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ABSTRACT 
 
An expression was obtained for the energy density of the moving black-body radiation, i.e., 
the Stefan-Boltzmann law valid in the interval of object velocities from zero to the velocity of 
light in vacuo. The object temperature is shown to comprise two parts. The first one is a 
scalar invariant under the Lorentz transformations. The second one is a vector depending 
on the velocity of system motion. The scalar component of the temperature is a contraction 
of two tensor components of rank 3. Under normal conditions this mathematical object is a 
scalar. Taking account of a tensor character of the temperature a new formulation is given 
for the second thermodynamics law. The results obtained are of the great practical 
importance, in particular, while designing devices to measure the radiation temperature of 
moving cosmic objects, e.g., quasars. 
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1. INTRODUCTION 
  
The problem of the moving black-body radiation arose in 1907 – almost immediately after 
the creation of Special relativity (SR). It is in this year that Kurd von Mosengeil’s big article 
was published in der Annalen der Physik [1]. This work supervised by Max Planck underlies 
his relativistic thermodynamics [2]. The great scientist considered the theory of the black-
body radiation to be well-studied and the most suitable for formulating foundations of 
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thermodynamics correct over the entire whole interval of object velocities v, i.e., ranging from 
zero to the velocity of light in vacuo. 
 
In article [1] a system is studied comprising a radiator of electromagnetic waves, receiver 
and reflector (mirror). The radiators are receivers at the same time. The three elements are 
moving uniformly and rectilinearly in space with a relativistic velocity forming an acute angle 
with one another. As a result, the temperature transformation law was obtained under 
relativistic conditions: 
 

2
0 1 β−= TT ,                                        (1) 

 
where 0T  is the temperature if v<<c (here and below index “0” means that the given quantity 

concerns normal conditions); ./ cv=β  
 
For more than 50 years formula (1) had not been called in question until X.Ott’s article was 
published [3], in which the relativistic temperature was shown to transform following another 
law: 
 

2
0 1/ β−= TT .                                        (2)  

 
The expression (2) was obtained by X.Ott for a variety of physical processes including 
electromagnetic radiation. However unlike Mosengeil, X.Ott elected another approach for 
studying the process of electromagnetic wave radiation under relativistic conditions. He 
examined wave emission of individual atoms, whereas Mosengeil studied black-body 
radiation, as we have noticed above. In particular, in [1] Stefan-Boltzmann’s law was 
obtained:  
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based on the famous Planck formula derived first semiempirically:  
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where 0E is the radiation energy of the black-body; V0 is the volume; а is  Stephan-

Boltzmann’s constant (J/сc ·grad4); ( )T,ωρ  is the radiative energy density (J/сc); k is 

Boltzmann’s constant; ω  is the frequency of oscillator radiation.  
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As known, Stefan-Boltzmann’s constant equals: 
 

33
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15 c

k
a

h

π= .                                       (5) 

 
X.Ott’s article has induced a long-term polemic on the temperature transformation under 
relativistic conditions. Some researchers adhered to Planck-Einstein’s viewpoint; the others 
adhered to X.Ott’s. Some scientists considered the temperature to be a relativistic invariant 
[4]. There appear absolutely exotic opinions. For example, the authors of Ref. [5] arrived at a 
conclusion of the temperature under relativistic conditions being changed both according to 
Planck, and to Ott, and to Callen and Horwitz as the able situation requires. Moreover, P. 
Landsberg and G. Matsas have decided to put end to the long-time dispute [6,7]. In 
particular, they write (I cite): “…the proper temperature T alone is left as the only 
temperature of universal significance. This seems to complete a story started 90 years ago 
[8] (more than 100 years today – E.V.) of how usual temperature transforms, and to 
conclude a controversy [3] of 33 years’ standing”. (50 years’ today).      
 
What is authors’ opinion [6,7] based on? Their basis is as follows. 
 
First of all, the authors used an Unruh-De Witt detector, i.e., a two-level monopole, with a 

unit interval of the radiation energy 'ωh . Then the authors [6,7] suppose that black-body 
radiation with the proper temperature T is at rest in some inertial reference frame S. The 
excitation rate of the detector moving with a constant velocity v is found from quantum field 

theory. It is proportional to the particle number density ( ) ''' ,, ωω dvTn . As a result, the 
following formula was obtained: 
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which, as the authors of [6,7] noted, could not be reduced at v=0  to the well-known formula 
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In opinion of P. Landsberg and G. Matsas, formula (6) is absolutely correct, thus it is 
unnecessary to speak about a unified law of temperature transformation under relativistic 
conditions. However it is not completely the case. Both the results obtained by Mosengeil 
(and soon used by Planck), and the mathematical monster (6) are incorrect. It is necessary 
to admit that the main reason of such a dramatic situation with a relativistic temperature is a 
giant scientific authority of Max Planck first and Albert Einstein. Naturally, after publishing 
X.Ott’s article this work was carefully checked. Errors had not been found. But nobody dared 
check the works [1,2,8]. These articles were carried out just after the creation of Special 
Relativity (SR) when nobody had known on the Bose-Einstein distribution. As we have 
noticed above, Planck’s well-known formula, concerning black-body radiation, was obtained 
by a semi empirical way without involving this distribution. After the discovery of this 
distribution, in the twenties of last century, Planck’s formula was already obtained with its 
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help. However if the radiator of electromagnetic waves is moving with a relativistic velocity, 
the form of Bose-Einstein distribution changes – it becomes at least a function of two 
variables, which immediately follows from SR electrodynamics. 
 

 
 

Fig. 1.  X1 ,X2 ,X3 and X1
′′′′ ,X2

′′′′ ,X3
′′′′ are the laboratory reference frame and that moving  

uniformly and rectilinearly with the velocity v. 1 is the observer at rest; 2 is the 
radiating black body 

 
Indeed, examine the simplest case represented in the Figure. As seen, there are two 
reference frames. One of them (with primes) is moving uniformly and rectilinearly with the 
velocity v. A photon radiator is at rest in the moving reference frame. An observer is at rest 
in the laboratory reference frame. The observer is detecting photons. If the angle θ between 
v and the observer is zero, then the radiation frequency of the oscillator ω will be equal to 
 

                       
β
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If the angle were 2/π , so the formula for the frequency transformation would have another 
form, namely: 
 

2
0 1 βωω −= .                                                                                      (9) 

 
for the observer in the laboratory reference frame. 
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Thus without taking into consideration (8) and (9), we cannot evidently use the well-known 
Bose-Einstein distribution for obtaining the Stefan-Boltzmann law when the object under 
study is moving with relativistic velocities. 
 
Here we must add the following.  Attempts have been made to obtain the law connecting the 
radiation intensity with the temperature when relativistic effects are involved [10,11]. For 
example, in [11] an ultrarelativistic plasma is examined containing electrons and positrons. 
Their annihilation generates electromagnetic radiation. Its intensity is defined, in particular, 
with the help of a one-dimensional Bose-Einstein distribution. It is proportional to the plasma 
temperature to the fourth power, with the velocity of the object as a whole being equal to 
zero. It is plasma particles that are in motion.  
   
The aforesaid allows us to formulate a main goal of our work – obtaining a radiation law for 
the black-body moving with a relativistic velocity when the angle θ  between the moving 
velocity v and the observer is zero (see Figure). A solution of the problem will be performed 
by the methods given in [9].    
 
2.  ELECTRODYNAMICS AND THERMODYNAMICS OF THE OBJEC T UNDER 

STUDY 
 
2.1 Definition of the Number of Field Oscillators w ith a Given Frequency when 

the Angle θ is Zero (Fig. 1) 
 
Assume that we have an opaque object with an inner cylindrical cavity. Its surface is a black 
body heated up to some temperature T. There is a thermodynamical equilibrium in the cavity 
between its inner surface and electromagnetic radiation. There is a very small hole in the 
object cover, through which electromagnetic waves radiate out of the cavity (Fig. 1). The 
object is moving uniformly and rectilinear with the velocity v together with the reference 
frame. The radiation from the cavity is detected with a device being at rest in a laboratory 
reference frame. First of all, we will show that the Stefan-Boltzmann law (3) is incorrect over 
the whole range of object motion velocities, i.e., from zero up to v→c. Indeed, according to 
X. Ott [3], the radiation energy in the cavity is equal to: 
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then the electromagnetic energy density  
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where n is an oscillator serial number, ( )nω is the frequency of its oscillations. 
 
No matter how the temperature of the system transforms, i.e., according to Planck or to Ott 
or to Callen and Horwitz, we shall always arrive at the point of absurdity. Indeed, let the 
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temperature transform, e.g., according to Planck, i.e., to (1). In this case the right side of (3) 

will have the following form ( )224
0 1 β−aT . Then, as seen from (11), the right side of 

(3) appears to tend to zero as v→c, while the left side of this formula to increase infinitely. 
This indicates a close connection between the radiation law of a moving black body and the 
temperature transformation under relativistic conditions. 
 

Now find the number of oscillators g( 21,ωω ) 21 ωω dd  with frequencies in intervals 

111, ωωω d+  and  222 , ωωω d+  and a given polarization in the cavity using  the well-
known procedure [9]. The following fact should be pointed out at once.      The number of 
these oscillators is a function of two variables. The reason for that was explained above but 
here the following should be noted. If a spherical coordinate system is used for the case 
v<<c, then in our case it is convenient to use a cylindrical one taking account of formulae (8) 
and (9). 
 

The classical approach to finding the quantity ( ) ωω dg  is based on using the number space 

n followed by transition to a spherical space of the wave vector k=│k│=
L

n
π2

, where L is the 

normalized cube edge, and finally to the spherical space of frequenciesω . In the case 
studied we use a cylindrical space representable as two spaces – flat, circular and linear 
perpendicular to one another. Then to define the necessary quantity we shall use two 
coordinate systems: polar and one-dimensional Euclidean, i.e., a straight line. The amount of 

numbers within the spherical layer dn of the spherical space is dnn 24π  [9] (the spherical 

coordinate system). The amount of numbers 1n in the circular layer is equal to 112 dnnπ  (the 

polar coordinate system). As to 2n in a linear interval of one-dimension space, it will be 

equal to 2dn . As a result, we have for the whole system: 
 

g( 21,ωω ) 21121 2 dndnndd πωω = .                                                              (12) 
 
Turning from a number space to a wave vector space and finally to a frequency one, we 
shall have:  
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In case of electromagnetic waves, should be taken into account two polarizations, then we 
shall have: 
 

( )21,ωωg =21 ωω dd V
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Here it is important to emphasize that formula (14) is correct for the observer at rest in a real 
space monitoring, from the referring frame, the object moving then uniformly and rectilinearly 
with the relativistic velocity v. Since the radiation is thermal the average volume of the 
oscillators with a given polarization will almost be independent of time. In this case, it is 
unnecessary to define oscillator numbers in Minkowski space. 
 
2.2 Relativistic Temperature as either a Vector or a Tensor 
 
Now we should make a new attempt to solve some problems connected with the relativistic 
temperature. First of all, we should clarify if this thermodynamic parameter is a scalar or 
appears to be a vector or a tensor. In this connection we should first recall the formulae for 
velocity addition in SR. As known, the components of the total velocity in the directions X2 or 
X3 will tend to zero for the observer in the laboratory reference frame as v→c (Fig. 1).  In 
turn, the component parallel to axes the X1 will not do. This suggests immediately that the 
temperature becomes a mathematical object different from a scalar. What is the object? 
 
Until very recently the temperature in the above case is considered to be either a scalar or a 
quantity forming a vector with other quantities. For example, in [10] V. Hamity represents this 
thermodynamical parameter as  
 

T

v
ˆ

µ
µ =Θ ,  ,3,2,1,0=µ                                                                          (15) 

 

where µv  is a unit 4-vector in Minkowski space, moreover 
 

=µv [ αvv ,0 ],  α=1,2,3,                                                                            (16) 
 

i.e., ≡αv v is a velocity vector in Euclidean space; 
 

1=µ
µ vv .                                                                                                   (17) 

 
Further, developing the idea of temperature vector representation, the author of [10] finally 
comes to the following expression:  
    

    kTv /µµβ =  ,                                                                                                (18) 

 
with ( )0,0,0,ββµ =  , then 

 

kT/0
µµ δβ = ,  



















=

1000

0100

0010

0001

ν
µδ .                                                       (19) 

 



 
 
 
 

Physical Review & Research International, 4(1): 217-230, 2014 
 
 

224 
 

Other authors, e.g., [12], also tried to represent the relativistic temperature exclusively as a 
vector. However, in our opinion, this approach to the problem is incorrect, since the photon 
gas in the cavity is a continuous medium. Then an expanded tensor approach is necessary 
to describe energy processes in it. In this case the second thermodynamics law can be 
represented in Minkowski space as 
   

               ,4,3,2,1,;4,3,2,1,,; === βα
δ

δσ
αβ

αβ kji
gT

gQ
i

jk
ijk

                                           (20) 

 
where the heat Q and the temperature T are tensors of rank 3, but αβgg jk ,  are covariant 

fundamental tensors. 
 
Formula (20) needs a special explanation. 
 
As known, M.Planck assumed that σσ ≠ (v), i.e., the entropy of the system varies 
exclusively owing to thermodynamical processes in the object under study and is 
independent of its velocity relative to the observer in the laboratory reference frame [2]. As 
will be shown below, the law (20) agrees with the Planck statement. Further, the contraction 
of the heat and temperature tensors with the fundamental tensors transforms them to the 
vectors multiplied into scalar quantities. The latter are invariant parts of the above tensors 
that do not vary when passing from one reference frame to another. As to the vectors, their 
components are equal to unity when the moving system 4-velocity equals to zero, i.e., 
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where i is imaginary unit; ,/ cv=β        
 
Then the contraction in (20) of two vector quantities in indices i gives a scalar quantity, which 
is invariant under the Lorentz transformations. As to heat and the temperature, their invariant 
parts vary exclusively owing to purely thermodynamic reasons. In turn, the vector 
components vary exclusively, when passing from one reference frame to another. In both 

cases either the heat or the temperature are inversely proportional to the quantity 21 β− .  

 
Then the entropy will not change in the absence of heat input into the system. The latter is in 
a full accord with the results obtained in works [13,14, and 15] where the temperature was 
shown to transform under relativistic conditions in inverse proportion to the 

quantity 21 β− . Then we can represent the temperature in Minkowski space as   
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                        Τ=Τ== iii ngTT αβ
αβ n,                                          (23) 

 

where Τ  is the invariant part of the tensor magnitude of rank 3, i.e., αβiT . In the real space 
formulae (20) and (23) remain unchanged with the only difference that, first, we now use 
affine tensors, second, the dependences (21) and (22) take the form:  
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At v=0 the spatial components of iT  coincide in Euclidean space with the same 
components in Minkowski space. 
 
In space-time the components of squared sum of the vector quantity Τ n read  
  

                   222222222222
ττ Τ=Τ+Τ+Τ=Τ=Τ+Τ+Τ zyxzyx nnnn ,          (26) 

 
invariant in all inertial reference frames. 
 
On the other hand the invariant of this sort gives in Euclidean space 
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taking into consideration that  11''
1 =nn  (affine tensors), i.e., the spatial part of the invariant 

connected with the temperature 4-tensor is completely identical to the invariant connected 
with the temperature 3-tensor. It is very important since it allows one to solve our problem 
directly in Euclidean space. As to the ultrarelativistic plasma considered in [11], the aforesaid 
will be valid in this case as well, which will be discussed below. 
 
3. THE RADIATION OF THE MOVING BLACK BODY 
 
3.1 The General Dependence for the Radiation Intens ity of the Moving Black-

Body 
 
Based on the aforesaid as well as on the classical methods of solving the problem (i.e., for 
v<<c, see, e.g., [9,16]) we can now start its solving. For this purpose we shall write down an 

expression for the average total energy ε  of the linear oscillators as follows (cylindrical 
space, zero oscillations are neglected): 
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where 1ω  and 2ω are the frequencies of oscillators in the direction perpendicular and 

parallel to the velocity of the moving object; 1n  and 2n are positive (quantum) integers for 

the oscillators in the first and second directions. In this case 121 == nn , since photons are 

bosons, they can be in one quantum state; 21,TT  are the values of the temperature tensor 
components. 
 

Then the average volume of the total energy ε  of the electromagnetic field per unit volume 
in the moving cavity proves to equal  
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(29) 
It is the general dependence for the radiation intensity of the moving black-body 
 
3.2 Obtaining the dependence for Black-Body Radiati on under Relativistic 

Conditions 
 
As a result, we have obtained, in fact, four improper integrals, three of them converge. The 
last two integrals in (29) differ only by variables. They are easily calculated using variable 
transformations as follows:    
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where a is the Stefan-Boltzmann constant, i.e., 
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where ( )zΓ  is the gamma function, 2=z  [17] , 
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As seen, the integral (35) diverges and we take account of a high frequency radiation of the 
object. Having deleted -1 from the denominator, we obtain;  
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As a result, we have for 2I : 
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and 
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(38) 
 

for the energy density of radiation under relativistic conditions. 
 
Formula (38) will take the following form under normal conditions: 
 

                                           4
0447.0 aT=ε .                                                                   (39) 

 
The dissimilarity of formula (39) from the Stefan-Boltzmann law is quite natural, if one takes 
into account of the above assumption. To obtain a more exact expression for the black-body 
radiation under relativistic conditions, it is necessary to renormalize the dependence (39). 
The value of the numerical coefficient in (37) should be such that the new coefficient plus the 
coefficient from formula (31) would give unity.  
 
Then we have finally:  
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(40)  
 
This is the radiation law of the black-body being in a uniform and rectilinear motion when the 
angle θ between the velocity vector of the object v and the observer is equal to zero.  
 
4. RESULT AND DISCUSSION 
 
The law (40) is the main result of the research. It should be noted at once that the 
dependence (40) does not lead to the point of absurdity and contradictions. It is, in fact, only 
the first step on the way of obtaining a more general and involved dependence between the 
intensity of the black-body radiation and its temperature. This dependence also takes 
account of a nonzero angle θ. Knowledge of this ratio should play an important role in 
designing the devices measuring the temperature of the radiating sources moving with 
relativistic velocities, e.g., quasars.  
 
The dependence (40) provides rather a probable answer to the question concerning the 
temperature transformation under relativistic conditions. It is evident that the dependence (1) 
is incorrect and would be rejected many years ago and without all mathematical 
involvements if it were not a giant authority of Planck and Einstein. Really, how is the 
dependence (1) be followed if such cosmic objects as quasars do exist, whose velocity v of 
motion can be equal 0,93c with the luminosity reaching enormous values?  
 
In the most general case the temperature is a complex mathematical object. It comprises an 
invariant part independent of the motion velocity and a part dependent on the velocity and 
oriented in space. Under normal conditions the temperature becomes a scalar, the same 
does for the heat. The entropy problem has not been studied completely. It is not improbable 
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that the entropy can be a tensor object in which indices are contracted which results in a 
scalar independent of the system motion velocity. Evidently, it is for experiment to solve this 
problem. However no experiment has been performed since the birth of relativistic 
thermodynamics in 1907.  
 
Of utmost interest is to consider if the dependence (20) remains valid for the case of an 
ultrarelativistic high-temperature spherical plasma (fireball) [11]. According to the author of 
[11], the spectrum of its equilibrium radiation ( )*ωε γd  (J/cc) due to the annihilation of 

electrons and positrons is described by the dependence 
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e
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d

−
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h

 ,                            (41) 

 

in the fireball, where T/* ωω h=  is the dimensionless frequency; Т>>mc2 is the energy, 

i.e., apparently, kT=θ (k is the Boltzmann constant, T is now the absolute temperature; θ 

not to confused with the angle similarly designated (see above); Trelp /,ωh=∆ ; relp,ω  is 

the relativistic frequency of the plasma oscillations; f is a dimensionless constant.  
 
Formula (20) is valid for the case (41) with the vector part of the temperature dependent on 
the total velocity of electrons and positrons in the fireball but not on the velocity of its centre 
of mass.  If their velocities are very high, then we have the well-known case described, e.g., 
in [9]. This is the case of a system of particles being widely apart and moving with very high 
velocities. It should be noted that these two cases are not fully identical, since the 
microparticles in [9] are not identical before and after the collision. In article [11], an electron-
positron collision results in their annihilation. However these cases are very similar, thus the 
system energy ε  may be given as 
 

∑
−i i

i

c

v

cm

2

2

2

1

~ε ,                          (42) 

 
where im  is the microperticle mass, iv  is its velocity. 

 
Then the vector part of the temperature in the ultrarelativistic case will transform in inverse 

proportion of the roots 22 /1 cvi− . Here we immediately arrive at the conclusion that the 

dependence (41) is very doubtful, since the right side does not transform identically to its left 
side under the relativistic conditions. It should be also noted that the object studied in [11] is, 
in fact, a stable fireball. Evidently, when the density of electrons and positrons exceeds a 
certain limit, the stability will be broken, and an explosion will occur.  
 
5. CONCLUSION 
 
A law was obtained for the black-body radiation in the entire interval of its (black-body) 
movement speed, i.e., from zero up to the speed of light in vacuum. 
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