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Abstract 
 

This paper is presenting a fourth-order nonlinear conjugate gradient method in large scale optimization. 
This method solves unconstrained optimization problems. It is based on a nonlinear polynomial 
approximation of the objective function. The idea is to approximate the minimizing function by Taylor 
series development using fourth-order terms. The algorithm is presented in steps and some properties of 
the gradients are proved, using classical results. Also, the convergence analysis has been proved under 
known assumptions. Some numerical results have been compared to existing data. The analysis of these 
results confirms that the new method is accurate, since the computed results are very close to the exact 
solutions. 

 

Keywords: Fourth-order nonlinear conjugate gradient method; unconstrained optimization; objective 
function; nonlinear polynomial approximation; large scale optimization. 

 

Mathematical subject classification (2010): 65K10. 
 

1 Introduction 
 
The unconstrained minimization of a smooth function, ,f  in many variables remains an important problem 

in optimization theory. Many scientists, in various fields of science and engineering, seek to solve this class 
of problems in real life applications. The general approach is to solve the zeros of the function gradient since 
the local minima occur at stationary points. In order to achieve fast global convergence, I develop and 
present a fourth-order nonlinear conjugate gradient method in large scale optimization. Consider the 
unconstrained optimization problem. 
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)(min xf
nx 

                                                                                                                 (1) 

 

Where f is a differentiable function. In order to solve this problem, we need to design a special algorithm 

that reduces the high storage and computation cost of some computed matrices [1]. Various types of 
conjugate gradient method have been used to solve large scale unconstrained minimization problems [2]. 

Usually, a function F is constructed to approximate .f  If the objective function is not quadratic or the 

inexact line search is used, some of the conjugate gradient methods fail to converge globally [3,4]. The 
process of minimizing a non-quadratic objective function through the conjugate gradient method is called 
the nonlinear conjugate gradient method [5,6]. Many scholars have published their findings on this method 
as shown in ref. [7-9]. New algorithms on nonlinear conjugate gradient method are available in ref. [10-14]. 
Every conjugate gradient method is an iterative scheme of the form 
 

...,2,1,0,1  kdxx kkkk                                                                                                  (2) 

 

where 0x  is an initial point, k is a step size and the search direction is 
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)( kk xfg   and k specifies the choice of conjugate gradient method [15]. It could take any of the 

following forms. 
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where     
 
FR: Fletcher Reeves, PRP: Polak-Ribiére-Polyak, HS: Hestenes-Stiefiel, DY: Dai Yuan and LS: Liu-
Storey.    
             
Many of these conjugate gradient methods use inexact line search technique [20]. Others use exact line 
search approach [21]. Stoer et al. [22] studied the conjugate gradient method on a subspace and obtained a 
variant of the method with an inexact line search approach. The search for a reliable and accurate scheme 
motivated this work on a fourth-order nonlinear conjugate gradient method (FONCGM) in large scale 
optimization. FONCGM is presented in six sections. Sections (two and three) discuss the fourth-order 
nonlinear conjugate gradient method and its convergence analysis respectively. Section four presents some 
test problems. Section five explains the numerical results while section six ends this work with a conclusion. 
 

2 The Fourth-Order Nonlinear Conjugate Gradient Method (FONCGM) 
 
The fourth-order nonlinear conjugate gradient method is based on Taylor series representation of f  by .F  

This representation is expected to be a better approximation of f than the usual representation. The 

following is the representation of F at point .kx  
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Using a vector 
kxxh  and )( k

i
i xfA  , in equation (4), I have 
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Using tensor notations presented in [23], I have 
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where )(xg  denotes the gradient of ,f  at point x , 





2

1p

TZ
hhh p , ,

!!)(

!

mmn

n

m

n










  pZ  represents 

 p

T
)1(1

2

1


and T  denotes transpose. It follows that 
 

hxHhAhxfxF TT
k )(

2

1
)()( 1                                                                                               (7) 

Where 

  .)(3)(
12

1
)( 2

T
k hxgxgAxH   

 

Similarly, 
 

)(
!3

1

2

1
)( 4321 hAhhhAhhAAxF TTTT                                                                                 (8) 

          


 


1

1

4

2
1

!)1(

1 j

p

Z

j
j

phA
j

A  

            hmjxg
m

j

j
A k

j

m

m

j








 



 





)1(
1

)1(
!)1(

1 1

0

4

2
1

 

           )(4)(3)3(
6

1
1 kkk xghxghxgA   

           )(4)(3)23(
6

1
1 kk xgxgxxgA   



 
 
 

Emmanuel; BJMCS, 10(2): 1-13, 2015; Article no.BJMCS.18694 
 
 
 

4 
 
 

 )(4)(3)23(
6

1
)( 1111 kkkkk xgxgxxgAxF  

                                                                 (9) 

 
).()( 1 kk xgAxF                                                                                                                      (10)

 

 

 )(4)(3)23(
6

1
)()( 111 kkkkkk xgxgxxgxFxF  

 

                  
 )(6)(4)(3)23(

6

1
11 kkkkk xgxgxgxxg  

 

  
 )(2)(3)23(

6

1
11 kkkk xgxgxxg  

.                                                                    (11) 

 

Using )( 11   kk xFG , we present a fourth-order nonlinear conjugate gradient algorithm in which the 

directions of search, 
kDDD ...,,, 10

 are H  conjugate. That is, 
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From the classical results, it follows that  
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With a given 0x , k is computed such that 
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and  
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From equations (12) and (15), 
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The algorithm is described below. 
 
Algorithm 1. (FONCGM) 
 

Step 1: Select ||.||,2,0  Nx N  is Euclidean norm and 0 (a small number: 0.000001). Set 

)( 000 xFGD 
 
and .0k  



 
 
 

Emmanuel; BJMCS, 10(2): 1-13, 2015; Article no.BJMCS.18694 
 
 
 

5 
 
 

Step 2:  If ,|||| kG  stop. Choose ,kx otherwise go to step 3. 

Step 3:  Compute k such that )()( kkkk xFDxF    and go to step 4.  

Step 4:  Compute 
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Go to step 5. 
 
Step 5:  Set .1 kk  Go to step 2. 
 
Remark: Dai and Yuan [12] presented a nonlinear conjugate gradient algorithm for solving unconstrained 
optimization problems. Below is Dai-Yuan’s algorithm for problem (1). 
 
Algorithm 2. (Nonlinear conjugate gradient method) 
 

Step 1:  Select 2,0  Nx N  and 0 . Set 00 gd  and .0k  

Step 2:  If ,|||| kg , stop. Take .kx Otherwise go to step 3. 

Step 3:  Compute k such that )()( kkkk xfdxf  , go to step 4.  
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Step 5:  Set .1 kk  Go to step 2. 
 

3 Convergence Analysis 
 
I employ the convergence results of algorithm (2), as contained in the following lemma and theorem, to 
establish the convergence of algorithm (1). Also, I assume that the objective function satisfies the following 
conditions. 
 

3.1 Assumptions 
 

i. f  is bounded below in 
N and is four times continuously differentiable in a neighborhood Z  of 

the level set 
 

a. 
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ii. The gradient, ),(xg  is Lipschitz continuous in ,Z namely, there exists a constant 0Lc such 

that 
 

a. 
.,||,||||)()(|| ZyxyxLcyfxf 
  

iii. The extended hessian matrix )(xH  is positive definite. 
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3.2 Lemma 
 

i. Suppose that 0x  is a starting point for which the above assumptions are satisfied. Consider any 

method of the form (2), where kD , a vector, is the descent direction and k satisfies the standard 

Wolfe conditions [18], then 
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4 Numerical Considerations 
 
The motivation for this numerical test is to demonstrate the numerical performance of the new method 
comparatively with some existing classical methods. The following problems were solved by implementing 
algorithm (1) through MATLAB 7.3 codes. 
 
 Problem 1. Penalty function I (problem (1) in [25] 
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Problem 2. Variable dimensioned function ([25,26]). 
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Problem 3. Trigonometric function ([25,26]) 
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Problem 4. A penalty function [25] 
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Problem 5. Extended Rosenbrock function [25] 
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Problem 6. Penalty function II (modification of problem [25] 
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Problem 7. Linear function-rank 1 ([25] with new initial values) 
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The numerical results obtained for the new method vis-a-vis some classical methods (FOCGM, 

PRP, FR, DY and HS) are presented in Table 1.  The stopping criterion is 000001.0||)(|| kxg
 
while the 

maximum number of iterations is 1000. 
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Table 1. Number of iterations and CPU time in seconds 
 

Problem N FONCGM PRP FR DY HS 
1 2000 214/91.6 27/2.6 61/9.4 61/9.4 27/4.3 

1000 142/20.1 24/0.7 63/3.4 64/3.4 24/1.4 
2 2000 214/171.2 5/0.97 6/2.2 5/1.93 5/1.9 

1000 100/27.1 4/0.8 9/1.1 8/0.96 3/0.5 
3 2000 64/76.7 1000/358.3 1000/405.8 452/202.8 83/73.9 

1000 52/16.2 59/6.6 386/42 379/55.1 58/14.4 
4 2000 43/36.2 Fail Fail Fail Fail 

1000 41/11.9 Fail Fail Fail Fail 
5 2000 441/229.5 57/6.22 33/7.4 33/7.4 57/12.4 

1000 98/12.7 91/3.34 33/2.5 33/2.5 80/5.8 
6 2000 9/5.6 1000/118.6 1000/238.9 Fail 1000/237.1 

1000 12/2.8 1000/38.1 1000/77.1 Fail 1000/76.2 
7 2000 6/13.3 2/0.96 5/3.2 9/4.9 4/2.8 

1000 6/5.1 15/1.07 4/0.79 8/3.1 7/1.2 
  
Performance profiles have been introduced by Dolan and More’ [27]. The main idea is to show, graphically, 
the relative performance of various solvers on a given set of problems. That is, the curves are used to 

compare the efficiency of a set S  of solvers on a set P  of test problems. spt ,  denotes the performance of a 

solver s  (based on the number of iterations,  function evaluations, gradient  evaluations or execution  time) 

on the problem .p  spr ,  denotes the relative performance of a solver s  on a problem p  and 
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Denotes the number of elements of a set. The performance profiles of the methods discussed in this paper are 
shown below. 
 
Nwaeze et al’s [28] line search method was used in all the computations since it satisfies the standard Wolfe 
conditions [18]. 
 

5 Discussions on Numerical Results 
 
Table 1 contains the numerical results obtained through the new method vis-à-vis some existing methods. 
Table 2 displays the convergence trend of FONCGM on problem (5). These results indicate that the new 
method compares favorably well with the other methods. The execution time depends on various methods 
used for evaluating the step lengths and the speed of computer processing unit. I observed that the new 
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method is relatively faster in some of the iterations recorded for the tested problems. In confirmation, Figs. 1 
and 2 shows that the new method is fast and less costly as the number of function iterations per computed 
problem is relatively low. Finally, I saw that the results are accurate. 
 

Table 2. (Results of problem (5) with N=1000) 
 
Iteration )(xf  |||| g  

1 12100 5207.0799171207021 
2 97.345115883282858 8.6092401363759200 
3 97.345115883282858 8.6092440243170521 
4 97.100196984612197 25.331224458370258 
5 97.100196965540889 25.323077747407670 
91 1.340935157300257e-011 1.370669547082824e-005 
92 1.266377812796263e-011 3.523846673981857e-005 
93 8.809655111200542e-012 6.884192394861915e-005 
94 2.666369056764479e-012 5.595801520356587e-005 
95 5.690424496376759e-013 2.349487098812904e-005 
96 2.516532960480889e-013 8.476983780570614e-006 
97 2.111016849525381e-013 3.028277554699159e-006 
98 2.058344114262070e-013 1.173173451545769e-006 

optimalx (0.999999980348753, 0.999999960684452, 0.999999980348753,..., 0.999999979210695)) is the obtained 

optimal point from the above experiment 

 

 
 

Fig. 1. Performance profiles on number of iterations 
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Fig. 2. Performance profiles on execution time 
 

6 Conclusion 
 
I hereby present a fourth-order nonlinear conjugate gradient method in large scale optimization to scientists 
and engineers. Some of the basic properties of the method have been explored and exploited. On comparison 
with some existing methods, FONCGM obtained better results. The numerical results show that the method 
is highly efficient and reliable. Table 1 shows that FONCGM is relatively faster in some of the iterations 
recorded from the tested problems. On comparison with known results, Figs. 1 and 2 show that the 
performance profile of this method is relatively better. It is less costly as the number of function iterations 
per computed problem is relatively low. Finally, the obtained results are very close to the exact solutions. 
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