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Abstract

In this paper, we shall continue a study of the CS-recovery of signals studied in [1]. Under

the assumption that a m × n matrix A obeys the RIP of order s we decompose the space of

unknown vectors into sets M0, M1, · · · ,M7 defined by a bias function px on a good location

T0 = {1, 2, · · · , s} and research a good condition of CS-recovery.

Keywords: Compressed sensing; restricted isometry property; sparse signal recovery.

1 Introduction

This paper introduces the theory of compressed sensing(CS). For a signal x ∈ Rn, let ∥x∥0 be the
l0-norm of x, which is defined to be the number of nonzero coordinates, ∥x∥1 be the l1-norm of x
and ∥x∥2 be the l2-norm of x. Let x be a sparse or nearly sparse vector. Compressed sensing aims to
recover a high-dimensional signal (for example: images signal, voice signal, code signal...etc.) from
only a few samples or linear measurements. The efficient recovery of sparse signals has been a very
active field in applied mathematics, statistics, machine learning and signal processing. Formally,
one considers the following model:

y = Ax+ z, (1.1)

*Corresponding author: E-mail: h-inoue@math.kyushu-u.ac.jp

www.sciencedomain.org


Inoue; BJMCS, 10(3), 1-9, 2015; Article no.BJMCS.18237

where A is a m× n matrix(m < n) and z is an unknown noise term.

Our goal is to reconstruct an unknown signal x based on A and y given. Then we consider
reconstructing x as the solution x⋆ to the optimization problem

min
x

∥x∥1, subject to ∥y −Ax∥2 ≤ ε, (1.2)

where ε is an upper bound on the the size of the noisy contribution.
In fact, a crucial issue is to research good conditions under which the inequality

∥x− x⋆∥2 ≤ C0∥x− xT ∥1 + C1ε, (1.3)

for suitable constants C0 and C1, where T is any location of {1, 2, · · · , n} with number |T | = s
of elements of T and xT is the restriction of x to indices in T . One of the most generally known
condition for CS theory is the restricted isometry property(RIP) introduced by [2]. When we discuss
our proposed results, it is an important notion. The RIP needs that subsets of columns of A for
all locations in {1, 2, · · · , n} behave nearly orthonormal system. In detail, a matrix A satisfies the
RIP of order s if there exists a constant δ with 0 < δ < 1 such that

(1− δ)∥a∥22 ≤ ∥Aa∥22 ≤ (1 + δ)∥a∥22 (1.4)

for all s-sparse vectors a. A vector is said to be an s-sparse vector if it has at most s nonzero entries.
The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and
is denoted by δs.

Many researchers has been shown that the l1 optimization can recover an unknown signal in noiseless
cases and in noisy cases under various sufficient conditions on δs or δ2s when A obeys the RIP. For
example, E.J. Candès and T. Tao have proved that if δ2s <

√
2− 1, then an unknown signal can be

recovered [3]. Later, S. Foucart and M. Lai have improved the bound to δ2s < 0.4531 [4]. Others,
δ2s < 0.4652 is used in [5], δ2s < 0.4721 for cases such that s is a multiple of 4 or s is very large
in [6], δ2s < 0.4734 for the case such that s is very large in [5] and δs < 0.307 in [7]. In a recent
paper, Q. Mo and S. Li have improved the sufficient condition to δ2s < 0.4931 for general case
and δ2s < 0.6569 for the special case such that n ≤ 4s [8]. J. Ji and J. Peng have improved the
sufficient condition to δs < 0.308 [9]. T. Cai and A. Zhang have improved the sufficient condition
to δs < 0.333 for general case [10]. T. Cai and A. Zhang have improved the sufficient condition to
δk in case of k ≥ 4

3
s, in particular, δ2s < 0.707 [11]. By using a rescaling method, H. Inoue has

obtained the sufficient conditions of δ̃s < 0.5 and δ̃2s < 0.828 in [12].

Recently, In [1] we have researched good conditions for the recovery of sparse signals by investigating

the difference between the l∞-norm of h ≡ x⋆−x and the mean |h1|+|h2|+···+|hs|
s

of {|h1|, · · · , |hs|}.
In more details, we considered a function p on T0 ≡ {1, 2, · · · , s} defined by

p(r) =
|h1|+ |h2|+ · · ·+ |hr|
|h1|+ |h2|+ · · ·+ |hs|

, r = 1, 2, · · · , s,

where the index of h is sorted by |h1| ≥ |h2| ≥ · · · ≥ |hn| and have shown that for c > 1 and c
s
< p(1)

if A obeys the RIP of order 2s
c
and δ 2s

c
< 1

1+

√
2−p(rc)
p(rc)

, then we have stable recovery of approximately

sparse signals, where rc is a natural number such that c
s
(rc − 1) < p(rc) <

c
s
rc, 2 ≤ rc < s

c
. But,

the function p on T0 and rc depend on x. Furthermore rc is not easily searched. In this paper, in
order to compensate for these defects, we decompose Kε(y, A) ≡ {x ∈ Rn; ∥y − Ax∥2 ≤ ε} into
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the following subsets {M0,M1, · · · ,M7}:

M0 =

{
x ∈ Kε(y, A); px

(
1

5
s

)
≤ 2

5

}
,

M1 =

{
x ∈ Kε(y, A); px

(
1

5
s

)
>

2

5
and px

(
1

4
s

)
≤ 1

2

}
,

...

Mk =

{
x ∈ Kε(y, A); px

(
k + 3

20
s

)
>

k + 3

10
and px

(
k + 4

20
s

)
≤ k + 4

10

}
, 2 ≤ k ≤ 6,

M7 =

{
x ∈ Kε(y, A); px

(
1

2
s

)
= 1

}
by deviding T0 = {1, 2, · · · , s} into T0 ∩ [1, s

5
), T0 ∩ ( k+3

20
, k+4

20
](k = 1, · · · , 6) and T0 ∩ ( 1

2
s, s], and

we show for any x ∈ Mk(k = 1, 2, · · · , 7) that if A obeys the RIP of order s and δs < 1

1+
√

20
k+3

−1
,

then the inequality (1.3) holds. We also state in Section 2 the existence of CS-solution.

2 CS-Solution

In this section, we discuss the existence of CS-solutions mathematically.

Let a m × n matrix A (m < n) and a data y ∈ Rm be given. We define closed convex subsets of
Rn by

K0(y, A) = {x ∈ Rn; y = Ax},
Kε(y, A) = {x ∈ Rn; ∥y −Ax∥2 ≤ ε}, ε > 0.

When K0(y, A) ̸= 0, that is, y ∈ ARn, then K0(y, A) and Kε(y, A) are

K0(y, A) = x0 + kerA

for some vector x0 ∈ K0(y, A), where kerA ≡ {x ∈ Rn; Ax = 0}. For example, if the rank r(A) of
A equals m, then AA∗ is invertible and A

(
A∗ (AA∗)−1 y

)
= y. Hence, A∗ (AA∗)−1 y ∈ K0(y, A).

Let y ̸∈ ARn. Since ARn is a closed subspace of Rn, there exists a unique vector y0 ∈ ARn such
that ∥y − y0∥2 = min {∥y −Ax∥2; x ∈ Rn}. Then y0 is a vector in ARn such that y − y0 is a
vector in the orthogonal complement (ARn)⊥ of ARn. It is clear that Kε(y, A) ̸= ∅ if and only if
∥y − y0∥2 ≤ ε. In this paper, we assume that K0(y, A) ̸= ∅ in noiseless cases and Kε(y, A) ̸= ∅ in
noise cases. We show the existence of CS-solutions.

For any t > 0 we put

Dt = {x ∈ Rn; ∥x∥1 ≤ t}.

Then ADt is a closed convex subset of ARn such that A (∂Dt) = ∂ADt, where ∂K is a boundary
of a set K. Assume that y0 ̸∈ ADt. Then there exists a vector xt in ∂Dt such that ∥y − Axt∥2 =
min {∥y0 −Ax∥2; x ∈ Dt}. Since

∥y −Axt∥22 = ∥y − y0∥22 + ∥y0 −Axt∥22,

we have

∥y −Axt∥2 = min {∥y −Ax∥2; x ∈ Dt} ,

3
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which implies that there exists a vector x⋆
t in (xt + kerA) ∩Dt such that

∥x⋆
t ∥1 ≤ ∥xt + x∥1, ∀x ∈ kerA.

Thus we have the following:

Proposition 2.1. Suppose that Kε(y, A) ̸= ∅. Then there exists a positive number t0 such
that

∥y0 −Axt0∥
2
2 = ε2 − ∥y − y0∥22

and the vector x⋆
t0 determined by xt0 equals the CS-solution x⋆. In particular, in noiseless cases,

x⋆ = x⋆
t0 , where t0 is a positive number satisfying y0 = Axt0 .

3 Recovery of CS

Take an arbitrary x ∈ Kε(y, A). We denote by xT a vector obtained by changing coefficients of x
as follows;

|h1| ≥ |h2| ≥ · · · ≥ |hn|,

where h = (h1, h2, · · ·hn) ≡ x⋆ − xT . Let T0 = {1, 2, · · · , s} and we define a function px(r) on T0

depending on x by

px(r) =
|h1|+ |h2|+ · · ·+ |hr|

∥hT0∥1
, r ∈ T0.

By deviding T0 = {1, 2, · · · , s} into T0 ∩ [1, s
5
], T0 ∩ ( k+3

20
s, k+4

20
s] (k = 1, · · · , 6) and T0 ∩ ( 1

2
s, s],

we decomposed Kε(y, A) into the following subsets {M0,M1, · · · ,M7};

M0 =

{
x ∈ Kε(y, A); px

(
1

5
s

)
≤ 2

5

}
,

M1 =

{
x ∈ Kε(y, A); px

(
1

5
s

)
>

2

5
and px

(
1

4
s

)
≤ 1

2

}
,

...

Mk =

{
x ∈ Kε(y, A); px

(
k + 3

20
s

)
>

k + 3

10
and px

(
k + 4

20
s

)
≤ k + 4

10

}
, 2 ≤ k ≤ 6,

M7 =

{
x ∈ Kε(y, A); px

(
1

2
s

)
= 1

}
.

Then, Kε(y, A) =
∪7

k=0 Mk and Mi ∩Mj = ∅(i ̸= j). (Figure 1)

Using the function px(r) on T0, we obtain a similar result to that of ([1] Theorem 2.1):

Theorem 3.1. Take an arbitrary x ∈ Mk (k = 1, 2, · · · 7). Assume that A obeys the RIP of
order s and δs < 1

1+
√

20
k+3

−1
. Then,

∥x⋆ − x∥2 ≤ C
(k)
0 ∥x− xs∥1 + C

(k)
1 ε,

4
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Figure 1: {M0,M1, · · · ,M7}

where xs is a vector consisting of the s-large entries of x in magnitude and

C
(k)
0 =

4
√

20
k+3

− 1 · δs

1−
(
1 +

√
20

k+3
− 1
)
δs

,

C
(k)
1 =

2
√
1 + δs

√
s√

k+3
20

(
1−

(
1 +

√
20

k+3
− 1
)
δs
) .

Proof. Take an arbitrary x ∈ Mk. Let rk be a natural number such that

k + 3

20
s < rk ≤ k + 4

20
s and

2

s
(rk − 1) < px(rk) ≤

2

s
rk. (3.1)

Then,

k + 3

10
< px(rk) ≤

k + 4

10
. (3.2)

We put

α =
∥hT0∥1 + 2∥x− xs∥1

s
.
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Figure 2: x ∈ Mk

Let T1 = {1, 2, · · · , r2} and T2 = {r2 + 1, · · · , n} be a decomposition of {1, 2, · · · , n}. By (3.1) and
(3.2) we have

∥hT2∥∞ ≤ px(r2)

r2
∥hT0∥1 ≤ 2α. (3.3)

By the definition of CS optimization (1.2), we have

∥hTc
0
∥1 ≤ ∥hT0∥1 + 2∥x− xs∥1. (3.4)

Hence it follows from (3.3) and (3.4) that

∥hT2∥1 = ∥hTc
0
∥1 + ∥hT0∩T2∥1

≤ αs+ (1− px(rk)) ∥hT0∥1
≤ (2− px(rk))αs

≤ 2α

(
1− k + 3

20

)
s,

which implies by [1] Lemma 1.1 and the Cai idea [4] that there exist {λi}1≤i≤N and {ui}1≤i≤N

such that

hT2 =

N∑
i=1

λiui,

6
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where

0 ≤ λi ≤ 1,

N∑
i=1

λi = 1,

supp ui ⊂ T2, |supp ui| ≤
(
1− k + 3

20

)
s

∥ui∥∞ ≤ 2α. (3.5)

Hence we have

∥ui∥2 ≤ ∥ui∥∞
√

|supp ui|

≤ 2α
√
s

√
1− k + 3

20
,

|T1|+ |supp ui| ≤ rk +

(
1− k + 3

20

)
s ≤ s

and

αs = ∥hT0∥1 + 2∥x− xs∥1

=
1

px(rk)
∥hT1∥1 + 2∥x− xs∥1

≤
√
rk

px(rk)
∥hT1∥2 + 2∥x− xs∥1

≤
√
s

2
√

k+3
20

∥hT1∥2 + 2∥x− xs∥1,

which implies since A obeys the RIP of order s that

(1− δs)∥hT1∥
2
2 ≤ ∥AhT1∥

2
2

≤ |⟨AhT1 , Ah⟩|+ |⟨AhT1 , AhT2⟩|

≤
√
1 + δs∥hT1∥2 · 2ε+

N∑
i=1

λi |⟨AhT1 , Aui⟩|

≤ 2
√
1 + δsε∥hT1∥2 +

N∑
i=1

λiδs∥hT1∥2∥ui∥2

≤ 2
√
1 + δsε∥hT1∥2

+δs∥hT1∥2

 1

2
√

k+3
20

∥hT1∥2 +
2√
s
∥x− xs∥1

 2

√
1− k + 3

20

= 2
√
1 + δsε∥hT1∥2 + δs

√
20

k + 3
− 1∥hT1∥

2
2

+
4δs√
s

√
1− k + 3

20
∥x− xs∥1∥hT1∥2.

Since (
1 +

√
20

k + 3
− 1

)
δs < 1,
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we have

∥hT1∥2 ≤
2
√
1 + δsε+

4δs√
s

√
1− k+3

20
∥x− xs∥1

1−
(
1 +

√
20

k+3
− 1
)
δs

,

which implies that

∥x− x⋆∥2 ≤ ∥x− x⋆∥1
= ∥hT0∥1 + ∥hTc

0
∥1

≤ 2∥hT0∥1 + 2∥x− xs∥1

≤
2
√
rk

px(rk)
∥hT1∥2 + 2∥x− xs∥1

≤
√
s√

k+3
20

2
√
1 + δsε+

4√
s

√
1− k+3

20
δs∥x− xs∥1

1−
(
1 +

√
20

k+3
− 1
)
δs


+2∥x− xs∥1

=
2
√
1 + δs

√
s√

k+3
20

(
1−

(
1 +

√
20

k+3
− 1
)
δs
)ε

+
4
√

20
k+3

− 1 · δs

1−
(
1 +

√
20

k+3
− 1
)
δs

∥x− xs∥1.

This completes the proof.

We state concretely the following case:

(i) Take an arbitrary x ∈ M1. If δs < 1
3
, then

∥x⋆ − x∥2 ≤ 8δs
1− 3δs

∥x− xs∥1 +
2
√
5
√
1 + δs

√
s

1− 3δs
ε.

(ii) Take an arbitrary x ∈ M2. If δs <
√

3−1
2

≈ 0.366, then

∥x⋆ − x∥2 ≤ 4
√
3δs

1− (1 +
√
3)δs

∥x− xs∥1 +
4
√
1 + δs

√
s

1− (1 +
√
3)δs

ε.

(iii) Take an arbitrary x ∈ M7. If δs < 1
2
, then

∥x⋆ − x∥2 ≤ 4δs
1− 2δs

∥x− xs∥1 +
2
√
2
√
1 + δs

√
s

1− 2δs
ε.

Though we have decomposed Kε(y, A) into Mk(k = 0, 1, · · · , 7) in this paper, we may consider the
other decompositions of Kε(y, A).

4 Conclusion

In a previous paper [1], we have discussed sufficient conditions of isometry constant δ by investigating
a bias function px defined by each unknown vector x. In this paper, we decompose the space of
unknown vectors into sets M0, M1, · · · ,M7 defined by the bias function px. More precisely, when

8
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x is contained in Mk (1 ≤ k ≤ n), the sufficient condition of δs is improved, and so this method is
useful. When x ∈ M0, the sufficient condition of δs is not improved by this method. We think that
this method is more usable than a previous one in [1].
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