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ABSTRACT 
 

Evolutionary optimization provides robust and efficient techniques for solving complex real-world 
problems. The aim of this paper is to present an enhanced evolutionary algorithm for solving 
constraint nonlinear programming problems NLPPs, which based on concept of co-evolution and 
repair algorithm for handling nonlinear constraints. Our proposed approach is made of two phases, 
firstly, phase I is a classical genetic algorithm, which based on the ideas of repair strategy and co-
evolution. Secondly in phase II, Based on the k-means cluster algorithm, the search space is 
shrunk after phase I to the generated rectangular-atom with highly rate and concentrating the 
optimal solution region, so local search techniques will implemented in order to get more accurate 
optimal solution. Finally, the results of various experimental studies using a suite of benchmark 
functions have demonstrated the superiority of the proposed algorithm to finding the global optimal 
solution for constraint nonlinear programming problems. 
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1. INTRODUCTION 
 
Evolutionary algorithms have received a lot of 
attention regarding their potential as optimization 
approaches for complex numerical optimization 
problems [1,2]. However, they have not made a 
significant breakthrough in the area of constraint 
NLP [3] due to the fact that they have not 
addressed the issue of handling nonlinear 
constraints, also there is a fact that evolutionary 
algorithms may find only near-optimal solutions. 
On the other hand, many optimization problems 
involve inequality and/or equality constraints are 
thus posed as constrained optimization problems 
[4,5]. In trying to solve constrained problems 
using evolutionary algorithms or classical 
optimization techniques, penalty function 
methods have been the most popular approach 
[6], because of their simplicity and ease of 
implementation. However, since the penalty 
approaches are generic and applicable to any 
type of nonlinear constraint, their performance is 
not always satisfactory. Thus, several methods 
for handling unfeasible solutions have emerged 
recently [7].   
 
Evolutionary approaches [8-12] are powerful 
computing systems to deal with large-scale 
problems. Michalewicz et al. [8] present an 
efficient evolutionary Algorithms for Constrained 
Parameter Optimization Problems, also they 
present modified version called “Genocop III” in 
[9]. AL-Oraby et al. [10] introduce Hybrid 
optimization technique coupling an evolutionary 
algorithm and chaotic local search. In [11] Al-
Thobaiti et al. Integrate an optimization technique 
coupling an evolutionary algorithm and local 
search scheme. Osman et al. [12] Combine 
Genetic Algorithm with Fuzzy Logic Controller for 
nonlinear programming. However, they require 
time consuming, and they are very poor in terms 
of convergence performance. If the initial 
population has both good and worst individuals, 
there is a chance of selecting the worst 
individuals in processing, this may reduce the 
convergence of the algorithm. Hence it is 
necessary to provide good chromosomes in the 
search space [13]. 
 

On the other hand, local search strategy can 
converge quickly to local minima and get stuck in 
a local optimum solution, which is far away from 
the global optimal. The integration of global and 
local search procedures should offer the 
advantages of both optimization systems while 
offsetting their disadvantages. This paper 
presents a combined genetic algorithms-local 
search engine for constrained NLPPs. 
 
This paper is organized as follows, in section 2, 
we formulate the nonlinear programming 
problems. Section 3 addresses the problem of 
optimization using genetic algorithms. In section 
4, we present the combined (genetic algorithms_ 
local search engine) for nonlinear programming. 
Section 5 deals with the numerical simulation of 
the proposed algorithm to different benchmark 
problems and the discussion of the obtained 
results are followed in section 6.  
 

2. NONLINEAR PROGRAMMING 
PROBLEMS (NLPPS) 

 
The general NLP for continuous variables [14] is 

to find x  so as to 
 

,                 (1) 
 

Where x F S  . The set 
nS R defines 

the search space, and the setF S defines a 

feasible part of the search space. Usually, the 

search space S  is defined as n-dimensional 

rectangular-atom in 
nR  (domains of variables 

defined as lower and upper bounds):  

( ) ( ),  1ileft i x right i i n    , whereas the 

feasible set F  is defined by the search space S
and an additional set of constraints: 
 

( ) 0,  for 1,......,jg x j m 
                (2) 

 
Thus NLPP can be defined as follows:  
 

                                                  (3) 

1Min ( ),  ( ,..., ) n
nf x x x x R 

NLPP :  Max   ( )

              S.t 

{ | ( ) 0, 1,2,...,  and  ( ) 0 1,..., }

{ | ( ) ( ), 1,2,...., }

n
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n
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S x R l x x u x i n
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At any point x F , the constraint ( )kg  satisfies ( ) 0kg x  are called "active constraints" at x . By 

extension, equality constraints 
( )jh 

are called active at all feasible points. All nonlinear equations 

( ) 0jh x  (  1,..., )for j k m  are replaced by pair of inequalities: ( )jh x     with 

additional parameter ( ) to define the precision of the system [15], so we deal only with nonlinear 
inequalities. 
 

                                                                         (4) 

 
Any evolutionary algorithm applied to any 
particular problem should address the issue of 
handling unfeasible solutions. In general, a 
search space S consists of two disjoint subsets 

of feasible subspace F  and unfeasible 
subspace, in general these two spaces need not 
be convex and they need not be connected (e.g., 
as in the case in Fig. 1 (Taken from [12]) where 

feasible part F  of the search space consist of 
two disjoined subsets). 
 

 
 

Fig. 1. A Search space and its feasible part 
 

3. THE GENETIC ALGORITHMS GAS 
 
Genetic algorithms, invented by John Holland [2] 
in the early 1970s, as a heuristic global search 
algorithm, that mimics the metaphor of natural 
biological evaluation. GAs operates on a 
population of candidate individual, which 
encoded to finite string called chromosome. In 
order to obtain optimality, the individual 
exchanges information by using some operators 
borrowed from natural biological to produce the 
better solution. GAs differs from other 
optimization algorithms and global search 
procedures in four ways [1]. 

(1) GAs work with a coding of the decision 
variables, not the decision variables 
themselves. Therefore GAs can easily 
handle the integer, mixed, discontinuous, 
and discrete systems. 

(2) GAs search from a population of candidate 
solutions, not a single solutions. Therefore 
GAs can provide a globally optimal 
solution. 

(3) GAs uses only the objective function 
information, not any auxiliary knowledge. 
Therefore GAs can deal with the 
discontinuous, non-smooth and non-
differentiable systems which are actually 
existed in a practical engineering 
optimization problem. 

(4) GAs use probabilistic rules, not 
deterministic rules. Fig. 2 illustrates 
flowchart of a simple EAs. 

 

4. EVOLUTIONARY ALGORITHM BASED 
ON LOCAL SEARCH ENGINE 

 

The main idea is based on the ideas of co-
evolution and repair strategy (repair unfeasible 
individual). The proposed evolutionary algorithm 
combines concept of co-evolution, repairing 
procedure, and elitist scheme to produce an 
enhanced algorithm. Repairing procedure [15], 
repairs the unfeasible points to satisfy the 
constraints. Elitist strategy is used to produce a 
faster convergence to the optimal solution of the 
problem by ensuring that the individual of the 
most highly fit member of the population are 
passed on to the next generation. The working 
procedure of the proposed algorithm is described 
in the following manner: 
 
 
 

NLPP :  Max   ( )

              S.t 

{ | ( ) 0, 1,2,..., }

{ | ( ) ( ), 1,2,...., }
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i

n
i i i

f x

F x R g x i m

S x R l x x u x i n

   

    

             

             



 
 
 
 

El-Qorashy et al.; BJAST, 8(3): 324-333, 2015; Article no.BJAST.2015.210 
 
 

 
327 

 

4.1 Phase I: Genetic Algorithm 

 
4.1.1 Solution representation  
 
The proposed algorithm uses a floating point 
representation for potential solutions of the 
problem. Each generation contains both feasible 
individuals, and unfeasible individuals and we 
distinguish between them using flag pointer 
assigned to each individuals. Fig. 3 shows the 
structure of candidate individual, which contain a 
flag pointer assigned to each individuals, and it's 
fitness value. 
 
4.1.2 Initialization stage 
 
The populations are initialized randomly in the 1st 
generation, satisfying the constraint, i.e., each 

individual lie on the search space S, while elitist 
individual is initialized by zero. 
 
4.1.3 Initial feasible point 
 
The algorithm needs to allocate at least one 
feasible point (i.e., reference feasible point) to 
complete the algorithm procedure. If the 
proposed algorithm has difficulties in locating 
such an initial feasible point, the algorithm 
applies one of the following two ways. First, 
double the number of trials to obtain feasible 
point. Secondly, increase the value of the 

precision parameter  temporally (i.e., enlarge 
feasible space temporally). The interested 
reader is referred to [15] for further information. 
 
 
 

 

Step0: Initialization

Step5: Crossover

Step4: Selection

Step3: Classifying

Step2: Evaluation

Step9: Decision Maker Selection

Step8: Termination test

Step6: Mutation

Step7: Elitist
Strategy

Step1: Rejection illegal
individual

 
 

Fig. 2. Flowchart of EAs 
 

 
 

Fig. 3.  Individual’s structure 
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4.1.4 Repairing unfeasible individuals  
 
The idea of this technique is to distinguish any 
feasible individual in a population from those that 
are unfeasible. The proposed approach 
coevolves unfeasible individuals until they 
become feasible individuals, in the way such 

that, feasible individuals ( ) are generated on a 
segment defined by two points, feasible point 

  F  and any unfeasible point  F . 

The interested reader is referred to [15] for 
further information. 
 
4.1.5 Elitist strategy 
 
The elitist individual represents the fittest 
individual of the population. The use of elitist 
individual, guarantees that the best fitness 
individual never loses its fittest (Towards the end 
of the process). 
 
4.1.6 Evolution process stage  
 
The proposed algorithm uses the objective 
function to evaluate the fitness functions for each 
individual. The algorithm applies binary 
tournament selection procedure / roulette wheel 
selection to select the new population. 
 
4.1.7 Stopping rule  
 
The proposed algorithm is terminated for either 
one of the following conditions is satisfied: 
 
 The maximum number of predetermined 

generations is achieved. 
 When the genotypes of the population 

converge, convergences of the genotype 
structure occur when all bit positions in all 
strings are identical. 

 

4.2 Phase 2: Local Search Engine 
 
Upon termination of phase I, we have a set of 
points, which called the population, K-means 
cluster was implemented to reduce the size of 
population to a manageable size called initial set 
( IS ), that guarantee  uniform distribution of the 
data points. We start phase 2, with a set of points 
IS  “initial set”, then the following procedure are 
applied.  
 

Step 1: For each point 
ex IS , generate its 

own rectangular-atom as follows: 
 

1- Range Initialization: for each decision 
variable ix , we compute and sort from 

smallest to highest the different values it 
takes in the population set. Then, for 
each decision variable, we have a set of 

" irang " values and combining all these 

sets we have a non-uniform grid in 
decision variable space. 

2- Compute rectangular-atom boundaries: 
we compute “rectangular-atom” centered 
in each position of the initial set IS. To 
build a rectangular-atom associated to a 

point 
ex IS we compute the following 

upper and lower bounds for each 

decision variable ix as follows : 

 

 Lower Bound i : Middle point between 
e
ix and the previous value in the set 

irang  
 Upper Bound i : Middle point between 

e
ix and the following value in the set 

irang  
 If there are no pervious or subsequent 

values in irang , we consider the absolute 

lower or upper bound of variable i . This 
setting lets the method to explore close 
to the feasible set boundaries. 

 
Fig. 4 shows the initial set of solutions and it's 
generated rectangular-atom. 
 

3- Applying local search scheme inside 
each rectangular-atom to the off spring  
in order to Generate new Offspring: 
replacing the resultant offspring if the 
new offspring is better than the old one. 

 
5. EXPERIMENTAL VERIFICATION 
 

To validate our proposed algorithm, we present 
five nonlinear constraint problems [4,12,16-18] 
solved using four evolutionary algorithms 
[12,15,19] by Intel Core i5 processors and 
implemented in MATLAB 12. 
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Fig. 4. The initial set of solutions and it's generated rectangular-atoms

 
 
 
 

, 2015; Article no.BJAST.2015.210 
 
 

atoms 



 
 
 
 

El-Qorashy et al.; BJAST, 8(3): 324-333, 2015; Article no.BJAST.2015.210 
 
 

 
330 

 

P03 [16] 
 

4 4 13
2

1 1 5

1 1 2 10 11

2 1 2 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6

   ( ) 5 5

( ) 2 2 10 0

( ) 2 2 10 0

( ) 2 2 10 0

( ) 8 0

( ) 8 0,

( ) 8 0,

 ( ) 2 0,

 ( ) 2

i i i
i i i

Min f x x x x

g x x x x x

g x x x x x

g x x x x x

g x x x

g x x x

g x x x

g x x x x

g x x x

= = =

= - -

= + + + - £

= + + + - £

= + + + - £

= - + £

= - + £

= - + £

= - - + £

= - -

å å å

7 10

9 8 9 12

13

0,

 ( ) 2 0,

0 1, 1,...9,0 100, 10,11,12,0 1.i i

x

g x x x x

x i x i x

+ £

= - - + £

£ £ = £ £ = £ £  
 

P04 [16] 
 

4 2

11

2

1

1
1

2
1

cos cos

 ( )

( ) 0.75 0;

( ) 7.5 0;

0 10, 1,...,20.

n n

i i
ii

n

i
i

n

i
i

n

i
i

i

x x

Max f x

ix

g x x

g x x n

x i

==

=

=

=

-

=

= - £

= - £

£ £ =

å P

å

P

å

 
 

P05 [4,12] 
 

2

1

2

3

4

5

2 2

   ( ) 1 .10471 .04811 (14.0 )

g ( ) 13600 ( ) 0,

g ( ) 30000 ( ) 0,

g ( ) 0,

g ( ) ( ) 6000 0,

g ( ) 0 .25 ( ) 0,

0 .125 10

0 .1 , , 10.        

w here,

 ( ) ( ( )) ( ( ))

w

c

M in f x h l tb l

x r x

x x

x b h

x p x

x x

h

l t b

r x r x r x

s

d

= + +

= - ³

= - ³

= - ³

= - ³

= - ³

£ £

£ £

¢ ¢¢= +

r

r r

r r

r

r r

r r

r r r 2 2

2

3

3

2 2

2 2

( ( ) ( )) / 0 .25 * ( ( ) )

504000
( ) ,

( ) 64746 .022(1 0 .0282346 ) ,

2 .1952
( ) ,

6000
( ) ,

2

6000(14.0 0 .5 ) 0 .25 * ( ( ) )
( ) .

2{0 .707 ( / 12 0 .25( ) )}

c

l r x r x l h t

x
t b

p x t tb

x
t b

r x
hl

l l h t
r x

hl l h t

s

d

¢ ¢¢+ + +

=

= -

=

¢ =

+ + +
¢¢ =

+ +

r r

r

r

r

r

r

 



 
 
 
 

El-Qorashy et al.; BJAST, 8(3): 324-333, 2015; Article no.BJAST.2015.210 
 
 

 
331 

 

Table 1 summarize the results for four evolutionary algorithms, where we list the best, worst , mean 
and standard deviations after 20 independent runs for each test problem, the results obtained by the 
proposed algorithm are better  than the corresponding ones obtained from our proposed algorithm. 
 

Table 1. Statistical analysis of the proposed algorithm versus other evolutionary algorithms 
 

Function Optimal Status Evolutionary algorithms 
Proposed [12] [15] [19] 

P01 -30665.55 Best -30665.55 -30665.51 -30665.35 -30665.53 
Mean -30666.31 -30666.26 -30666.31 -30666.53 
Worst -30665.53 -30665.33 -30665.23 -30665.53 
St. Dev. 5.1E-02 4.3E-04 4.2E-01 5.1E-09 

P02 24.8641 Best 24.8641 24.9631 24.9641 24.3062 
Mean 24.6621 24.7691 24.8621 24.4312 
Worst 24.6521 24.6601 24.6532 24.6721 
St. Dev. 3.3E-02 4.3E-02 4.2E-03 5.1E-01 

P03 -15 Best -15 -15 -15 -15 
Mean -15 -15 -15 -14.492 
Worst -15 -15 -15 -14.354 
St. Dev. 0 0 0 9E-01 

P04 -0.80325185 Best -0.80325 -0.81325 -0.83215 -0.80315 
Mean -0.81325 -0.81212 -0.84325 -0.81325 
Worst -0.82325 -0.81532 -0.86312 -0.82335 
St. Dev. 5.3E-02 4.6E-04 4.7E-02 5.7E-03 

P05 2.381021 Best 2.381021 2.38302 2.381054 2.38104 
Mean 2.392041 2.38405 2.381092 2.38710 
Worst 2.393061 2.38602 2.381063 2.3900 
St. Dev. 9.3E-06 5.3E-04 3.2E-03 3.2E-05 

 

Figs. 5-9 illustrate the convergence analysis of the proposed algorithm for these five problems. 
 

 
 

Fig. 5. Convergence analysis for problem P01 
 

 
 

Fig. 6. Convergence analysis for problem P02 
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Fig. 7. Convergence analysis for problem P03 
 

 
 

Fig. 8. Convergence analysis for problem P04 

 
 

Fig. 9. Convergence analysis for problem P05 
 

6. CONCLUSION 

 

This paper presents a combined genetic 
algorithm-local search engine to solve 
constrained NLP. This algorithm is made of a 
classical genetic algorithm based on the ideas of 
repair strategy combined with a local search 
engine. Based on the k-means cluster algorithm, 
the search space is shrunked after phase I to the 
generated rectangular-atoms with highly rate and 
concentrating the optimal solution region. So the 
process converges rapidly to the final solution. 
Also, the proposed algorithm allowed us to get 
closer to the target than the previous 
evolutionary algorithm based techniques. In brief, 

this algorithm in phase I, has capability to adjust 
its starting population for the second phase, to 
avoid local minimum and to obtain more 
accuracies that classical evolutionary algorithms 
fail to obtain. Several examples allowed us to 
compare our results with those found in the 
literature. The numerical analysis shows that our 
combined system turns out to be very efficient in 
accuracy of the final solution. 
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