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ABSTRACT 
 

Aims: To develop a modelling methodology for evaluating the cumulative stormwater performance 
of Low Impact Development technologies on a watershed basis to address stormwater impacts of 
urban development. 
Study Design: A method is presented to perform hydrological modelling on large watersheds. 
Hydrological modelling simulations and linear regression analyses of a small sample of randomly 
selected lots were performed to generate results which were extrapolated to the entire watershed.   
Place and Duration of Study: Department of Civil Engineering, Ryerson University, between 
September 2010 and September 2012. 
Methodology: Urban hydrological response units were developed by using the K-means cluster 
analysis procedure to group 6926 lot parcels amenable to the residential rain barrel Low Impact 
Development practice into clusters. Two versions of a Microsoft Excel macro were developed to 
run simulations for thousands of lots simultaneously before and after Low Impact Development 
implementation to determine the total runoff produced by all lots for both cases. The results of 
computer modelling all lots were compared with the results from developing calculation methods to 
be used after computer modelling subsets of lots. Two calculation methods based on clustering lots 
to form urban hydrological response units were developed.   
A random sample of 5 % of all lots was then extracted from 6616 lots amenable to the porous 
pavement Low Impact Development. Stepwise linear regression and linear regression were 
performed on the random sample for each case of no Low Impact Development and with Low 
Impact Development. Regression equations were used to extrapolate results from the sample to 
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the entire data set to determine the total runoff volume produced by each set of lots.   
Results: Results from the cluster-based calculation methods developed as applied to residential 
rain barrels were unsatisfactory since they did not approximate the output values from modelling all 
lots using software.  The alternative method applied to porous pavement Low Impact Development 
implementation, entailing stepwise linear regression and linear regression, produced 945,382.97 
m

3
 and 747,380.13 m

3
 of total runoff respectively. These values closely approximated 

corresponding values generated by the modelling software of 937,088.58 m3 and 746,462.40 m3.   
Conclusion: The formation of urban hydrological response units may be unnecessary for 
hydrological modelling Low Impact Development technologies for large watersheds. Hydrological 
characteristics for only a small, randomly selected subset of all lots can be used to determine total 
runoff volume produced by all lots in the watershed before and after Low Impact Development 
implementation. 
 

 
Keywords: Low impact development (LID); stormwater management; urban hydrologic response unit 

(UHRU); hydrologic simulations; linear regression. 
 

1. INTRODUCTION 
 
Stormwater or rainwater runoff is now viewed as 
a resource instead of as just a nuisance. Runoff 
is generated by impervious surfaces associated 
with land development and urbanization such as 
concrete, that prevent rainfall or water from 
infiltrating into the ground [1,2]. Numerous 
environmental effects result by preventing rainfall 
from infiltrating such as decreases in 
groundwater recharge volume, base flows and 
time of concentration as well as lower water 
tables. Other effects include increased flood 
flows, stream erosion and water contamination 
[2,3,4]. The deterioration of urban streams with 
respect to habitat and water quality has been 
recorded throughout the world [1,2,4]. 
 
The aim of conventional stormwater 
management techniques is to remove water from 
a site as fast as possible and store it as a larger 
volume at an off-site, downstream facility such as 
a detention pond or an infiltration basin. 
Conventional techniques may have controlled 
peak discharge rates but have not improved 
issues with respect to increased runoff volume 
[1,2]. Low Impact Development practices (LID) 
are devices or techniques that mitigate 
stormwater impacts of urban development. Most 
LIDs are lot-based practices including 
bioretention cells, greenroofs, rainfall harvesting, 
porous pavement, dry wells, and grass swales. 
The United States Environmental Protection 
Agency (US EPA) has recognized LID as a 
leading planning approach for runoff 
management [5]. 
 
Modelling of the hydrologic performance of LID 
requires detailed accounting of hydrologic 
components at the lot level which may require 

extensive resources when modelling thousands 
of lots for large watersheds. A significant amount 
of lot-level detail is lost, however, when 
modelling an entire area for LID implementation. 
An innovative approach based on a conceptual 
model must be devised to evaluate the entire 
region [2]. A common approach for simulating the 
cumulative performance of LID for large 
watersheds is to develop urban hydrologic 
response units (UHRUs or urban HRUs) and 
extrapolate the results of the performance of the 
UHRUs to all lots.  
 
UHRUs are urban drainage areas or lots that 
exhibit similar runoff generating mechanisms as 
a result of similar hydrological characteristics 
such as level of imperviousness, slope, lot area, 
and soil type [6]. By applying the UHRU concept, 
large study areas with similar hydrological 
characteristics can be evaluated efficiently. A 
systematic approach is required to group 
drainage areas or lots into UHRUs based on 
common hydrological characteristics. Appropriate 
hydrologic models such as the US EPA 
Stormwater Management Model (SWMM) can be 
used to simulate runoff volume from various 
UHRUs.   
 

Although the UHRU approach enhances the 
efficiency of modelling large watersheds, it 
requires large data sets as well as lengthy 
algorithms for preparing the data to disaggregate 
the study area into units or lot clusters sharing 
similar hydrological characteristics. Many 
simulations must be performed using 
hydrological modelling software to generate 
runoff volume from each UHRU before 
extrapolating it to the entire watershed. A small 
computer program can be developed to work in 
tandem with hydrological modelling software in 
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order to perform hydrological modelling for 
thousands of lots amenable to LID 
implementation concurrently. The total runoff 
volume of all lots can then be summed directly 
from the modelled output runoff volume of each 
lot both before and after LID implementation.  

 
If a linear regression is performed on a random 
selection of 5% of all lots, the regression 
equation for the random sample can be used to 
extrapolate the runoff volume (m

3
) generated by 

all lots to find the total runoff volume for the 
entire watershed. By running a regression and 
extrapolating the results, UHRUs or lot clusters 
do not have to be formed and so the UHRU 
concept does not have to be applied.   

 
A random sample of 5% of all lots was first used 
to determine whether a relatively small sample of 
lots could effectively replace hydrological 
modelling each and every lot. More work is 
needed to determine whether other small 
samples are also effective and whether there is a 
certain percentage of lots that would allow the 
method to be applicable to all types of LIDs.   

 
The concept of hydrologic response unit is not 
new and has been applied in hydrologic studies 
before [6,7,8,9]. According to the United States 
Department of Agriculture (1972), the traditional 
definition of HRUs is based on soil type and land 
use [7,10]. Hydrological simulations require 
meteorological input data including temperature, 
precipitation and solar radiation [7]. 
Unconventional hydrological attributes such as 
average slope and percentage imperviousness 
were used to delineate HRUs in the previous 
case study by Li et al. [6] as well as in this study. 
HRU is based on a linear assumption and is 
appropriate for runoff volume simulation. 

 
A study by England and Stephenson [11] 
presented a technique for isolating relatively 
homogeneous areas or units of rangeland 
watersheds based on soil properties, geologic, 
climactic, and topographic features. The HRUs 
that were formed may be used in computations 
of watershed performance, as experimental units 
in field studies, and as units for the application of 
conservation management practices. Prior to this 
study, England and Holtan [12] determined that 
HRUs were internally homogeneous enough to 
be used as computational units in mathematical 
models simulating the hydrologic performance of 
agricultural watersheds. 

Although the standard version of the Soil and 
Water Assessment Tool (SWAT) uses the 
traditional method for defining the area of each 
HRU, HRUs provided the conceptual framework 
in a study investigating the SWAT model. A 
modified version of the SWAT model divided 
sub-basins into HRUs by intersecting soil 
topographic index (STI) and land use rasters or 
Geographic Information Systems (GIS) 
shapefiles [7]. Different GIS layers were 
intersected with one another in the current study 
and the distributions of hydrological attributes 
over the study area were determined.   
 
In a study by Kessler et al. [13], a micro-model 
was developed and applied at three different 
spatial scales to a developing urban 
neighbourhood to investigate the effects of 
spatial resolution on the hydrological modelling 
process. The model was also used to investigate 
the effects of urban development on infiltration 
and runoff. The intermediate spatial scale 
consisted of a cluster of residential lots and their 
immediate vicinity. Each cluster was a separate 
subcatchment which had a similar composition in 
terms of land use and can be regarded as a 
UHRU [13]. In the current work, the K-means 
cluster analysis procedure was used to form 
clusters of urban residential lots that can also be 
regarded as UHRUs.   
 
The study by Kessler et al. [13] reached a similar 
conclusion to the study by Li et al. [6] which 
provides the foundation for the current work. The 
conclusion is that the hydrological response 
computed at the lot scale can be extrapolated to 
yield the response of an entire neighbourhood 
with reasonable accuracy by adding the 
responses of individual units [6,13]. However, a 
more detailed model was deemed to be generally 
necessary for carrying out simulations of 
hydrological processes at the lot scale [13].   
 
In another study, a detailed stormwater model 
was developed for a suburban catchment by 
taking each individual property and road section 
between catch basins as a separate source area 
containing a hypothetical stormwater device. The 
catchment was subdivided into different levels of 
aggregation from 810 source areas to the 
extreme scenario of a single source area and a 
single aggregated device. The effects of 
performing hydrological modelling for each level 
of aggregation were investigated by examining 
key summary measures such as flow and water 
quality. Based upon certain conditions and 
assumptions, it was concluded that the 



aggregation of on-site devices and associated 
source areas did not significantly impact key 
summary measures under investigation [9]. T
findings of the study support the final method 
proposed in the current study of extrapolating 
hydrological modelling results from individual lot 
parcels to an entire watershed. 

 
The findings also support the method 
in the case study by Li et al. [6] of extrapolating 
hydrological modelling results of lot
practices to a watershed and neighbouring 
municipalities using a spreadsheet model
current research is an extension of this
case study. First, an attempt was made to 
the development of UHRUs as carried out in the 
case study and then to find a more efficient way 
of determining the hydrological response of a 
watershed to LID implementation. 
 
The focus of both studies was on the 
performance of LID technology 
 

Fig. 1. Map of uncontrolled areas within the 

Lake Simcoe Watershed Areas
of Uncontrolled Runoff 
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site devices and associated 
source areas did not significantly impact key 
summary measures under investigation [9]. The 
findings of the study support the final method 
proposed in the current study of extrapolating 
hydrological modelling results from individual lot 

ngs also support the method developed 
of extrapolating 

hydrological modelling results of lot-based LID 
practices to a watershed and neighbouring 
municipalities using a spreadsheet model. The 

research is an extension of this previous 
ttempt was made to refine 

the development of UHRUs as carried out in the 
case study and then to find a more efficient way 
of determining the hydrological response of a 

The focus of both studies was on the 
performance of LID technology systems on 

uncontrolled areas, pre-defined areas to which 
conventional stormwater practices have never 
been applied and where no opportunities for 
implementing stormwater management ponds 
exist [6]. The study area for the current research 
entails residential lots amenable to LID 
implementation in uncontrolled areas within the 
City of Barrie, a city situated in the Lake Simcoe 
Watershed in southern Ontario, Canada.  
Uncontrolled areas within the entire Lake Simcoe 
Watershed are shown on the map in Fig

 
The insert map in the lower right-hand corner of 
Fig. 1 illustrates the location of the Lake Simcoe 
Watershed within the Great Lakes region. The 
City of Barrie has a population of just over 
143,000 and is approximately a one
north from the City of Toronto [2,14]. The 
population density per km

2
 is 1753.6 and the 

dominant household building type is single 
detached [15]. 
 

 
Fig. 1. Map of uncontrolled areas within the Lake Simcoe Watershed in Southern Ontario

Canada [6] 

Lake Simcoe Watershed Areas 
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The Lake Simcoe Watershed contains 
provincially significant wetland, woodland, and 
agricultural areas [6]. Approximately half of the 
land in the Lake Simcoe Watershed is 
agricultural and 35% is woodlands and wetlands 
[6]. The Lake Simcoe Watershed entertains 
seasonal populations such as tourists and 
recreational users including boaters, anglers, and 
cottagers.    
 
As the permanent population within the 
watershed grows, development within the region 
must comply with policies specified in acts such 
as the Ontario Water Resources Act (RSO 1990, 
c.O.40) and the Clean Water Act (S.O. 2006, 
c.22). These policies apply to the quality and 
quantity of sewage and stormwater with respect 
to potable and non-potable water resources [6]. 
 
The Lake Simcoe Protection Act was enacted 
which allowed the development of the Lake 
Simcoe Protection Plan, an action plan for 
achieving water quality and quantity targets [6]. 
As a result, municipalities within the watershed 
were required to develop master plans entailing a 
comparative review of current practices, new 
technologies, and retrofit opportunities to 
determine the best course of action for optimizing 
stormwater management efficiencies [6]. In the 
study by Li et al. [6], the suitability and effect of 
implementing LID technologies within the 
uncontrolled stormwater areas was evaluated.   
 
The hydrological modelling method that was 
developed in the current work is generalizable. It 
is only limited by the data and the application. It 
can potentially be applied to regions outside of 
southern Ontario if criteria are defined which 
determine whether it is appropriate for the 
application. For example, data on infrastructure, 
hydrological, and land use information is required 
for LID selection and hydrologic analysis [2]. 
 

2. METHODOLOGY  
 
2.1 UHRU Development  
  
The UHRU concept has been applied in 
hydrologic modelling of large watersheds 
[6,9,13,16]. Before grouping together lots with 
similar hydrological characteristics, a common 
database with hydrologic attributes (e.g. lot area, 
lot width, percent imperviousness, parking area, 
driveway area, building area, percent slope, soil 
type) should be compiled. Attributes were 

selected for experimentation based on 
characteristics intrinsic to the modelling software, 
previous experience from the case study by Li et 
al. [6], and the suitability and availability of data 
[2]. Five major attributes selected for further 
analyses and examination were:   
 

1. Lot area (m
2
),  

2. Lot width (m),  
3. Average slope (%), 
4. Percent imperviousness (building area (%), 

parking area (%), and driveway area (%)), 
and 

5. Soil type (categorical value).   
 
Depending upon the grouping techniques used, 
normalization of some attributes may be 
necessary.  After comparing various clustering 
methods offered by different software programs, 
the K-means cluster analysis procedure offered 
by IBM SPSS was selected as the classification 
method. The procedure uses a commonly used 
method of measuring the dissimilarity or distance 
between two data objects, the Euclidean 
distance. The Euclidean distance is a 
dissimilarity measure that is sensitive to the 
differences in magnitudes or scales of input 
variables [17]. The K-means clustering method 
was selected mainly because of its ability to 
provide detailed, usable output in a convenient 
form regarding the final cluster centre for each 
cluster and the distance to the final cluster centre 
for each lot or case. It is also capable of 
analyzing large data files and maintaining the 
categorical values assigned to soil type.   
 
Four data standardization techniques were 
applied across the data set to standardize input 
data variables to dimensionless data before 
performing clustering analysis. Each technique 
used the following general equation: 
 

���  �    

���
∗ − ��

��
 

 
where xij denotes the standardized value, x*ij is 
the original data value, Lj is the location 
measure, and Mj is the scale measure. The 
general equation varied according to Lj and Mj as 
shown in Table 1. The “Range 2” data 
standardization technique presented in Table 1 
refers to the second of two techniques involving 
division by the range, R*j, of the input variable for 
each case.  
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Table 1. Location measure, Lj, and scale measure, Mj, for each data standardization technique 
investigated 

 
Data standardization technique Lj Mj 
USTD 0 σ*j 
Sum 0 

� ���
∗

�

���

 

Range 2 min x*ij           (1 ≤ i ≤ n) R*j 
Maximum 0 max x*ij      (1 ≤ i ≤ n) 
*The mean (x*avg), range (R*j), and standard deviation (σ*j) of the j

th
 variable were calculated according to the 

conventional mathematical equations for these variables [17] 
 
Recommendations were also included within the 
statistical software used to perform clustering 
analysis, IBM SPSS, to standardize all input 
variables to the same scale before running the 
program. Since soil type was input as a 
categorical variable, it was left unstandardized to 
maintain consistent numerical values in the 
analyses output. Histograms plotted before and 
after standardization demonstrated that 
frequency distributions for each variable 
remained unchanged.  
 
Some studies have recommended data 
standardization whereas others have suggested 
that it may not be advisable. A simulation study 
by Cooper and Milligan [18] examined the 
standardization problem and presented results 
for eight standardization strategies. It was 
concluded that approaches which standardize by 
division by the range of the variable gave 
consistently superior recovery of the underlying 
data structure. This conclusion lent further 
support to using the data standardization 
technique involving the range of the input 
variable, known as Range 2 in this research. 
 
After assigning lots or cases to clusters using the 
Euclidean distance measure, the K-Means 
Cluster Analysis procedure updates the locations 
of the cluster centres based on mean values of 
cases in each cluster [2]. The final outcome after 
this cyclical procedure should be clusters of 
relatively homogeneous groups of cases or lots 
based on the selected attributes. One of two 
methods for classifying lot parcels using the K-
Means Cluster Analysis Procedure was then 
selected: (1) updating cluster centres iteratively 
or (2) classifying only. The iterative option is a 
more detailed procedure involving more 
decisions and steps. Both methods were used to 
perform cluster analyses for data sets derived 
from each of the four standardization techniques. 
After reviewing statistical output reports and 
analysing cluster diagrams which were 

subsequently developed, the method which 
produced the most accurate results was selected 
[2].   
 
Cluster diagrams are colour-coded outlines of the 
clusters or UHRUs created from the clustering 
analysis procedure. Since real spatial data were 
used as input in all of the methods and 
procedures explored, cluster diagrams were 
developed to visualize visible hydrological 
characteristics and lot properties such as lot area 
(m

2
) and imperviousness (%). ArcMap software 

was used to develop the diagrams which were 
overlaid on current orthophotos or aerial maps of 
the City of Barrie. Lots within each cluster and 
between clusters were compared for similarities 
and dissimilarities of visible hydrological 
characteristics [2]. 
 
In Fig. 2, the distinction between cluster groups 
due in part to soil type is shown for a group of 10 
clusters formed using the Range 2 technique and 
the classifying only option. The curvy, diagonal 
yellow line drawn on the figure illustrates the 
partitioning of the lots into different clusters 
based on soil type. The relatively large property 
outlined in blue, situated in the area containing 
sandy loam of Fig. 2, is a multi-unit dwelling that 
was assigned to a different cluster than the 
neighbouring single-family unit lots outlined in 
green. The placement of the multi-unit dwelling 
into another cluster was therefore based on other 
characteristics such as lot area and level of 
imperviousness.  
 
Following a visual analysis and inspection of the 
cluster diagrams, the data standardization 
technique and classification method most closely 
resembling reality as shown in the aerial map 
was selected [2].   
 
Microsoft Excel macros were developed by using 
the Visual Basic for Applications (VBA) 
programming language to run batches of input 



 
 
 
 

Eric et al.; BJECC, 5(2): 78-90, 2015; Article no.BJECC.2015.007 
 
 

 
84 

 

data using SWMM software. Macros were 
developed to simultaneously perform 
hydrological modelling simulations for thousands 
of residential urban lots.  Two versions of the 
macro were developed for each scenario of no 
LID implementation and LID implementation. The 
first type of LID to be modelled on all of the lots 
was the rain barrel (RH) for residential 
properties. The macros were first used to 
simulate total runoff (mm) for all of the residential 
lots with RH and without RH. The same 
procedure was then repeated for the porous 
pavement (PP) singular LID.  
 

2.2 Calculation of Total Runoff (m3)   
 
After performing hydrological modelling on all lots 
using the two versions of the macro and 
developing lot clusters using the K-means cluster 
analysis procedure, two cluster-based methods 
were developed to calculate the total runoff (m3) 
volume of all lots: (1) the Minimum Distance 
Method and (2) the Random Sampling Method. 
The first method, the Minimum Distance Method, 
uses the lot with the minimum distance to the 
cluster centre or with a distance of zero to the 
cluster centre as the final cluster centre. After the 
lot clusters have been formed and hydrological 
modelling output has been generated, the total 
runoff (mm) produced by the final cluster centre 
was extrapolated to the rest of the lots within the 
cluster. First, the lot area (m

2
) for each lot within 

the cluster was summed to yield the total lot area 
(m

2
) for each cluster. The total lot area (m

2
) for 

each cluster was then weighted by the total 
runoff (mm) of the final cluster centre. The total 
runoff (m

3
) of each cluster within the group of 

clusters was then summed to yield the overall 
total runoff (m

3
) for all lots [2]. The procedure for 

the Minimum Distance Method is illustrated in 
Fig. 3. 
 
The Minimum Distance Method for calculating 
the total runoff (m

3
) for each group of clusters 

was applied to both the non-LID scenario and the 
LID scenario as was the Random Sampling 
Method.   
 
For The Random Sampling Method, a random 
percentage sample of lots was extracted from 
each cluster within a group of clusters. For 
example, 5% of lots were randomly selected from 
each cluster of a group of three clusters               
(3-cluster group). The total runoff (mm) 
generated by each lot from hydrological 
modelling was considered as the dependent 
variable and the other lot characteristics used 
when developing clusters or UHRUs were 
considered as the independent variables. All 
variables were left in unstandardized form for 
performing stepwise linear regression on each 
cluster using IBM SPSS [2].   
 
Stepwise linear regression was performed on 
each cluster and the “best-performing” linear 
regression equation was selected for each 
cluster based on statistical diagnostics. The 
selected regression equation was used to 
calculate runoff (mm), the dependent variable, for 
each lot within the cluster.  The total runoff (m3) 
for each cluster was then summed for all clusters 
to yield total runoff (m3) for all lots or the entire 
cluster group [2]. Fig. 4 presents a general 
overview of the Random Sampling Method. 

 

 
 

Fig. 2. Clusters from a 10-cluster group developed by using the Range 2 data standardization 
technique and selecting the classifying only option [2] 



Fig. 3. Overall procedure for calculating total runoff (m

 

 
Fig. 4. General overview of the p

 
After evaluating the results from the two cluster
based methods, another method was developed 
to simplify the process and tested using the 

Eric et al.; BJECC, 5(2): 78-90, 2015; Article no.BJECC.20

 
85 

 

 
Overall procedure for calculating total runoff (m

3
) of all lots using the minimum distance 

method [2] 

the procedure for calculating total runoff (m3) of all lots using 
random sampling method [2] 

After evaluating the results from the two cluster-
based methods, another method was developed 
to simplify the process and tested using the 

porous pavement LID. The two versions of the 
Excel macro were modified and tailored to model 
residential properties amenable to 
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implementation of porous pavement LIDs. A 
random sample of 5% was selected from all lots 
in the data sets for both scenarios of no LID and 
LID implementation after performing hydrological 
modelling [2].  
  
A stepwise linear regression was performed on 
the 5% random sample of lots without PP. A 
best-performing regression equation from the 
random sample was again selected based on 
statistical diagnostic output to extrapolate and 
sum total runoff (mm) for all lots in the data set. 
The dependent variable was total runoff (mm) 
from the hydrological modelling output and the 
independent variables were the hydrological 
characteristics used in clustering, just as in the 
previous two methods discussed [2].   
 
Similarly, a linear regression was performed on a 
random sample of 5% of all lots from the “with 
PP” data set to generate a regression equation 
used to extrapolate and sum total runoff (mm) for 
all lots in the entire data set. The selection of a 
best-performing regression equation was not 
required since only one equation was provided in 
the regression analysis output. The total runoff 
(mm) of all lots amenable to PP implementation 
was calculated for both situations of with and 
without LID implementation [2].   
 

3. RESULTS AND DISCUSSION 
 
3.1 Cluster-Based Calculation Methods 

for RH LID Implementation 
 
Output produced by the K-means cluster analysis 
procedure was reviewed in conjunction with 
cluster diagrams to determine which combination 
of data standardization technique and 
classification method most closely matched the 
actual distribution of hydrological characteristics. 
For example, a cluster run producing three 
clusters should have had a fair amount of lots in 
each cluster because it was highly unlikely that a 
lot within the study area would be so unique as to 
warrant its own cluster. An ANOVA table and a 

matrix showing the Euclidean distance between 
final cluster centres are other examples of 
clustering output that were analyzed. Table 2 
presents a matrix illustrating the dissimilarities 
between final cluster centres for a group of five 
clusters.  Since a greater distance between two 
points leads to greater dissimilarities between 
final cluster centres, Table 2 demonstrates that 
clusters two and one are the most dissimilar. 
These matrices were used to confirm that 
degrees of dissimilarity between clusters existed 
[2].   
 
Colour-coded cluster diagrams were placed on 
top of aerial orthophotos of the study area to 
verify whether lots within the same cluster 
resembled each other in terms of visible 
hydrological characteristics such as lot area (m2) 
and percentage imperviousness. After reviewing 
clustering output and cluster diagrams, the data 
standardization technique involving division by 
range, Range 2, and the classification method 
option of classifying only were selected for 
performing clustering analyses. The “true” total 
runoff (m

3
) values for the two scenarios under 

study were taken to be the benchmark output 
values (m

3
) derived from modelling all of the lots. 

The end values from employing the methods 
developed for calculating total runoff (m

3
) were 

compared to the benchmark output values (m3) 
to determine which method produced the most 
accurate results [2]. 
 
Although some groups of clusters approximated 
the benchmark output value (m3) for both cluster-
based calculation methods developed, there was 
no observable pattern or trend for either method 
for both scenarios of RH implementation.  For the 
Minimum Distance Method, only one group of 
clusters, the 15-cluster group, approximated the 
benchmark output value for the initial scenario of 
no RH LID. Three groups of clusters (15-cluster 
group, 20-cluster group, 25-cluster group) 
approximated the benchmark output value (m

3
) 

for the scenario of RH LID implementation as 
shown in Fig. 5 [2]. 

 
Table 2. A matrix illustrating dissimilarities between final cluster centres [2] 

 
Distances between final cluster centres 

Cluster 1 2 3 4 5 
1   2.03 .55 1.13 1.13 
2 2.03   1.98 1.15 .99 
3 .55 1.98   1.18 .99 
4 1.13 1.15 1.18   .64 
5 1.13 .99 .99 .64   
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Fig. 5. Total runoff (m
3
) versus number of clusters within a cluster group for residential lots 

with the RH LID [2] 
 

A possible explanation for the lack of observable 
pattern is the inherent arbitrariness of the K-
means cluster analysis procedure that may result 
in some groups of clusters approximating the 
benchmark output more closely at times than 
others.  Some groups of clusters may be swayed 
by unusually high or low values for certain 
characteristics when compared with the values of 
those same characteristics for the final cluster 
centre. The final cluster centre is therefore not 
always a useful representation of the values 
within the cluster [2]. The results, however, still 
indicate the potential for modelling LIDs 
efficiently over an entire watershed by 
demonstrating that only a small subset of the 
database is required to be modelled. Modelling 
results can then be extrapolated to the rest of the 
lots in the database [6]. 
 
Similar results were obtained by the Random 
Sampling Method. The only random sample to 
closely approximate the benchmark output was a 
random sample of 7 % of lots extracted from 
each cluster of a 3-cluster group. The 
approximation of the benchmark output value by 
the random sample of 7 % of all lots from each 
cluster of a 3-cluster group is shown in Fig. 6 for 
the situation excluding RH LID implementation 
[2]. 

A random sample of 90% of all lots was required 
from each cluster of a 3-cluster group to 
approximate the benchmark output for the 
situation involving RH LID implementation. Such 
results are almost equivalent to modelling every 
lot and provide little benefit to LID modelling 
based on the UHRU concept. Stepwise linear 
regression results for both situations, however, 
were very high (R2 ≈ 1) confirming that variation 
in total runoff (mm) is accounted for by the 
selected independent variables [2]. 
 
As a result of highly accurate regression results, 
the selected regression equation seemed to be 
replicating or reproducing actual total runoff (mm) 
results for each lot in the case of LID 
implementation. The method became tantamount 
to adding the total runoff (mm) results for each lot 
which is why a high amount, 90 %, was required 
to reach the benchmark value. The low 
percentage required for the no LID case may 
have been due to slightly less accurate 
regression equations. This led to an 
overestimation of total runoff (mm) for some lots 
when the regression equation was used to 
extrapolate total runoff (mm) to other lots. The 
benchmark output value therefore required a 
smaller amount of lots to be approximated.    
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Fig. 6. Approximation of benchmark output by a random sample of 7 % of clustered lots from 
each cluster of a 3-cluster group with no RH LID implementation [2] 

 
The results of both cluster-based methods 
provide no clear trends or patterns that can be 
generalized to produce more efficient methods 
for developing and modelling UHRUs for LID 
technology application. The results do confirm, 
however, that lot-level detail can still be captured 
without modelling every lot. They also indicate 
that the UHRU method may also be unnecessary 
when performing hydrological modelling over a 
large watershed area [2]. 
 
3.2 Random Sampling of All Lots for PP 

Implementation 
 
High statistical scores from regression analyses 
for the Random Sampling Method and the 
application of regression equations to lot 
clusters, demonstrated that regression equations 
based on a subset of lots could be used to 
closely approximate total runoff (mm) values for 
all lots. When a 5 % random sample was 
extracted from all lots for both scenarios, 
regression equations generated by both the 
stepwise linear and linear regression analyses 

for the random sample were able to almost 
reproduce exact total runoff (mm) values for each 
lot in the random sample. The extrapolation of 
the results from the 5 % random sample to all 
lots using the regression equation approximated 
the benchmark output very closely for both 
scenarios as illustrated in Table 3.  
 
The results from extracting a random sample of 5 
% of all lots to the entire data set suggest that a 
small random sample may be sufficient when 
extrapolating modelling results of a small number 
of lots to an entire watershed using linear 
regression equations. Since clusters or UHRUs 
do not have to be developed, this can be viewed 
as a more efficient approach than an approach 
based on an UHRU concept. Linear regression 
may be preferable to stepwise linear regression 
because there is no opportunity for the modeler 
to select a regression equation that is not 
considered as optimal. More work is needed to 
confirm the results for other types of LID 
practices and other percentage values of random 
samples.  
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Table 3. Total runoff (m3) values for no PP LID and PP LID implementation using a 5 % random 
sample from all lots 

 
 No PP LID  

(stepwise linear regression) 
With PP LID  
(linear regression) 

Benchmark total runoff (m
3
)  937,088.58 746,462.40 

Total runoff (m3) of a 5 % random 
sample from all lots 

945,382.97 
 

747,380.13 
 

 

4. CONCLUSION 
 
The results of this study suggest that it may be 
unnecessary to develop HRUs or UHRUs when 
performing hydrological modelling on large 
watersheds for the evaluation of LID 
performance. An alternative approach is to first 
perform hydrological modelling on a small 
random sample of lots, in this case 5 % of 
approximately 6600 lots amenable to PP LID 
implementation. A regression equation can then 
be generated by performing stepwise linear 
regression or linear regression on the random 
sample to extrapolate values for the dependent 
variable, total runoff (mm), to the entire sample. 
The sum of all total runoff (mm) values for the 
random sample of lots will closely approximate 
the total benchmark output value for total runoff 
(mm) produced by modelling all lots in the data 
set using software.   
 
This alternative approach can be used for each 
condition of with and without PP LID 
implementation to determine the benefits of LID 
implementation. The approach alleviates the 
need for modelling thousands of lots and/or 
obtaining an extensive data set. It can provide a 
more efficient and practical method of 
hydrological modelling LID implementation for 
municipalities or organizations with limited 
resources. However, the findings are limited to 
case study data and depend on the distribution of 
lot characteristics. Since the approach is based 
on case study data, it may not be applicable to 
every data set or every region.  
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