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Abstract

In this paper we calculate the Witt groups of P!. It’s a known result, but we calculate it by

another method: we use the localisation theorem of Balmer and the excision theorem of S. Gille.
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1.

Background
1 Witt Groups of a Shifted and Twisted Scheme

Let X be a scheme which contains % and V Bx be the category of locally free coherent O x-modules,
i.e. vector bundles. Let £ be a line bundle over X. We define a duality

x:VBx — VBx
E — #(E):=E&" =Homo,(€£,0x)®oy L

which is the usual duality twisted by the line bundle £. We identify naturally w : £ = £**. If

L

= Ox, then £” is the usual dual and w is locally given by the application that maps an element

e of € to the evaluation at e. The triple (V Bx,*,w) is an exact category with duality.
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Definition 1.1. The Witt group of a scheme X twisted by the line bundle £ is:
W(X, L) :=W(VBx,* w) (1.1)

For the particular case £ = Ox, we denote W(X, £) = W(X).

1.2 Derived Witt Group

Let D°(V Bx) be the derived category of bounded complexes of vector bundles. We provide this
category by a twisted shifted duality which is composed by a duality functor wy, e : & —
DDy (€7) and functorial isomorphisms of biduality Dy, : & — £ ® Lin).

‘We represent the derived Witt group by:

W™(X, L) := W(D"(VBx), Drjn), 1, @n,e)-

Elements of W™ (X, L) are isometric classes of such (£°,¢") with
¢ & — Drpw(&)
is a symmetric isomorphism, with addition
£, ¢+ F vl =[EaF, (% )]

modulo metabolic classes, and the opposite is
-& o] =18, -91]
Witt groups are functorial. To a morphism f : Y — X, we have pullbacks
WX, L) — W'Y, f'L)
[£.6] — [re o]
We have also a multiplication (Gille-Nenashev)
W™(X, L) x W™(X, L) — W"™™(X,L1 ® L)
([8‘,¢‘], [f.WA]) — [ oF.¢ ]
This product is anticommutative:
EQF,¢ ¢ ]=(-1D)""F Q&% @¢].
Theorem 1.1. (Homotopic Invariance [Balmer])
Let m: X x A' — X be the projection, and i : X — X x A' the section x — (2,0). Then ©* and

1" are inverse isomorphisms:

W™ (X, L) 7= W"(X x Al,7"L) (1.2)

k3

Proof. See [1]. O

To a closed subset Z C X, there is a subcategory D% (V Bx) C D°(V Bx) of bounded complexes
of vector bundles over X which are exact over U = X \ Z. The Witt groups of this subcategory
are denoted W7 (X, L).
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Theorem 1.2. (Localization [Balmer])

There is a long sequence
S WX, L) reeon, yyn(x, 1y Retrietion, yym(y Liy) S Wyt X, L) < - (L3)

when 0 is explicit. To a class in W"(U, L|v), we can write [E;, ¢rr] when ¢ : E — Dpn)(E7) is a
symmetric morphism of D(V Bx) such that its restriction over U is an isomorphism. The mapping
cone C(¢') is exact over U and belongs to the subcategory Dz(V Bx). Balmer provides C(¢’) with
a symmetric isomorphism ¢ : C(¢') = Drnu)(C(¢7)) which is unique up to an isometry, and we

set ([, ¢]) = [C(¢),¢].
Proof. See [2]. -

Theorem 1.3. (Ezcision [Gille])

If i : Z — X is the inclusion of a closed subset Z C X with codimension d, where Z and X are
smooth, then there is a natural isomorphism

ix :W'(Z, Lz ® detNz/x) = Wyt (X, L). (1.4)
Proof. See [3]. O

If 4 is the inclusion i : Z < Z x A¢ given by i(z) = (z,0), then it may be explicit. Suppose
that x1,z2,--- , x4 are the standard coordinates in A%, and K" (z1,--- ,z4) is the Koszul complex.

Theorem 1.4. Consider the inclusion i : Z — Z x A% and denote the projection m: Z x A — Z.
The isomorphism of the excision theorem is:

i WNZ,L,) — WETHZ x A% L)
[57(15} — [(W*57W*¢)®K'(£Ij’17~” ,iﬂd),k']
where k' is a symmetric isomorphism between [(W*E, ) QK (T1, -+ ,Ta), k] and its shifted dual.

Proof. See [3]. O

Theorem 1.5 (Balmer). The Witt groups of a point Spec(k) = A} = P) = x = pt are

k =0 d 4
wrag,0) = ¢ VW Jorn =0 (mod ) (15)
0 otherwise
where W(k) denotes the Witt group of isometry classes of anisotropic quadratic forms over k.
Proof. See [4]. O

Remark 1.1. In this work, the value of W(k) is not important.

Theorem 1.6 (Walter). Let X be a scheme which contains % . Consider the projective space Py

over X such that r > 1. Let m € Z/2 and O(m) € Pic (P%)/2.

WHX) if m is even

If 7 is even, then W' (P, O(m)) = {Wi_r(X) ifm is odd

WHX) W T(X)  if m is even
0 if m is odd

Proof. See [5]. O

If r is odd, then Wl( %, O(m)) = {
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1.3 Torus
Let G, = A' \ 0. This G, is an affine variety: G, = Spec(k[T,T™"]).

Definition 1.2. An algebraic torus is an algebraic group which is isomorphic to a finite product
of Gm:
Gm X Gm... X Gy = Gy,

Theorem 1.7. Let x be the coordinate on G,,. For all variety Y, all line bundle L over Y and all
n we have the isomorphism:

WY, L)WY, L) = W'Y X G, L)
(E,6LIF 0] = |reorF, (7 ° )].

0 ar*y

We can denote that isomorphism by (1, (x)) : (e, f) — e + (x) f, when we identify every symmetric
complex in'Y to its pullback into W™ (Y X Gp,).

Proof. See [3]. O
Remark 1.2. We have a long localisation exact sequence:

J* 8
BRINEN W:O(Y)(YxAl,w*L) —S WY x AL T*L) =3 W (Y X G, L) —> W::(;)(YxAl, TEL) —Se -

W*Tg /{ X SO*TE

W (Y, L) W (Y, L)

Where so: Y < Y x Al is the null section and s1 : Y < Y x A! is the constant section at 1.

Lemma 1.8. There is an isomorphism between the localisation exact sequence and the following
one:

0— WY x AL, 7 L) —2s W'Y X Gy 7" L) 2 WL (Y x Al,7°L) — 0

«*T% <w*,<z>.w*)Tz soﬁz

0 ——— WY, L) — L5 WY, L) & W(Y, L) —2 5 W(Y,£) ———— 0

where i1 and p2 denote the inclusion of the first factor and the projection on the second one, so
the null section and finally = is the coordinate on A' which vanishes at 0.

Proof. See [3]. O

Remark 1.3. The Witt groups of G,, are known; if 1, x2,- - ,z, are the coordinates on Gj,,, then
WHGr) = WA(GR) = W(Gr) = 0.

Also we have:

W (Gm) = W(k)(1) ® W(k)(x),

and
WO (G X Grn) = W(k)(1) @ W(E)(z1) @ W(E)(x2) @ W(E)(z122).

etc.
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2  Witt Groups of P!

Let k an algebraically closed field and P! := P;. Let D°(P') = D°(V Bp1) the derived category of
bounded complexes of vector bundles over P! with the usual duality £*Y = H omo,, (€%, Op1).

Let calculate the Witt groups of P! using the localisation sequence with the closed subset Z =
{0} U {oo} and its open complementary G.,,. Firstly we have Pic(P') = Z. As Witt groups are
periodic modulo 2 on L € Pic(X), so it really remains two kinds of groups to calculate: W™ (P!, Op1)
and W™ (P*, Op1 (1)).

2.1 Calculation of W"*(P!, Op)

Theorem 2.1. For alln € N,

W (P, O) = {W(k) fn=0orl [4,

0 otherwise.

Proof. We have the following exact sequence:

S WP ——— W (Gin) —— 22— WIEL(PY) —— W (P —
(1), () )T eT(iO*,iwn

Wr(k) @ Wh(k) W™ (k) & W (k)

As W™(k) = 0 for n # 0 (mod4), we found W?(P') = 0 and W3(P') = 0, and it becomes the exact
sequence:

0 — WO(PY) —— WO(Grn) L2 Wi (PY) @ WL (P) —s W' (P!) — 0

(1), (w))T %T(i()*aioo*)

W(k) @ W(k) W(k) @ W(k)
We can separate two connected components 0 and oo.

Then we obtains
Ao(a(l) + b(z)) = io«(b)
and
Doo (a(1) 4+ b(z)) = Boo(a(l) + b(x ")) = ioox (D)

because () = (z7).

Thus it grows

(81)

0 — WOP") = W(k)(1) @ W(k)(z) —L W(k) & W(k) = W' (P') — 0.
We define a filtration of D?(P') as
0 C D{o.0ey (P') C D°(PY).
That gives us a short exact sequence of categories:
0 — Dfp 00y (P') = D(P') — D°(P")/Df o} (P') — 0.

Where
D{o,00) (P*) = Diy (P*) 11 Doy (P*)
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and

Now

D(P') /DY, 00y (P') = D*(P' ~ {0, c0}).

WEG ooy (BY) = WP, (PY) @ WP, (PY).

Then with respect to the excision theorem of Gille, we obtain:

and

WP

2 (BY) = WP(Dly (BY)) = WP~ ({0}),

WP (P) := WP (D) (P1)) = WP ({o0}).

Thus, if p =1 (mod4), we have

Wi (BY) = W(k) et W[ (B') = W(k).
Recall that for z = % where Xo=0at {0} and X; =0 at {oco}, the isomorphism W(k) =
Wfo}(IP’l) is described by:

)= 0 O (-1)®" Op @7 0
(a1,az,...,ar) Zei%: o - O]P’l( ) Pl ajX;y 0 - 0
0  —asXp- 0 l l( 0 asXy- 0 )
( 0 :7Q;X1> i Lo e
T
0 Op1 V" o 0 o Op ()Y ————0
0 -Xg- O
( ok

With respect to the localisation theorem of Balmer, the spectral sequence is reduced to:

e WP(DY, L (BY) 2 WP(DP(BY)) D WP (D (Y N {0,00))) L WPTH(DY, L (BY) = -+

where « is the inclusion and S is the restriction.

Then for p = 0, we have:

0= WO(PY) = WO(Gm) 2 Wio ooy (P1) = W' (P) = 0.

Recall that G, = Spec(k[t,t7']) and W°(G,,) = W(k)(1) © W(k)(z) which is a free W(k)-module

of rank 2.

Describe now 9((1)) and 9({z)).

e (1))= 0—— Opp —— 0 and 9((1))= 0 Op1

1

O]pl 0

| | )

0—— Op —0 0 Op1 Op1 0

The two lines of 9((1)) are acyclic complexes so 9((1)) = 0, then

W(k)(1) C ker(d) = WO(P")
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Xo

() :=0—— Op1(—1) —— 0 and 9((z)) =0 Op1 Op1 0
- S
—Xo
0 Op1 0 0 Op1 Op1 0

which prove that 9((z)) = (1).
Then (1) — (0,0) and (z) — ((1),(1)).

Next, P! with trivial duality has the following Witt groups:
WO(P') = ker(d) = W(k)(1),

and
W (P") = coker(9) = e rn 2 W(k).

2.2 Calculation of W"(P!, Op:(1))
Theorem 2.2. For alln € N, W™ (P!, Opi (1)) = 0.

The groups W™ (P*, Op1 (1)) are more complicated. We use the theory of divisors.

Definition 2.1. An irreducible divisor on a smooth variety X is an irreducible subvariety Z C X
of codimension 1. A divisor on a smooth variety X is a formal sum of irreducible divisors with
coefficients in Z

D=a1Z1+axZa+---+arZ:.

Divisors on X form an abelian group Div(X). A divisor is effective if all its coeflicients a; > 0. We
write D > E if D — E E is effective.

For an open U C X, we have a restriction morphism

Div(X) — Div(U)

D=>aZ v+ D, = Y a(ZnU)
Z;NU#D

To every irreducible divisor is a non-archimedean valuation vz : K(X)* — Z, which measures the
order of cancellation or the pole order of f € K(X)* at the generic point of Z. The principal
divisor associated to a function f € K(X)* is div(f) = 2 ireanennne V2 ().

For each divisor D we have a subsheaf Ox (D) with sections on each open set U C X are

Ox (D) ={f € K(X)*/div(f)|, = —Dy, } U{0}.

The bundle Ox (D) is the sheaf of sections of a line bundle is also noted that Ox (D). The general
theorem of this theory is:
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Theorem 2.3. To each smooth variety X, it corresponds an exact sequence:

1 OX)* = K(X)* 2% Din(x) 229XP) pic(x) 1.

Let denote L1 = n* L ®o, . Oy a1(50(Y)). It’s a line bundle over Y x A' whose sections are
X

rational sections of L with at worst a simple pole along so(Y) and which are regular everywhere
else.

Lemma 2.4. There is an isomorphism between the localisation exract sequence and the following
one:

-

J )
0 —— WP (Y xAl,L1) —— W™ (Y xGp,L1) ——— w:()*(;)(YxAl,Ll) —0

PTN (w*,(x).w*)wﬂ UTN
ia P1

0 ——— W"(Y,L) ——— W"(Y,L)dw"(Y,L) ———— > W™ (Y, L) ————— 0

where i1 and p2 denote the inclusion of the first factor and the projection on the second one, so the
null section and finally = is the coordinate on A' which vanishes at 0.

Note that the isomorphism in middle of diagrams of this lemma and the lemma is the same
m*L and L; have the same restrictions to Y x G,,, but the role of factors of the direct sum in the
bottom exact sequence is reversed.

Lemma 2.5. Let £ : L =y Ly be an isomorphism of line bundles over a variety X. Then

& WHX,L) — WX, L)

is an isomorphism between derived Witt groups which is compatible with restriction to open subsets
and to localisation long exact sequences.

We identify Op1(1) =2 Op1(0). But P* is the union of two open subsets Aj = Spec(K[z]) and
AL, = Spec(K|[z™']). We have Ox (0)(k[z]) = z~"k[z] and Ox (0)(k[z™]) = zk[z™'].

Proof of theorem 2.2. For (P', Op1(1)), we identify Op1(1) 2t~ - Op1 = L(0), all germs of rational
functions with at worst a simple pole at 0 and regular elsewhere. Then the localisation sequence
becomes:

(/30 Boo)

0—WO(P,0,1 (1) — WO (Grn) WHE 10,1 )@ W (BL,0p1 )L W (B, 041 (1) —0.

Here we have (Bo, Boo) : W2(Gm) — W(k) @ W(k), but W°(G,,) = W(k)(1) ® W(k)(t). Thus
Bo : a(l) + b(t) — a Bso : a{l) + b(t) —> b. Then (Bo, B) is an isomorphism and its kernel is
ker(Bo, Boo) = WO (P!, Op1(1)) = 0, and its cokernel is coker(fo, Boc) = W' (P!, Op1(1)) =0. O

3 Conclusion

Arason proved that: if k is a field of characteristic not 2 and n > 1 then W(Py) = W (k). In 90’s
Balmer introduced W"(X), where X is a derived and more general triangulated categories, which
have a lot of applications, see for example [6]. Later, Walter proved a projective bundle theorem,
which allowed the calculation of W* (P, O(m)) where X is a scheme containing 1, r > 1, m € Z/2,
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P% is the r-projective space over X and O(m) € Pic(P)/2 [Picard group].

In this paper, we calculate W”(]P’l) using the famous Balmer’s localization sequence, a simple
method which permits us to eliminate some hardness. The mentioned method opens the road to
find, with real few geometric complexities, W™ (P?) and W™ (P®). That is our actual objective.
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