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Abstract

In this paper some properties of equidistant sets are presented,a relatively new concept. The
equidistant concept is characterized and among two congruent spheres of Rn. Afterwards the
behavior of the orthogonal projection onto Rk is studied, concluding that the projection of
equidistant set of two congruent spheres, is a translation of the equidistant set of the spheres
projections.
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1 Introduction

The origin of equidistant concept is not clear. Leibniz in 1849 suggested defining a plane as the
locus of points equidistant from two given points [1]. Busemann in [1], introduces the first formal
definition of equidistant sets, using the name ”bisector”. Berard in [2] introduces the concept
of ”midset” to identify the equidistant sets, their properties and find sufficient conditions to make
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them homeomorphic to intervals of real numbers and the relationship between connected and midset.
Loveland in [3, 4, 5] consolidates a line of research around the concept of midset, however on singleton
sets and presents the first conjecture around the concept of midset. Wilker in [6], generalizes the
concept of equidistant for any sets based on the infimum of the distances. Loveland [7, 8] continuing
with studies and proves his conjecture.

On the other hand, Nadler in [9] shows some relationships between equidistant sets and the real
line. Later [10, 11, 12] proposes a new conjecture and incorporating a generalization of the double
midset property.

Debski in [13] solves the problem that If X be a non-degenerate metric space such that each of its
midsets is homomorphic to an (n-1)-sphere, then is X homomorphic to an n-sphere. [14] introduces
the concept of metric space X (m,n)-equidistant and a relation with the conjecture of [4].

Finally Ponce and Santibañez [15], proposed the midset as generalized conics, they also propose an
error estimate result about approximative version of equidistant sets.

This proposal is based on characterizing the set equidistant among two congruent spheres of Rn.
To further, study the behavior of of the orthogonal projection onto Rk is studied, concluding that
the projection of equidistant set of two congruent spheres, is a translation of the equidistant set of
the spheres projections.

This paper is organized as it follows: in section 1 the definition of equidistant set is formalized. In
section 2, topological properties of equidistant sets are presented. In Section 3, the equidistant set
of two congruent spheres is determined and finally, we will study the behavior of the orthogonal
projection on Rk.

1.1 Preliminaries

The organization of the following definitions is presented so as this article is self- contained, for this
reason we describe some basic concepts for the understanding of our work.

Definition 1.1. Let (X, d∗) be a metric space and A,B ⊆ X not empty. The distance between A
and B is defined

d̃1 : (P (X) \ ϕ)× (P (X) \ ϕ) −→ R
(A,B) 7−→ d̃1 (A,B) = infb∈B

a∈A
{d∗(a, b)}

Where (P (X) \ ϕ) is the set of parts X without the empty set.

Remark 1.1. As a particular situation from Definition 1.1 we can see that

d̃1 (A,B) = inf
b∈B

{d∗(a, b)}

if A = {a}.

Formalizing the Observation 1.1 we have:

Definition 1.2. Let x ∈ X be and A ⊆ X not empty set, then the distance between x and A is:

d̃ (x,A) = inf
a∈A

{d∗(x, a)} .

Based on the definitions 1.2 and 1.1, we establish the fundamental concept of this work, the definition
of equidistant set among two non empty sets:
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Definition 1.3. Let A and B be two non-empty set, the set equidistant between A and B is given
by

{A = B} :=
{
x ∈ X : d̃(x,A) = d̃(x,B)

}
,

where (X, d∗) is a metric space.

Next, we will use the notation {A = B} which is used to indicate the equidistant set between A and
B, this notation was introduced by Wilker [6]. Similarly, Loveland [3] introduced the term midset
to refer to the same set.

2 Some Situations on R and Examples on R2

In this section we will analyze the different situations of equidistant sets on R and we will show
examples on R2.

2.1 Situations on R
Given A,B ⊆ R non-empty sets, we have:

1. If A = {a} and B = {b} with a ̸= b, then

{A = B} =

{
a+ b

2

}
.

2. If A = [a, b] and B = [c, d], we have the following cases:

• A ∩ B = ∅, then, without loss of generality we can consider that a < b < c < d,
then

{A = B} =

{
b+ c

2

}
.

• A ⊆ B, then

{A = B} = A.

• A ∩B ̸= ∅, A ̸⊆ B and B ̸⊆ A, then

{A = B} = A ∩B.

3. If A = {a} and B = [c, d], we have the following cases:

• A ⊆ B, then

{A = B} = A.

• A ∩B = ∅, without loss of generality, let us consider a < c < d, then

{A = B} =

{
a+ c

2

}
.

4. Let us consider A = {√p} where p is a prime number and B = Q, then as
√
p ∈ Q, we have

{√p} ⊆ Q, then by Proposition 3.1 we obtain

{{√p} = Q} = {{√p} = Q} = {√p},

given that {√p} ∩Q = {√p}.
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2.2 Examples on R2

Example 2.1. Let us consider the sets

A = {(x, y) ∈ R2 : 2 ≤ y ≤ 4 ∧ 0 ≤ x ≤ 2}

and

B = {(x, y) ∈ R2 : 0 ≤ y ≤ 2 ∧ 4 ≤ x ≤ 6},

then the equidistant set between A and B is (see Fig.1.)

{A = B} =



220x− 111y = 334 if (x, y) ∈ (−∞, 0]× (−∞,−3]
4y + x2 − 8x = −12 if (x, y) ∈ [0, 2]× [−3, 0]
y + 2

√
3− x = 2 if (x, y) ∈ [2, 3]× [0, 2]

y − 2
√
x− 3 = 2 if (x, y) ∈ [3, 4]× [2, 4]

−4y + x2 − 4x = −16 if (x, y) ∈ [4, 6]× [4, 7]
−11xx+ 56y = 278 if (x, y) ∈ [6,∞)× [7,∞)

Fig. 1. Graphic of the equidistant set Example 2.1

Example 2.2. Let us consider the sets

A = {(x, y) ∈ R2 : 2 ≤ y ≤ 4 ∧ 0 ≤ x ≤ 2}

and

B = {(x, y) ∈ R2 : 0 ≤ y ≤ 2 ∧ 2 ≤ x ≤ 6},

then the equidistant set between A and B is (see Fig. 2)

{A = B} =


x− y = 0 if (x, y) ∈ (−∞, 4]× (−∞, 4]

x2 − 4x− 4y = −16 if (x, y) ∈ [4, 6]× [4, 7]
−241x+ 120y = 602 if (x, y) ∈ [6,∞)× [7,∞)

We note that the equidistant set between these sets that define polygons, are defined by a piecewise
relation defined by parabola, bisector, perpendicular bisector and straights.
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Fig. 2. Graphic of the equidistant set from Example 2.2

3 Properties of Equidistant Sets

The properties of equidistant sets that are presented below, are defined on any metric space.

Proposition 3.1. Let (X, d∗) be a metric space and A,B ⊆ X non-empty sets, then the following
properties are held:

1. {A = B} = {A = B}.
2. A ∩B ⊆ {A = B}.
3. If A ∪B = X then {A = B} = A ∩B.

4. If A = B then {A = B} = X.

Proof. 1. Note that A = {x ∈ X : d̃(x,A) = 0}, then d̃(x,A) = d̃(x,A) and d̃(x,B) = d̃(x,B),
therefore {A = B} = {A = B}.

2. Let be x ∈ A ∩B, then x ∈ A and x ∈ B, wich implies that d̃(x,A) = 0 and d̃(x,B) = 0.

By previous item we have d̃(x,A) = d̃(x,A) and d̃(x,B) = d̃(x,B), then d̃(x,A) = 0 and
d̃(x,B) = 0, thus d̃(x,A) = d̃(x,B). Therefore x ∈ {A = B}.

3. We know that A ∩B ⊆ {A = B}, so it is only necessary to show that
{A = B} ⊆ A ∩B, when A ∪B = X.

Let x ∈ {A = B} be then, d̃(x,A) = d̃(x,B). By Item 1 d̃(x,A) = d̃(x,B), furthermore by
hypothesis x ∈ A or x ∈ B, implying that

d̃(x,A) = 0 = d̃(x,B),

therefore x ∈ A and x ∈ B, thus x ∈ A ∩B.

4. We trivially know that {A = B} ⊆ X, then we only need to show that X ⊆ {A = B}.
Let x ∈ X be, then we have the following possibilities:

a) That x ∈ A ∩B, then d̃(x,A) = d̃(x,B) = 0, then x ∈ {A = B}, satisfies the thesis.

b) That x ∈ A and x ̸∈ B, which is a contradiction, given that x ∈ A = B.

c) That x ̸∈ A and x ∈ B, which is a contradiction, given that x ∈ A = B.
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d) That x ̸∈ A ∩ B. We know that A ∩ B ⊆ A ∩B ⊆ A ∩ B. This tells us that x ̸∈ A
and x ̸∈ B, thus, we can conclude that d̃(x,A) = d̃(x,B) given that A = B. Which is
equivalent to d̃(x,A) = d̃(x,B), that is, x ∈ {A = B}.

4 Equidistant Set of Two Spheres n− 1 Dimensional

This section aims to describe the equidistant set of two congruent spheres (n− 1)− dimensional,
for this, the following definitions are necessary.

Definition 4.1. A sphere of radius r and center c = (c1, c2, . . . , cn) ∈ Rn is defined as

Sn−1
r,c =

{
x ∈ Rn :

n∑
i=1

(xi − ci)
2 = r2

}
Definition 4.2. A disc of radius r and center c = (c1, c2, . . . , cn) ∈ Rn is defined as

Dn−1
r,c =

{
x ∈ Rn :

n∑
i=1

(xi − ci)
2 < r2

}
Based on definitions 4.1 and 4.2 we have to:

Theorem 4.1. Let Sn−1
r,e and Sn−1

r,b be two spheres and Γ a traslation such that,

Γ
(
Sn−1
r,e

)
= Sn−1

r,O , with O = (0, . . . , 0) ∈ Rn

and
Γ
(
Sn−1
r,b

)
= Sn−1

r,a , with a = (a1, . . . , an) ∈ Rn

Then {
Sn−1
r,O = Sn−1

r,a

}
=

{
x ∈ Rn : xn = −

n−1∑
i=1

ai
an
xi +

∥a∥2

2an

}
,

with x = (x1, x2, . . . , xn).

Proof. Let Sn−1
r,e and Sn−1

r,b be two spheres and Γ a translation with the above conditions. Then{
Sn−1
r,O = Sn−1

r,a

}
= {x ∈ Rn : ∥x∥ − r = ∥x− a∥ − r}

=

{
x ∈ Rn :

n∑
i=1

x2i =

n∑
i=1

(xi − ai)
2

}

=

{
x ∈ Rn : 0 = −2

n∑
i=1

xiai + ∥a∥2
}

=

{
x ∈ Rn : 0 = −2

(
n−1∑
i=1

xiai + xnan

)
+ ∥a∥2

}

=

{
x ∈ Rn : xn = −

n−1∑
i=1

ai
an
xi +

∥a∥2

2an

}

Remark 4.1. Midset is calculated considering a sphere in the origen to simplify the calculation.
Then

{
Sn−1
r,e = Sn−1

r,b

}
= Γ

({
Sn−1
r,O = Sn−1

r,a

})
. Here Γ = Γe⃗.
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Example 4.2. Let S2
1,e and S2

1,b be two spheres such that e = (1, 1, 1) and b = (2,−1 − 1). Here
Γ = Γ−e⃗ such that:

Γ
(
S2
1,e

)
=
{
x ∈ R3 : x21 + x22 + x23 = 1

}
and

Γ
(
S2
1,b

)
=
{
x ∈ R3 : (x1 − 1)2 + (x2 + 2)2 + (x3 + 2)2 = 1

}
,

with a = (1,−2,−2).
Then: {

Γ
(
S2
1,e

)
= Γ

(
S2
1,b

)}
=

{
x ∈ R3 : x3 =

1

2
x1 + x2 −

9

4

}
.

The equidistant set is illustrated in Fig. 3. Then:{
S2
1,e = S2

1,b

}
= Γ

({
Γ
(
S2
1,e

)
= Γ

(
S2
1,b

)})
.

− 4− 4

− 3− 3

− 2− 2

− 4− 4

− 4− 4

− 3− 3 − 1− 1
− 2− 2

− 2− 2

− 1− 1

00

0000 11

22zz

22
yy11 33 44

22
xx

33

44

Fig. 3.
{
Γ
(
S2
1,e

)
= Γ

(
S2
1,b

)}

5 Orthogonal Projection of Rn on Rk

Once we determined the equidistant set among two congruent spheres, our purpose will be to study
the behavior of the orthogonal projection onto Rk.
For this, let’s consider the following function:

ψn,k : Rn −→ Rn

such that
ψn,k(x) = (x1, . . . , xk, 0, . . . , 0)

Note that the function ψn,k is a projection of space Rn on the sub space Rk, moreover, ψn,k
(
Sn−1
r,a

)
=

Dk−1
r,ψn,k(a).
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Theorem 5.1. Let Sn−1
r,O with O = (0, . . . , 0) ∈ Rn and Sn−1

r,a with a = (a1, . . . , an) ∈ Rn be

two spheres such that an ̸= 0, ak ̸= 0. Then ψn,k
({
Sn−1
r,O = Sn−1

r,a

})
corresponds to a translation

of the equidistant set, according to vector

0, . . . , 0,

n∑
i=k+1

a2i

2ak

 ∈ Rk of the discs Dk−1
r,ψn,k(O) and

Dk−1
r,ψn,k(a)

.

Proof. Let Sn−1
r,O with O = (0, . . . , 0) ∈ Rn and Sn−1

r,a with a = (a1, . . . , an) ∈ Rn be two spheres.
Then:

ψn,k
({
Sn−1
r,O = Sn−1

r,a

})
= ψn,k

({
x ∈ Rn : xn = −

n−1∑
i=1

ai
an
xi +

∥a∥2

2an

})

=

{
x ∈ Rk : xk = −

k−1∑
i=1

ai
ak
xi +

∥a∥2

2ak

}

=

{
x ∈ Rk : xk = −

k−1∑
i=1

ai
ak
xi +

k∑
i=1

a2i
2ak

+

n∑
i=k+1

a2i
2ak

}
= Γσ

({
ψn,k

(
Sn−1
r,O

)
= ψn,k

(
Sn−1
r,a

)})
,

where σ =

n∑
i=k+1

a2i

2ak
.

Remark 5.1. As the equidistant above is a hyperplane, we can associate a function f to that
hyperplane, as it follows:

f : Rn−1 −→ R such that f(x1, . . . , xn−1) = −
n−1∑
i=1

ai
an
xi +

∥a∥2

2an
.

so we obtain:

{
ψn,k

(
Sn−1
r,O

)
= ψn,k

(
Sn−1
r,a

)}
=

x ∈ Rk−1 : f(x) = −
k−1∑
i=1

ai
ak
xi +

k∑
i=1

a2i

2ak

 .

6 Conclusion

In this paper equidistant set examples about R y R2 were presented. As well as, their toplogical
properties were shown. The midset of two spheres on Rn was characterized through a theorem.
Together with this, its behavior of orthogonal projection on Rk was described.
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