

British Journal of Mathematics & Computer Science 10(3): 1-9, 2015, Article no.BJMCS.18366

ISSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org

Witt Groups of \mathbb{P}^1

Sarrage Mouhamad¹, Khalil Houssam¹, Hossein Mouhamad^{1*} and Ezzaldine Hayssam¹

¹Laboratory of Mathematics and its Applications LaMA-Lebanon, Lebanese University, Lebanon.

Article Information

DOI: 10.9734/BJMCS/2015/18366

Editor(s):

(1) Zuomao Yan, Department of Mathematics, Hexi University, China.

 $\underline{Reviewer}$

(1) Anonymous, Kwame Nkrumah University of Science and Technology, Ghana.

(2) Anonymous, Institute for Scientific Methodology, Italy.

(3) Krasimir Yordzhev, South-West University, Bulgaria.

Complete Peer review History: http://sciencedomain.org/review-history/10080

Original Research Article

Received: 17 April 2015 Accepted: 19 May 2015 Published: 07 July 2015

Abstract

In this paper we calculate the Witt groups of \mathbb{P}^1 . It's a known result, but we calculate it by another method: we use the localisation theorem of Balmer and the excision theorem of S. Gille.

Keywords: Witt group; toric variety; line bundle; filtration; divisor.

2010 Mathematics Subject Classification: 11E81.

1 Background

1.1 Witt Groups of a Shifted and Twisted Scheme

Let X be a scheme which contains $\frac{1}{2}$ and VB_X be the category of locally free coherent \mathcal{O}_X -modules, i.e. vector bundles. Let \mathcal{L} be a line bundle over X. We define a duality

$$\begin{array}{ccc} *: VB_X & \longrightarrow & VB_X \\ \mathcal{E} & \longmapsto & *(\mathcal{E}) := \mathcal{E}^* = Hom_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X) \otimes_{\mathcal{O}_X} \mathcal{L} \end{array}$$

which is the usual duality twisted by the line bundle \mathcal{L} . We identify naturally $\varpi: \mathcal{E} \xrightarrow{\sim} \mathcal{E}^{**}$. If $\mathcal{L} = \mathcal{O}_X$, then \mathcal{E}^* is the usual dual and ϖ is locally given by the application that maps an element e of \mathcal{E} to the evaluation at e. The triple $(VB_X, *, \varpi)$ is an exact category with duality.

 $Corresponding \ author: \ E{-}mail: \ mhdhossein@hotmail.com$

Definition 1.1. The Witt group of a scheme X twisted by the line bundle \mathcal{L} is:

$$W(X, \mathcal{L}) := W(VB_X, *, \varpi)$$
(1.1)

For the particular case $\mathcal{L} = \mathcal{O}_X$, we denote $\mathcal{W}(X, \mathcal{L}) = \mathcal{W}(X)$.

1.2 Derived Witt Group

Let $\mathcal{D}^b(VB_X)$ be the derived category of bounded complexes of vector bundles. We provide this category by a twisted shifted duality which is composed by a duality functor $\varpi_{n,\mathcal{E}^{\cdot}}: \mathcal{E}^{\cdot} \longrightarrow D_{L[n]}D_{L[n]}(\mathcal{E}^{\cdot})$ and functorial isomorphisms of biduality $D_{L[n]}: \mathcal{E}^{\cdot} \longrightarrow \mathcal{E}^{\cdot \vee} \otimes L[n]$.

We represent the derived Witt group by:

$$\mathcal{W}^n(X,L) := \mathcal{W}(\mathcal{D}^b(VB_X), D_{L[n]}, 1, \varpi_{n,\bullet}).$$

Elements of $\mathcal{W}^n(X,L)$ are isometric classes of such $(\mathcal{E}^{\cdot},\phi^{\cdot})$ with

$$\phi^{\cdot}: \mathcal{E}^{\cdot} \longrightarrow D_{L[n]}(\mathcal{E}^{\cdot})$$

is a symmetric isomorphism, with addition

$$[\mathcal{E}^{\cdot},\phi^{\cdot}]+[\mathcal{F}^{\cdot},\psi^{\cdot}]=[\mathcal{E}^{\cdot}\oplus\mathcal{F}^{\cdot},\left(\begin{smallmatrix}arphi^{\cdot}&0\\0&\psi^{\cdot}\end{smallmatrix}
ight)]$$

modulo metabolic classes, and the opposite is

$$-[\mathcal{E}^{\cdot},\phi^{\cdot}]=[\mathcal{E}^{\cdot},-\phi^{\cdot}].$$

Witt groups are functorial. To a morphism $f: Y \to X$, we have pullbacks

$$f^*: \mathcal{W}^n(X, L) \longrightarrow \mathcal{W}^n(Y, f^*L)$$

 $[\mathcal{E}^\cdot, \phi^\cdot] \longmapsto [f^*\mathcal{E}^\cdot, f^*\phi^\cdot]$

We have also a multiplication (Gille-Nenashev)

$$\mathcal{W}^{n}(X, L_{1}) \times \mathcal{W}^{m}(X, L_{2}) \longrightarrow \mathcal{W}^{n+m}(X, L_{1} \otimes L_{2})$$

$$\left(\left[\mathcal{E}^{\cdot}, \phi^{\cdot} \right], \left[\mathcal{F}^{\cdot}, \psi^{\cdot} \right] \right) \longmapsto \left[\mathcal{E}^{\cdot} \otimes \mathcal{F}^{\cdot}, \phi^{\cdot} \otimes \psi^{\cdot} \right]$$

This product is anticommutative:

$$[\mathcal{E}^{\cdot}\otimes\mathcal{F}^{\cdot},\phi^{\cdot}\otimes\psi^{\cdot}]=(-1)^{nm}[\mathcal{F}^{\cdot}\otimes\mathcal{E}^{\cdot},\psi^{\cdot}\otimes\phi^{\cdot}].$$

Theorem 1.1. (Homotopic Invariance | Balmer |)

Let $\pi: X \times \mathbb{A}^1 \longrightarrow X$ be the projection, and $i: X \longrightarrow X \times \mathbb{A}^1$ the section $x \mapsto (x,0)$. Then π^* and i^* are inverse isomorphisms:

$$\mathcal{W}^{n}(X,L) \xrightarrow{\stackrel{\pi^{*}}{\longleftarrow}} \mathcal{W}^{n}(X \times \mathbb{A}^{1}, \pi^{*}L)$$
(1.2)

Proof. See [1].
$$\Box$$

To a closed subset $Z \subset X$, there is a subcategory $\mathcal{D}_Z^b(VB_X) \subset \mathcal{D}^b(VB_X)$ of bounded complexes of vector bundles over X which are exact over $U = X \setminus Z$. The Witt groups of this subcategory are denoted $\mathcal{W}_Z^n(X,L)$.

Theorem 1.2. (Localization | Balmer |)

There is a long sequence

$$\cdots \to \mathcal{W}_Z^n(X,L) \xrightarrow{Inclusion} \mathcal{W}^n(X,L) \xrightarrow{Restriction} \mathcal{W}^n(U,L|_U) \xrightarrow{\partial} \mathcal{W}_Z^{n+1}(X,L) \to \cdots$$
 (1.3)

when ∂ is explicit. To a class in $W^n(U, L|_U)$, we can write $[\mathcal{E}_U, \phi_U]$ when $\phi: \mathcal{E} \to D_{L[n]}(\mathcal{E})$ is a symmetric morphism of $\mathcal{D}(VB_X)$ such that its restriction over U is an isomorphism. The mapping cone $C(\phi)$ is exact over U and belongs to the subcategory $\mathcal{D}_Z(VB_X)$. Balmer provides $C(\phi)$ with a symmetric isomorphism $\psi: C(\phi) \to D_{L[n+1]}(C(\phi))$ which is unique up to an isometry, and we set $\partial([\mathcal{E}^{\cdot},\phi^{\cdot}]) = [C(\phi^{\cdot}),\psi^{\cdot}].$

Proof. See [2].
$$\Box$$

Theorem 1.3. (Excision [Gille])

If $i:Z\hookrightarrow X$ is the inclusion of a closed subset $Z\subset X$ with codimension d, where Z and X are smooth, then there is a natural isomorphism

$$i_*: \mathcal{W}^n(Z, L|_Z \otimes det N_{Z/X}) \xrightarrow{\simeq} \mathcal{W}_Z^{n+d}(X, L).$$
 (1.4)

Proof. See [3].

If i is the inclusion $i: Z \hookrightarrow Z \times \mathbb{A}^d$ given by i(z) = (z,0), then it may be explicit. Suppose that x_1, x_2, \dots, x_d are the standard coordinates in \mathbb{A}^d , and $K(x_1, \dots, x_d)$ is the Koszul complex.

Theorem 1.4. Consider the inclusion $i: Z \hookrightarrow Z \times \mathbb{A}^d$ and denote the projection $\pi: Z \times \mathbb{A}^d \to Z$. The isomorphism of the excision theorem is:

$$i_*: \mathcal{W}^n(Z, \mathcal{L}_{|_Z}) \longrightarrow \mathcal{W}_Z^{n+d}(Z \times \mathbb{A}^d, \mathcal{L})$$

 $[\mathcal{E}^{\cdot}, \phi^{\cdot}] \longmapsto [(\pi^* \mathcal{E}, \pi^* \phi) \otimes K^{\cdot}(x_1, \cdots, x_d), k^{\cdot}]$

where k is a symmetric isomorphism between $[(\pi^*\mathcal{E}, \pi^*\phi) \otimes K^{\cdot}(x_1, \cdots, x_d), k]$ and its shifted dual. Proof. See [3].

Theorem 1.5 (Balmer). The Witt groups of a point $Spec(k) = \mathbb{A}^0_k = \mathbb{P}^0_k = * = pt$ are

$$W^{n}(\mathbb{A}_{k}^{0}, \mathcal{O}) = \begin{cases} W(k) & \text{for } n \equiv 0 \pmod{4} \\ 0 & \text{otherwise} \end{cases}$$
 (1.5)

where W(k) denotes the Witt group of isometry classes of anisotropic quadratic forms over k.

Proof. See [4].
$$\Box$$

Remark 1.1. In this work, the value of W(k) is not important.

Theorem 1.6 (Walter). Let X be a scheme which contains $\frac{1}{2}$. Consider the projective space \mathbb{P}_X^r over X such that $r \geq 1$. Let $m \in \mathbb{Z}/2$ and $\mathcal{O}(m) \in \operatorname{Pic}(\mathbb{P}^r_X)/2$.

If
$$\mathbf{r}$$
 is even, then $\mathcal{W}^i(\mathbb{P}^r_X, \mathcal{O}(m)) = \begin{cases} \mathcal{W}^i(X) & \text{if } m \text{ is even} \\ \mathcal{W}^{i-r}(X) & \text{if } m \text{ is odd} \end{cases}$
If \mathbf{r} is odd, then $\mathcal{W}^i(\mathbb{P}^r_X, \mathcal{O}(m)) = \begin{cases} \mathcal{W}^i(X) \oplus \mathcal{W}^{i-r}(X) & \text{if } m \text{ is even} \\ 0 & \text{if } m \text{ is odd} \end{cases}$

If
$$\mathbf{r}$$
 is odd, then $\mathcal{W}^i(\mathbb{P}^r_X, \mathcal{O}(m)) = \begin{cases} \mathcal{W}^i(X) \oplus \mathcal{W}^{i-r}(X) & \text{if } m \text{ is ever} \\ 0 & \text{if } m \text{ is odd} \end{cases}$

Proof. See [5].

1.3 Torus

Let $\mathbb{G}_m = \mathbb{A}^1 \setminus 0$. This \mathbb{G}_m is an affine variety: $\mathbb{G}_m = \mathbf{Spec}(k[T, T^{-1}])$.

Definition 1.2. An algebraic torus is an algebraic group which is isomorphic to a finite product of \mathbb{G}_m :

$$\mathbb{G}_m \times \mathbb{G}_m \dots \times \mathbb{G}_m = \mathbb{G}_m^n$$
.

Theorem 1.7. Let x be the coordinate on \mathbb{G}_m . For all variety Y, all line bundle \mathcal{L} over Y and all n we have the isomorphism:

$$\mathcal{W}^{n}(Y,\mathcal{L}) \oplus \mathcal{W}^{n}(Y,\mathcal{L}) \stackrel{\cong}{\longrightarrow} \mathcal{W}^{n}(Y \times \mathbb{G}_{m}, \pi^{*}\mathcal{L})$$

$$([\mathcal{E}^{\cdot}, \phi^{\cdot}], [\mathcal{F}^{\cdot}, \psi^{\cdot}]) \mapsto \left[\pi^{*}\mathcal{E}^{\cdot} \oplus \pi^{*}\mathcal{F}^{\cdot}, \begin{pmatrix} \pi^{*}\psi^{\cdot} & 0 \\ 0 & x\pi^{*}\psi^{\cdot} \end{pmatrix}\right].$$

We can denote that isomorphism by $(1,\langle x\rangle):(e,f)\mapsto e+\langle x\rangle f$, when we identify every symmetric complex in Y to its pullback into $\mathcal{W}^n(Y\times\mathbb{G}_m)$.

Proof. See [3].
$$\Box$$

Remark 1.2. We have a long localisation exact sequence:

$$\cdots \longrightarrow \mathcal{W}^n_{s_0(Y)}(Y \times \mathbb{A}^1, \pi^*\mathcal{L}) \longrightarrow \mathcal{W}^n(Y \times \mathbb{A}^1, \pi^*\mathcal{L}) \xrightarrow{j^*} \mathcal{W}^n(Y \times \mathbb{G}_m, \pi^*\mathcal{L}) \xrightarrow{\partial} \mathcal{W}^{n+1}_{s_0(Y)}(Y \times \mathbb{A}^1, \pi^*\mathcal{L}) \xrightarrow{} \cdots$$

$$\pi^* \uparrow \cong \qquad \qquad \downarrow s_0 \\ \mathcal{W}^n(Y, \mathcal{L}) \qquad \qquad \downarrow \gamma \\ \mathcal{W}^n(Y, \mathcal{L}) \qquad$$

Where $s_0: Y \hookrightarrow Y \times \mathbb{A}^1$ is the null section and $s_1: Y \hookrightarrow Y \times \mathbb{A}^1$ is the constant section at 1.

Lemma 1.8. There is an isomorphism between the localisation exact sequence and the following one:

$$0 \longrightarrow \mathcal{W}^{n}(Y \times \mathbb{A}^{1}, \pi^{*}\mathcal{L}) \xrightarrow{j^{*}} \mathcal{W}^{n}(Y \times \mathbb{G}_{m}, \pi^{*}\mathcal{L}) \xrightarrow{\partial} \mathcal{W}^{n+1}_{s_{0}(Y)}(Y \times \mathbb{A}^{1}, \pi^{*}\mathcal{L}) \longrightarrow 0$$

$$\pi^{*} \uparrow \cong \qquad (\pi^{*}, \langle x \rangle . \pi^{*}) \uparrow \cong \qquad \qquad s_{0} \uparrow \cong$$

$$0 \longrightarrow \mathcal{W}^{n}(Y, \mathcal{L}) \xrightarrow{i_{1}} \mathcal{W}^{n}(Y, \mathcal{L}) \oplus \mathcal{W}^{n}(Y, \mathcal{L}) \xrightarrow{p_{2}} \mathcal{W}^{n}(Y, \mathcal{L}) \longrightarrow 0$$

where i_1 and p_2 denote the inclusion of the first factor and the projection on the second one, s_0 the null section and finally x is the coordinate on \mathbb{A}^1 which vanishes at 0.

Proof. See [3].
$$\Box$$

Remark 1.3. The Witt groups of \mathbb{G}_m are known; if x_1, x_2, \dots, x_n are the coordinates on \mathbb{G}_m^n , then

$$\mathcal{W}^1(\mathbb{G}_m^n) = \mathcal{W}^2(\mathbb{G}_m^n) = \mathcal{W}^3(\mathbb{G}_m^n) = 0.$$

Also we have:

$$\mathcal{W}^0(\mathbb{G}_m) = \mathcal{W}(k)\langle 1 \rangle \oplus \mathcal{W}(k)\langle x \rangle,$$

and

$$\mathcal{W}^{0}(\mathbb{G}_{m}\times\mathbb{G}_{m})=\mathcal{W}(k)\langle 1\rangle\oplus\mathcal{W}(k)\langle x_{1}\rangle\oplus\mathcal{W}(k)\langle x_{2}\rangle\oplus\mathcal{W}(k)\langle x_{1}x_{2}\rangle.$$

etc.

2 Witt Groups of \mathbb{P}^1

Let k an algebraically closed field and $\mathbb{P}^1 := \mathbb{P}^1_k$. Let $\mathcal{D}^b(\mathbb{P}^1) = \mathcal{D}^b(VB_{\mathbb{P}^1})$ the derived category of bounded complexes of vector bundles over \mathbb{P}^1 with the usual duality $\mathcal{E}^{\bullet\vee} = Hom_{\mathcal{O}_{\mathbb{P}^1}}(\mathcal{E}^{\bullet}, \mathcal{O}_{\mathbb{P}^1})$.

Let calculate the Witt groups of \mathbb{P}^1 using the localisation sequence with the closed subset $Z = \{0\} \cup \{\infty\}$ and its open complementary \mathbb{G}_m . Firstly we have $\mathbf{Pic}(\mathbb{P}^1) \cong \mathbb{Z}$. As Witt groups are periodic modulo 2 on $L \in \mathbf{Pic}(X)$, so it really remains two kinds of groups to calculate: $\mathcal{W}^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})$ and $\mathcal{W}^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))$.

2.1 Calculation of $\mathcal{W}^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1})$

Theorem 2.1. For all $n \in \mathbb{N}$,

$$W^{n}(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}) = \begin{cases} W(k) & \text{if } n \equiv 0 \text{ or } 1 \ [4], \\ 0 & \text{otherwise.} \end{cases}$$
 (2.1)

Proof. We have the following exact sequence:

$$\cdots \longrightarrow \mathcal{W}^{n}(\mathbb{P}^{1}) \xrightarrow{\qquad} \mathcal{W}^{n}(\mathbb{G}_{m}) \xrightarrow{\qquad \partial \qquad} \mathcal{W}^{n+1}_{0,\infty}(\mathbb{P}^{1}) \xrightarrow{\qquad} \mathcal{W}^{n+1}(\mathbb{P}^{1}) \xrightarrow{\qquad} \cdots .$$

$$(\langle 1 \rangle, \langle x \rangle) \uparrow \cong \qquad \qquad \cong \uparrow (i_{0*}, i_{\infty*})$$

$$\mathcal{W}^{n}(k) \oplus \mathcal{W}^{n}(k) \qquad \mathcal{W}^{n}(k) \oplus \mathcal{W}^{n}(k)$$

As $\mathcal{W}^n(k) = 0$ for $n \neq 0$ (mod4), we found $\mathcal{W}^2(\mathbb{P}^1) = 0$ and $\mathcal{W}^3(\mathbb{P}^1) = 0$, and it becomes the exact sequence:

$$0 \longrightarrow \mathcal{W}^{0}(\mathbb{P}^{1}) \xrightarrow{\mathcal{W}^{0}(\mathbb{G}_{m})} \overset{(\partial_{0},\partial_{\infty})}{\longrightarrow} \mathcal{W}^{1}_{0}(\mathbb{P}^{1}) \oplus \mathcal{W}^{1}_{\infty}(\mathbb{P}^{1}) \longrightarrow \mathcal{W}^{1}(\mathbb{P}^{1}) \longrightarrow 0.$$

$$(\langle 1 \rangle, \langle x \rangle) \uparrow \cong \cong \uparrow (i_{0*}, i_{\infty*})$$

$$\mathcal{W}(k) \oplus \mathcal{W}(k) \qquad \mathcal{W}(k) \oplus \mathcal{W}(k)$$

We can separate two connected components 0 and ∞ .

Then we obtains

$$\partial_0(a\langle 1\rangle + b\langle x\rangle) = i_{0*}(b)$$

and

$$\partial_{\infty}(a\langle 1\rangle + b\langle x\rangle) = \partial_{\infty}(a\langle 1\rangle + b\langle x^{-1}\rangle) = i_{\infty*}(b)$$

because $\langle x \rangle = \langle x^{-1} \rangle$.

Thus it grows

$$0 \to \mathcal{W}^0(\mathbb{P}^1) \to \mathcal{W}(k)\langle 1 \rangle \oplus \mathcal{W}(k)\langle x \rangle \xrightarrow{\left(\begin{smallmatrix} 0 & 1 \\ 0 & 1 \end{smallmatrix}\right)} \mathcal{W}(k) \oplus \mathcal{W}(k) \to \mathcal{W}^1(\mathbb{P}^1) \to 0.$$

We define a filtration of $\mathcal{D}^b(\mathbb{P}^1)$ as

$$0 \subseteq \mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1) \subseteq \mathcal{D}^b(\mathbb{P}^1).$$

That gives us a short exact sequence of categories:

$$0 \to \mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1) \hookrightarrow \mathcal{D}^b(\mathbb{P}^1) \twoheadrightarrow \mathcal{D}^b(\mathbb{P}^1)/\mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1) \to 0.$$

Where

$$\mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1) \cong \mathcal{D}^b_{\{0\}}(\mathbb{P}^1) \amalg \mathcal{D}^b_{\{\infty\}}(\mathbb{P}^1)$$

and

$$\mathcal{D}^b(\mathbb{P}^1)/\mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1) \cong \mathcal{D}^b(\mathbb{P}^1 \setminus \{0,\infty\}).$$

Now

$$\mathcal{W}^p_{\{0,\infty\}}(\mathbb{P}^1)\cong\mathcal{W}^p_{\{0\}}(\mathbb{P}^1)\oplus\mathcal{W}^p_{\{\infty\}}(\mathbb{P}^1).$$

Then with respect to the excision theorem of Gille, we obtain:

$$\mathcal{W}^p_{\{0\}}(\mathbb{P}^1) := \mathcal{W}^p(\mathcal{D}^b_{\{0\}}(\mathbb{P}^1)) \cong \mathcal{W}^{p-1}(\{0\}),$$

and

$$\mathcal{W}^p_{\{\infty\}}(\mathbb{P}^1) := \mathcal{W}^p(\mathcal{D}^b_{\{\infty\}}(\mathbb{P}^1)) \cong \mathcal{W}^{p-1}(\{\infty\}).$$

Thus, if $p \equiv 1 \pmod{4}$, we have

$$\mathcal{W}^p_{\{0\}}(\mathbb{P}^1) \cong \mathcal{W}(k) \quad et \quad \mathcal{W}^p_{\{\infty\}}(\mathbb{P}^1) \cong \mathcal{W}(k).$$

Recall that for $x = \frac{X_0}{X_1}$ where $X_0 = 0$ at $\{0\}$ and $X_1 = 0$ at $\{\infty\}$, the isomorphism $\mathcal{W}(k) \cong \mathcal{W}^p_{\{0\}}(\mathbb{P}^1)$ is described by:

With respect to the localisation theorem of Balmer, the spectral sequence is reduced to:

$$\cdots \to \mathcal{W}^p(\mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1)) \xrightarrow{\alpha} \mathcal{W}^p(\mathcal{D}^b(\mathbb{P}^1)) \xrightarrow{\beta} \mathcal{W}^p(\mathcal{D}^b(\mathbb{P}^1 \setminus \{0,\infty\})) \xrightarrow{\partial} \mathcal{W}^{p+1}(\mathcal{D}^b_{\{0,\infty\}}(\mathbb{P}^1)) \to \cdots,$$

where α is the inclusion and β is the restriction.

Then for p = 0, we have:

$$0 \to \mathcal{W}^0(\mathbb{P}^1) \to \mathcal{W}^0(\mathbb{G}_m) \xrightarrow{\partial} \mathcal{W}^1_{\{0,\infty\}}(\mathbb{P}^1) \to \mathcal{W}^1(\mathbb{P}^1) \to 0.$$

Recall that $\mathbb{G}_m = Spec(k[t, t^{-1}])$ and $\mathcal{W}^0(\mathbb{G}_m) \cong \mathcal{W}(k)\langle 1 \rangle \oplus \mathcal{W}(k)\langle x \rangle$ which is a free $\mathcal{W}(k)$ -module of rank 2.

Describe now $\partial(\langle 1 \rangle)$ and $\partial(\langle x \rangle)$.

The two lines of $\partial(\langle 1 \rangle)$ are acyclic complexes so $\partial(\langle 1 \rangle) = 0$, then

$$\mathcal{W}(k)\langle 1\rangle \subset \ker(\partial) = \mathcal{W}^0(\mathbb{P}^1)$$

$$\begin{split} \langle x \rangle := & 0 \longrightarrow \mathcal{O}_{\mathbb{P}^1}(-1) \longrightarrow 0 \quad \text{ and } \quad \partial (\langle x \rangle) = 0 \longrightarrow \mathcal{O}_{\mathbb{P}^1} \xrightarrow{X_0} \mathcal{O}_{\mathbb{P}^1} \longrightarrow 0 \\ \downarrow X_0 & & -X_1 \downarrow & \downarrow X_1 \\ 0 \longrightarrow \mathcal{O}_{\mathbb{P}^1} \longrightarrow 0 & 0 \longrightarrow \mathcal{O}_{\mathbb{P}^1} \xrightarrow{-X_0} \mathcal{O}_{\mathbb{P}^1} \longrightarrow 0 \end{split}$$

which prove that $\partial(\langle x \rangle) = \langle 1 \rangle$.

Then
$$\langle 1 \rangle \longmapsto (0,0)$$
 and $\langle x \rangle \longmapsto (\langle 1 \rangle, \langle 1 \rangle)$.

Next, \mathbb{P}^1 with trivial duality has the following Witt groups:

$$\mathcal{W}^0(\mathbb{P}^1) = \ker(\partial) = \mathcal{W}(k)\langle 1 \rangle,$$

and

$$\mathcal{W}^1(\mathbb{P}^1) = \mathbf{coker}(\partial) = rac{\mathcal{W}(k) \oplus \mathcal{W}(k)}{\mathcal{W}(k)(\langle 1 \rangle, \langle 1 \rangle)} \cong \mathcal{W}(k).$$

2.2 Calculation of $\mathcal{W}^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))$

Theorem 2.2. For all $n \in \mathbb{N}$, $\mathcal{W}^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)) = 0$.

The groups $\mathcal{W}^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))$ are more complicated. We use the theory of divisors.

Definition 2.1. An irreducible divisor on a smooth variety X is an irreducible subvariety $Z \subset X$ of codimension 1. A divisor on a smooth variety X is a formal sum of irreducible divisors with coefficients in \mathbb{Z}

$$D = a_1 Z_1 + a_2 Z_2 + \dots + a_r Z_r.$$

Divisors on X form an abelian group $\mathbf{Div}(X)$. A divisor is effective if all its coefficients $a_i \geq 0$. We write $D \succ E$ if D - E E is effective.

For an open $U \subset X$, we have a restriction morphism

$$\mathbf{Div}(X) \longrightarrow \mathbf{Div}(U)$$

$$D = \sum a_i Z_i \longmapsto D_{|_U} = \sum_{Z_i \cap U \neq \emptyset} a_i (Z_i \cap U)$$

To every irreducible divisor is a non-archimedean valuation $v_Z: K(X)^{\times} \to \mathbb{Z}$, which measures the order of cancellation or the pole order of $f \in K(X)^{\times}$ at the generic point of Z. The principal divisor associated to a function $f \in K(X)^{\times}$ is $div(f) = \sum_{Z \text{ irreducible}} v_Z(f)$.

For each divisor D we have a subsheaf $\mathcal{O}_X(D)$ with sections on each open set $U \subset X$ are

$$\mathcal{O}_X(D) = \{ f \in K(X)^{\times} / div(f)|_{U} \succ -D|_{U} \} \cup \{0\}.$$

The bundle $\mathcal{O}_X(D)$ is the sheaf of sections of a line bundle is also noted that $\mathcal{O}_X(D)$. The general theorem of this theory is:

Theorem 2.3. To each smooth variety X, it corresponds an exact sequence:

$$1 \to \mathcal{O}(X)^{\times} \to K(X)^{\times} \xrightarrow{div} \mathbf{Div}(X) \xrightarrow{D \mapsto \mathcal{O}_X(D)} \mathbf{Pic}(X) \to 1.$$

Let denote $L_1 = \pi^* L \otimes_{\mathcal{O}_{Y \times \mathbb{A}^1}} \mathcal{O}_{Y \times \mathbb{A}^1}(s_0(Y))$. It's a line bundle over $Y \times \mathbb{A}^1$ whose sections are rational sections of L with at worst a simple pole along $s_0(Y)$ and which are regular everywhere else.

Lemma 2.4. There is an isomorphism between the localisation exact sequence and the following one:

$$0 \longrightarrow \mathcal{W}^{n}(Y \times \mathbb{A}^{1}, L_{1}) \xrightarrow{j^{*}} \mathcal{W}^{n}(Y \times \mathbb{G}_{m}, L_{1}) \xrightarrow{\partial} \mathcal{W}^{n+1}_{s_{0}(Y)}(Y \times \mathbb{A}^{1}, L_{1}) \longrightarrow 0$$

$$\downarrow p \qquad \qquad (\pi^{*}, \langle x \rangle. \pi^{*}) \qquad \qquad \downarrow \varphi \qquad \qquad \downarrow \varphi$$

where i_1 and p_2 denote the inclusion of the first factor and the projection on the second one, s_0 the null section and finally x is the coordinate on \mathbb{A}^1 which vanishes at 0.

Note that the isomorphism in middle of diagrams of this lemma and the lemma is the same π^*L and L_1 have the same restrictions to $Y \times \mathbb{G}_m$, but the role of factors of the direct sum in the bottom exact sequence is reversed.

Lemma 2.5. Let $\xi: L \xrightarrow{\cong} L_1$ be an isomorphism of line bundles over a variety X. Then

$$\begin{array}{cccc} \xi_{\sharp}: \mathcal{W}^{n}(X,L) & \longrightarrow & \mathcal{W}^{n}(X,L_{1}) \\ & \left[\mathcal{E}^{\cdot},\phi^{\cdot}\right] & \longmapsto & \left[\mathcal{E}^{\cdot},(1_{\mathcal{E}^{\cdot\vee}[n]}\otimes\xi)\circ\phi^{\cdot}\right] \end{array}$$

is an isomorphism between derived Witt groups which is compatible with restriction to open subsets and to localisation long exact sequences.

We identify $\mathcal{O}_{\mathbb{P}^1}(1) \cong \mathcal{O}_{\mathbb{P}^1}(0)$. But \mathbb{P}^1 is the union of two open subsets $\mathbb{A}^1_0 = \mathbf{Spec}(K[x])$ and $\mathbb{A}^1_\infty = \mathbf{Spec}(K[x^{-1}])$. We have $\mathcal{O}_X(0)(k[x]) = x^{-1}k[x]$ and $\mathcal{O}_X(0)(k[x^{-1}]) = xk[x^{-1}]$.

Proof of theorem 2.2. For $(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1))$, we identify $\mathcal{O}_{\mathbb{P}^1}(1) \cong t^{-1} \cdot \mathcal{O}_{\mathbb{P}^1} = L(0)$, all germs of rational functions with at worst a simple pole at 0 and regular elsewhere. Then the localisation sequence becomes:

$$0 \longrightarrow \mathcal{W}^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)) \longrightarrow \mathcal{W}^0(\mathbb{G}_m) \overset{(\beta_0, \beta_\infty)}{\longrightarrow} \mathcal{W}^0_0(\mathbb{P}^1, t^{-1} \cdot \mathcal{O}_{\mathbb{P}^1}) \oplus \mathcal{W}^0_\infty(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}) \overset{\partial}{\longrightarrow} \mathcal{W}^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)) \longrightarrow 0.$$

Here we have (β_0, β_∞) : $\mathcal{W}^0(\mathbb{G}_m) \to \mathcal{W}(k) \oplus \mathcal{W}(k)$, but $\mathcal{W}^0(\mathbb{G}_m) \cong \mathcal{W}(k)\langle 1 \rangle \oplus \mathcal{W}(k)\langle t \rangle$. Thus $\beta_0 : a\langle 1 \rangle + b\langle t \rangle \longmapsto a \beta_\infty : a\langle 1 \rangle + b\langle t \rangle \longmapsto b$. Then (β_0, β_∞) is an isomorphism and its kernel is $\ker(\beta_0, \beta_\infty) = \mathcal{W}^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)) = 0$, and its cokernel is $\operatorname{\mathbf{coker}}(\beta_0, \beta_\infty) = \mathcal{W}^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)) = 0$. \square

3 Conclusion

Arason proved that: if k is a field of characteristic not 2 and $n \ge 1$ then $W(\mathbb{P}^n_k) = W(k)$. In 90's Balmer introduced $W^n(X)$, where X is a derived and more general triangulated categories, which have a lot of applications, see for example [6]. Later, Walter proved a projective bundle theorem, which allowed the calculation of $W^i(\mathbb{P}^r_X, \mathcal{O}(m))$ where X is a scheme containing $\frac{1}{2}$, $r \ge 1$, $m \in \mathbb{Z}/2$,

 \mathbb{P}_X^r is the r-projective space over X and $\mathcal{O}(m) \in Pic(\mathbb{P}_X^r)/2$ [Picard group].

In this paper, we calculate $W^n(\mathbb{P}^1)$ using the famous Balmer's localization sequence, a simple method which permits us to eliminate some hardness. The mentioned method opens the road to find, with real few geometric complexities, $W^n(\mathbb{P}^2)$ and $W^n(\mathbb{P}^3)$. That is our actual objective.

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Paul Balmer. Derived Witt groups of a scheme. J. Pure Appl. Algebra. 1999;141(2):101-129.
- [2] Paul Balmer. Triangular Witt groups, part i: The 12-term localisation exact sequence K-theory. 2000;19:311–363.
- [3] Stefan Gille. On Witt groups with support. Math. Ann. 2002;322:103-137.
- [4] Paul Balmer. Triangular Witt groups, part ii: From usual to derived. Math.Z., 2001;236:351-382.
- [5] Charles Walter. Grothendieck-Witt groups of projective bundles; 2003.
- [6] Paul Balmer. Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture. K-Theory. 2001;23(1):15-30.

©2015 Mouhamad et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/10080