the right hand side of
the Dirac equation [10, see p. 11]

i
∂ψ

∂t
= HDψ = [α · (−i∇− eA) + βm+ eV ]ψ.

(2.6)

As is well known, the Dirac Hamiltonian ( 2.5)
does not contain a time differential operator.

The Dirac equation (2.6) is used for finding the
time evolution of an electron at the vicinity of point
P . Here the field-free 4-potential is

Aµ = 0. (2.7)

Hence, the Dirac equation for a free electron

i
∂ψ

∂t
= [α · (−i∇) + βm]ψ (2.8)

determines the electronic state.

Let us examine how this system is affected by the
following gauge function

Λ(x) = et/r. (2.9)

Here e is the absolute value of the electronic
charge, t is the time and r is the distance from
the origin of the spatial coordinates. Certainly,
the gauge function of (2.9) is a legitimate gauge
expression because it depends on space-time
coordinates. This gauge transformation casts
the null 4-potential of ( 2.7) into the following
expression

A′µ =
∂(et/r)

∂xµ
= (e/r,−etr/r3). (2.10)

The gauge transformation of (2.2) also transforms
the Dirac wave function. Introducing the specific
gauge function of ( 2.9), one finds that the
transformed wave function (2.2) is

ψ′(x) = exp(ie2t/r)ψ(x). (2.11)

And indeed, substituting (2.10) and (2.11) into
the Dirac Lagrangian density ( 2.1), one finds
that this Lagrangian density is invariant under the
transformation of the gauge function (2.9).

On the other hand, the new function ψ′(x) of
( 2.11) must satisfy the Dirac equation ( 2.6),
where the gauge terms of (2.10) are used in the
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expression for the 4-potential. Here one obtains

i
∂ψ′

∂t
= HDψ

′(x)

= [α · (−i∇− eA) + βm+ eV ]ψ′(x)

= exp(ie2t/r)[α · (−i∇) + βm− e2/r]ψ(x)

(2.12)

It turns out that similarly to the case of the Dirac
Lagrangian density (2.1), the contribution of the
3-vector part of the gauge (2.10) is eliminated
from the Dirac Hamiltonian of ( 2.12). On the
other hand, the 0-component of that gauge
remains as is. This outcome stems from the
fact that the Dirac Hamiltonian ( 2.5) contains
spatial differential operators but is free of a time
differential operator.

Let us define the point P of the electron so that its
distance from the origin of the spatial coordinates
is about the Bohr radius. It turns out that
the gauge transformation (2.9) produces (2.12)
and the differential equation inside the square
brackets of its last line is the Dirac equation of a
bound electron of the hydrogen atom [10, see p.
52], because it contains an additional Coulomb-
like term −e2/r. This equation is an eigenvalue
problem which is thoroughly discussed in the
literature. In particular, the bound states of
the hydrogen atom have a radially decreasing
exponential factor of the form exp(−kr), where k
is a positive constant [10, see p. 55]. Now, ψ′(x)
and ψ(x) of (2.12) differ by a phase factor whose
absolute value is unity. It means that also the
absolute value of ψ′(x) decreases exponentially.
Evidently, the exponentially decreasing factor of
the solution ψ′(x) of the gauge transformed
problem of ( 2.9) is inconsistent with the free
wave of the electronic state of the null potential
(2.7). This result proves that an application of
the legitimate gauge transformation (2.9) yields a
paradox.

The foregoing analysis shows a problem with
the gauge-transformed Dirac Hamiltonian which
stands on the right hand side of ( 2.12),
because it contains the unphysical Coulomb-
like term −e2/r. This outcome indicates that a
corresponding problem should exist with the left
hand side of this equation. And indeed, it is
proved here that this additional unphysical term
is also found on the left hand side of (2.12). Thus,

let us examine the gauge transformed function
ψ′ of (2.11) which stands on the left hand side
of (2.12). As is well known, an ordinary wave
function of a motionless particle in a well-defined
energy state takes the form

ψ(x) = exp(−iEt)χ(x, y, z). (2.13)

Here the time dependence of ψ(x) appears only
in the phase where the energy E is a constant
and χ(x, y, z) is a spatially dependent energy
eigenfunction. On the other hand, the phase
factor of the gauge transformed function ψ′ of
(2.11) also depends on the radial coordinate r
and on the time t. In the present case one obtains
for the motionless free electron

i
∂ψ′

∂t
= i

∂ exp(ie2t/r)

∂t
ψ + i exp(ie2t/r)

∂ψ

∂t

= (−e2/r +m)ψ′, (2.14)

where m is the electronic mass. Therefore, the
coordinate-dependent quantity −e2/r of ( 2.14)
proves that the gauge-transformed wave function
ψ′ is not an energy eigenfunction. This is
a contradiction because an electron in a free
space has a well defined energy and in the case
of a motionless electron E = m [10, see p.
28]. Hence, the same contradiction appears
on each side of ( 2.12) where the unphysical
Coulomb-like term −e2/r appears. This analysis
shows a counter-example which proves that the
gauge phase factor of the wave function ψ′ of
( 2.12) destroys a specific eigenfunction of the
Hamiltonian and casts it into an unacceptable
form.

The foregoing discussion shows the two sides
of the inconsistency that emerges from the
application the gauge transformation ( 2.9) to
the quite simple state of a motionless Dirac
particle in a field free space. The transformed
Hamiltonian (2.12) has a new unphysical term
−e2/r that takes the form of the hydrogen atom
problem. Hence, its eigenfunctions should be
those of the hydrogen atom. On the other hand,
(2.14) shows that the same gauge transformation
casts an eigenfunction of a motionless particle
into a function that is not an eigenfunction of the
operator i∂/∂t.

It is interesting to note that the function ψ is
included in the Dirac Lagrangian density (2.1) and
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in the Dirac Hamiltonian density (2.4). Therefore,
the problem with the gauge transformed function
ψ′ which is proved in ( 2.14) applies to the
Lagrangian formalism and to the Hamiltonian
formalism as well.

3 CONCLUSIONS

This work relies on three general principles of
quantum theories of electromagnetic systems:
the variational principle and its Lagrangian
density, the key role of the Hamiltonian which
is derived from this Lagrangian density and the
gauge invariance of the system. Another general
principle is the reliability of mathematical results
that are obtained from an analysis of fundamental
mathematical expressions of a physical theory.

The main result of this work is derived from
an application of these principles. The analysis
proves the following new property of the
Hamiltonian of an electrically charged Dirac
particle and of the associated function ψ.

• Unlike the Lagrangian density, which is
invariant under a gauge transformation,
the associated Hamiltonian is not invariant
under such a transformation.

• The gauge transformation casts the
function ψ into a physically unacceptable
form. This point applies to the Lagrangian
formalism and to the Hamiltonian
formalism as well.

The first conclusion depends on the well known
fact that the Dirac Hamiltonian is free of a time-
derivative operator.

The paradox described herein provides an
illustration of this conclusion. This paradox is
related to two expressions of the 4-potential
( 2.7) and ( 2.10), which differ by a gauge
transformation. It turns out that contrary to
a general expectation, the Dirac Hamiltonian
yields two physically different results. The
state of a free electron which is derived from
( 2.8) is inconsistent with that of the solution
of ( 2.12), where the electron is bound to the
hydrogen atom and its wave function decreases
exponentially with the distance r from the origin.
This outcome illustrates the main point of this
work: the Hamiltonian is not invariant under a
general gauge transformation. Obviously, the

Hamiltonian is a crucial element of classical
and quantum theories because it determines
the time evolution of the system. Furthermore,
a corresponding paradox is found in the gauge
transformed function ψ′ (see (2.14)) which takes a
physically unacceptable form. Other problematic
aspects of the gauge transformations have been
published earlier [13].

The problematic aspects of the result of this work
apply to quantum mechanics and to quantum
field theory (QFT) as well. Indeed, the close
relationships between these theories is stated
clearly in S. Weinberg’s well known textbook:
”First, some good news: quantum field theory
is based on the same quantum mechanics that
was invented by Schroedinger, Heisenberg,
Pauli, Born, and others in 1925-26, and has
been used ever since in atomic, molecular,
nuclear and condensed matter physics” (see
[12], p. 49). The same conclusion can also
be found in Rohrlich’s textbook which explains
the hierarchical relationships between QFT and
quantum mechanics (see [14], pp. 1-6).

The result of this work provides a motivation
for a further investigation of the role of gauge
in electrodynamics and of the Lagrangian-
Hamiltonian relationships. Such an investigation
is expected to end up with a deeper
understanding of the role of gauge in
electrodynamics.
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