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ABSTRACT

In this work we explore an enhanced )/( GG -expansion method to study the nonlinear
evolution equations (NLEEs). Here we derive solitons, singular solitons and periodic wave
solutions for the nonlinear (3+1)-dimensional Potential Yu–Toda–Sasa–Fukuyama (YTSF)
equation. The obtained results show that the applied equation reveal richness of explicit
solitons and periodic solutions. It is shown that the proposed method is effective and can be
used for many other NLEEs in mathematical physics.

Keywords: Enhanced )/( GG -expansion method; YTSF equation; solitons; NLEEs.

Mathematics Subject Classification: 35K99, 35P05, 35P99.

1. INTRODUCTION

NLEEs are encountered in various fields of mathematics, physics, chemistry, biology,
engineering and numerous applications. Exact solutions of NLEEs play an important role in
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the proper understanding of qualitative features of many phenomena and processes in
various areas of natural science. Exact solutions of nonlinear equations graphically
demonstrate and allow unscrambling the mechanisms of many complex nonlinear
phenomena such as spatial localization of transfer processes, multiplicity or absence steady
states under various conditions, existence of peaking regimes and many others. Even those
special exact solutions that do not have a clear physical meaning can be used as test
problems to verify the consistency and estimate errors of various numerical, asymptotic, and
approximate analytical methods. Exact solutions can serve as a basis for perfecting and
testing computer algebra software packages for solving NLEEs. It is significant that many
equations of physics, chemistry, and biology contain empirical parameters or empirical
functions. Exact solutions allow researchers to design and run experiments, by creating
appropriate natural conditions, to determine these parameters or functions. Therefore,
investigation exact traveling wave solutions is becoming successively attractive in nonlinear
sciences day by day. However, not all equations posed of these models are solvable. As a
result, many new techniques have been successfully developed by diverse groups of
mathematicians and physicists, such as, the Hirota’s bilinear transformation method [1,2], the
modified simple equation method [3-6], the tanh-function method [7,8], the Exp-function
method [9-13], the Jacobi elliptic function method [14], the )/( GG -expansion method [15-
23], the homotopy perturbation method [24,25], the transformed rational function method [26],
the Ricatti ansätze [27], the multiple exp-function method [28,29], the generalize Hirota
bilinear method [30], the Frobenius Integrable Decompositions [31] and so on.

Among those approaches, an enhanced )/( GG -expansion method is a tool to reveal the
solitons and periodic wave solutions of NLEEs in mathematical physics and engineering.
The main ideas of the enhanced )/( GG -expansion method are that the traveling wave

solutions of NLEEs can be expressed as rational functions of )/( GG , where  GG 
satisfies the second order linear ordinary differential equation 0 GG  . From which
we conclude that the enhanced )/( GG -expansion method is a particular case of the
transformed rational function method [26], is almost similar to that of ricatti ansätze [27], and
also like the Frobenius' idea [31].

The objective of this article is to present an enhanced )/( GG -expansion method to
construct the exact solitary wave solutions for NLEEs in mathematical physics via the YTSF
equation.

The article is arranged as follows: In section 2, the enhanced )/( GG -expansion method is
discussed. In section 3, we apply this method to the nonlinear evolution equations pointed
out above; in section 4, physical explanation; in section 5 comparisons and in section 6
conclusions are given.

2. MATERIAL AND METHOD

In this section, we describe the proposed enhanced )/( GG -expansion method for finding
traveling wave solutions of NLEEs. Suppose that a nonlinear partial differential equation, say
in two independent variables x and t is given by
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0),,,,,,(  xtxxttxt uuuuuu , (2.1)

where ),()( txuu  is an unknown function,  is a polynomial of ),( txu and its partial
derivatives in which the highest order derivatives and nonlinear terms are involved. In the
following, we give the main steps of this proposed method:

Step 1. Combining the independent variables x and t into one variable tx   , we
suppose that

),()( txuu  , tx   . (2.2)

The traveling wave transformation Eq. (2.2) permits us to reduce Eq. (2.1) to the following
ODE:

0),,,(  uuu , (2.3)

where is a polynomial in )(u and its derivatives, while



d
duu  )( , 2

2
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d
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so on.

Step 2.We suppose that Eq.(2.3) has the formal solution
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where )(GG  satisfy the equation 0 GG  , (2.5)

in which )N;(,  nninba ii and  are constants to be determined later, and

0,1   .

Step 3. The positive integer n can be determined by considering the homogeneous balance
between the highest order derivatives and the nonlinear terms appearing in Eq.(2.1) or
Eq.(2.3). Moreover precisely, we define the degree of )(u as nuD ))((  which gives
rise to the degree of other expression as follows:
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Therefore we can find the value of n in Eq.(2.4), using Eq.(2.6).
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Step 4. We substitute Eq. (2.4) into Eq.(2.3) using Eq. (2.5) and then collect all terms of

same powers of jGG )/(  and 






  2)/(11)/( GGGG j


 together, then set each

coefficient of them to zero to yield a over-determined system of algebraic equations, solve
this system for ii ba , , and  .

Step 5. From the general solution of Eq.(2.5), we get
When 0 ,

)tanh(  


A
G
G

(2.7)

And )coth(  


A
G
G

(2.8)

Again, when 0 ,

)tan(  


A
G
G

(2.9)

And )cot(  


A
G
G

(2.10)

where A is an arbitrary constant. Finally, substituting )N;(,  nninba ii ,  ,  and
Eqs. (2.7)-(2.10) into Eq. (2.4) we obtain traveling wave solutions of Eq. (2.1).

3. APPLICATION

In this section, we will exert enhanced )/( GG -expansion method to solve the YTSF
equation in the form,

03244  yyzxxzxxzxxxtx uuuuuuu , (3.1)

where ),,,( tzyxu is the amplitude of the relative wave mode.

The traveling wave transformation equation )(),,,( utzyxu  , tzyx  
transform Eq.(3.1) to the following ordinary differential equation:

0364  uuuuu iv . (3.2)

Now  integrating  Eq. (3.2) with respect to  once, we have

0)43()(3 2  Ruuu  . (3.3)
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where R is a constant of integration. Balancing the highest-order derivative term u  and
the nonlinear term 2)(u from Eq.(3.3), yields 3)1(2  nn which gives 1n .

Hence for 1n Eq.(2.4) reduces to
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where )(GG  satisfies Eq.(2.5). Substitute Eq.(3.4) along with Eq.(2.5) into Eq.(3.3). As

a result of this substitution, we get a polynomial of jGG )/(  and








  2)/(11)/( GGGG j


 . From these polynomials, we equate the coefficients of

jGG )/(  and 






  2)/(11)/( GGGG j


 , and setting them to zero, we get an over-

determined system that consists of twenty-five algebraic equations. Solving this system for

ii ba , , and  ,we obtain the following values with the aid of symbolic computer software
Maple 13.

Case 1: 0,0,0),1(2,,0,,
4
3,0 101

2
1001   bbbaaaaR  .

Case 2: 





  
 1011001 ,0,0,1,,0,0),3(

4
1,0 bbbaaaaR .

Case 3 : 0,0,0,0,,2,,
4
3,0 1011001   bbbaaaaR  .

Case 4: 0,0,0,2,,2,0,4
4
3,0 1011001   bbbaaaaR  .

Case 5: ,0,0,,,),3(
4
1,0 11001   baaaaR 

0,1 10 





 bb


 .

Hyperbolic function solutions: Substituting Eq. (2.7) and Eq. (2.8) into Eq. (3.4) along with
Case 1-Case 5, we get the following five families of hyperbolic function solutions
respectively.
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




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4
3

.

Family 2:  )(sec)tanh()( 03   AhIAau ,

 )(csc)coth()( 04   AhAau ,

where  tzyx   3
4
1

.

Family 3:  )coth(2)( 05   Aau ,

 )tanh(2)( 06   Aau ,

where tzyx 





  
4
3

.

Family 4:  )coth()tanh(2)( 07   AAau ,

where tzyx 





   4
4
3

.

Family 5:    )(csc)coth()( 08 AhAau  ,

   )(sec)tanh()( 09 AhIAau  ,

where  tzyx   3
4
1

.

Trigonometric function solutions: Substituting Eq. (2.9) and Eq. (2.10) into Eq. (3.4) along
with Case 1-Case 5, we get the following five trigonometric function solutions respectively.
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

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)tan(1
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
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)coth(1
)coth(

)1(2)( 2
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


A
A

au ,

where tzyx 





  
4
3

.

Family 7:  )sec()tan()( 012   AAau ,

 )csc()cot()( 013   AAau ,
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where  tzyx   3
4
1

.

Family 8:  )cot(2)( 014   Aau ,

 )tan(2)( 015   Aau ,

where tzyx 





  
4
3

.

Family 9:  )cot()tan(2)( 016   AAau ,

where tzyx 





   4
4
3

.

Family 10:    )csc()cot()( 017 AAau  ,

   )sec()tan()( 018 AAau  ,

where  tzyx   3
4
1

.

4. PHYSICAL EXPLANATION

4.1 Results and Discussion

In this sub-section, we will discuss about the desired solutions of YTSF equation. It is
interesting to point out that the delicate balance between the nonlinearity effect and the
linear effect gives rise to solitons, that after a fully interaction with others, the solitons come
back  retaining their identities with the same speed and shape. If two solitons collide, then
these just pass through each other and emerge unchanged.

When 0 , )(1 u - )(9 u are exact traveling wave solutions of YTSF equation. For
special values of the parameters solitary wave solutions are originated from these exact
solutions.

 For the particular values of 0,2,1,2,1 0  zyAa ;

0,2,1,1 0  zyAa and 0,0,1,1,1 0  zyAa within

the interval 10,10  tx , )(2 u , )(3 u and )(8 u are kink waves represented
in Fig. 1, Fig. 2 and Fig. 5 respectively.

 For the particular values of 0,1,1,2,1 0  zyAa within the

interval 10,10  tx , )(5 u is soliton, represented in Fig. 3.

 For the particular values of 0,0,1,1 0  zyAa within the interval

10,10  tx , )(7 u is a singular soliton represented in Fig. 4.
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Consequently, for 0 , Family 6-Family 10 are trigonometric function solutions, also said
to be plane periodic traveling wave solutions.

 For the values of 0,1,1,1,1 0  zyAa ;

0,1,1,1 0  zyAa ; 0,0,0,1,2 0  zyAa ; ,1
0,0,10  zyAa and 0,0,1,1,1 0  zyAa within the

interval 10,10  tx , )(11 u , )(12 u , )(14 u , )(16 u and )(17 u provides
periodic wave solutions, which are represented in Fig. 6,  Fig. 7,  Fig. 8,  Fig. 9 and
Fig. 10 respectively.

The wave speed  plays an important role in the physical structure of the solutions
obtained above. For the positive values of wave speed  the  disturbance
represented by )()( txuu   are moving in the positive x -direction.
Consequently, the negative values of wave speed  the  disturbance represented
by )()( txuu   are moving in the negative x –direction.

4.2 Graphical Representation

Some of our obtained traveling wave solutions are represented in the following Figs.:

Fig. 1. Shape of )(2 u for

0,2,1,2,1 0  zyAa .
Fig. 2. Profile of )(3 u for

0,2,1,1 0  zyAa .
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Fig. 3. Profile of )(5 u for

0,1,1,2,1 0  zyAa .

Fig. 4. Profile of )(7 u for

0,0,1,1 0  zyAa .

Fig. 5. Profile of )(8 u for

0,0,1,1,1 0  zyAa .

Fig. 6. Shape of )(11 u for

0,1,1,1,1 0  zyAa .
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Fig. 7. Profile of )(12 u for

0,1,1,1 0  zyAa .
Fig. 8. Profile of )(14 u for

0,0,0,1,2 0  zyAa .

Fig. 9. Profile of )(16 u for

0,0,1,1 0  zyAa .

Fig. 10. Profile of )(17 u for

.0,0,1,1,1 0  zyAa

5. COMPARISONS

A. With modified simple equation method: Zayed and Arnous [6] investigated exact
solutions of the Potential YTSF equation by using the modified simple equation method and
obtained only one solution (see APPENDIX A). On the contrary by using the enhanced

)/( GG -expansion method in this article we obtained eighteen solutions. Furthermore, If we

set
m
cl

4
43 2 

 ,  cl
m
432

4
2 

 ,
 

0

2

4
43 

m
clA 

 and tczmylx 

in our solution )(6 u (in Family 3) , we conclude that our result is equivalent to the result
obtained by Zayed and Arnous [6].
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B. With )/( GG -expansion method: Zayed [23] examined exact solutions of the Potential
YTSF equation by using the )/( GG -expansion method and obtained three solutions (see
APPENDIX B). On the contrary by using the enhanced )/( GG -expansion method in this
article we obtained eighteen solutions. Furthermore, If we set 0 then our solutions
 1u ,  2u (Family 1) and     65 , uu (Family 3) coincide with the solution Eq. (B.3)

obtained by Zayed [22] for 0 , AA sinh , AB cosh and for 0 , AA cosh ,
AB sinh . Correspondingly, for  similar conditions our solutions of Family 6 and Family 8

coincide with the solution Eq. (B.4) obtained by Zayed [23].

C. With Exp-function Method: Borhanifar and Kabir [13] investigated exact solutions of the
Potential YTSF equation by using the Exp-function method and obtained the solutions (22)
and (23) (see APPENDIX C).If we set  slkaka ,01 into Eq. (23) obtained

by Borhanifar and Kabir [13] and 0A in our solution  3u , we observe that our solution

 3u coincides with the solution Eq.(23) obtained by Borhanifar and Kabir [13]. Similarly, If

we set  slkakia ,01 into Eq. (22) obtained by Borhanifar and Kabir [13] and

0 A in our solution  18u , we observe that our solution  18u coincides with the
solution Eq.(22) obtained by Borhanifar and Kabir [13].

D. With multiple exp-function method: Ma et al. [28] investigated exact solutions of the
Potential YTSF equation by using the multiple Exp-function method and obtained one-wave
solutions(see APPENDIX D), two wave solutions and three wave solutions. If we set

 2,2,2 1111010 mlkkabb into Eq. (3.5) obtained by Ma et al. [28]  and

0 A in our solution  6u , we observe that our solution  6u coincides with the
solution Eq.(3.5) obtained by Ma et al. [28].

Similarly, If we set  2,2,2 1111010 mlkkabb into Eq. (3.5) obtained by

Ma et al. [28] and 0 A in our solution  5u , we observe that our solution  5u
coincides with the solution Eq.(3.5) obtained by Ma et al. [28].

6. CONCLUSIONS

In this paper, an enhanced )/( GG -expansion method has been successfully applied to
find the solitary wave solutions for the Potential YTSF equation. An abundant sets of
solutions, of a variety of distinct physical structures such as solitons, singular solitons and
periodic solutions were formally derived. The study highlights the power of these methods for
the determination of exact solutions to several nonlinear evolution equations.
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APPENDIX A

Zayed and Arnous [6] examined the exact solutions of the Potential YTSF equation by
making use the modified simple equation method. They assumed the solution is of the form,

kN
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APPENDIX B

Zayed [23] examined the exact solutions of the Potential YTSF equation by using the
)/( GG -expansion method. He assumed the solution is of the form,

 
in

i
i G
Gu 








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0
 , (B.1)

where tVzyx  and  GG  satisfies the following second order linear
ordinary differential equation:

0 GGG  , (B.2)

where  ,,Vi and  are constants to be determined later provided 0n .

By using the )/( GG -expansion method Zayed [23] obtained the following three types of
traveling wave solutions:

Case 1. If 042   , then we have
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Case 2. If 042   , then we have
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Case 3. If 042   , then we have
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In particular, If 0,0,0,0  BA , then we deduce from (B.3) that
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APPENDIX C

Borhanifar and Kabir [13] examined the exact solutions of the Potential YTSF equation by
using Exp-function method and found the following solutions:








 









 


t
k
sklszlykxk

t
k
sklszlykxkikatzyxu

4
3tan

4
3sec),,,(

32

32

1

. (22)

and

 








 









 


t
k
sklszlykxk

t
k
sklszlykxhikkatzyxu

4
3tanh

4
3sec),,,(

32

32

1 

. (23)



Physical Review & Research International, 4(1): 181-197, 2014

197

APPENDIX D

Ma et al. [28] examined the exact solutions of the Potential YTSF equation by using multiple
exp-function method and found the following one wave solution solutions:
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