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Online Learning Using Multiple Times Weight Updating
Charanjeet Singha,b and Anuj Sharmaa

aDepartment Computer Science & Applications, Panjab University Chandigarh, Chandigarh, India;
bDepartment of Mathematics, Panjab University, Chandigarh, India

ABSTRACT
Online learning makes sequence of decisions with partial data
arrival where next movement of data is unknown. In this paper,
we have presented a new technique as multiple times weight
updating that update the weight iteratively for same instance. The
proposed technique analyzed with popular state-of-art algorithms
from literature and experimented using established tool. The
results indicate that mistake rate reduces to zero or close to zero
for various datasets and algorithms. The overhead running cost is
not too expensive and achieving mistake rate close to zero further
strengthens the proposed technique. The present work includes
bound nature of weight updating for single instance and achieve
optimal weight value. This proposed work could be extended to
big datasets problems to reduce mistake rate in online learning
environment. Also, the proposed technique could be helpful to
meet real life challenges.

Introduction

The Machine learning is one of the solutions to the real life problems. Online
learning is sub-field of machine learning. Online learning includes mainly weight
updation with respect to minimization of loss. The online learning overcome the
batch based system limitations in the situations, where training of model with
respect to partial data arrival or real time application with unknown next move-
ment of data. We have witnessed efficient algorithms in online learning from year
2000 onwards. These algorithms were regularly experimented with new data sets
and it did help to explore new algorithms in online learning. We have presented
selected literature in online learning and the most of the techniques discussed in
literature have been used with proposed method in experimentation. One of early
online learning algorithm was Perceptron (Rosenblatt 1958). It is inspired by the
information processing of neural cells called a neuron. The prediction of the
perceptron algorithm based on a linear prediction function that combines a set
of weighted vector and the training vector. The RelaxedOnlineMaximumMargin
Algorithm (ROMMA) (Yi and Long 2002) is an incremental approach based
on the maximum margin. ROMMA used the linear threshold function for
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classification. The maximum margin function can be formulated by minimizing
the length of target vector subject to the number of linear constraint. Approximate
Large Margin Classification Algorithm (ALMA) (Gentile 2001) is an incremental
algorithm, which approximate the maximal p� normmargin for the set of linear
separable data. ALMA works directly with the primal of the maximal margin.
Online Gradient Descent (OGD) (Zinkevich 2003) for online convex functions,
motivated from the infinitesimal gradient ascent and it deals with the Euclidean
geometry. OGD is more general than expert setting that it can handle an arbitrary
sequence of convex functions. In literature, there are other variant of OGD have
been proposed with improved theoretical bounds, such as adaptive OGD (Bartlett,
Hazan, and Rakhlin 2007) and mini-batch OGD (Dekel et al. 2010). The other
algorithmas SecondOrder Perceptron (SOP) (Gentile, Cesa-Bianchi, andConconi
2005) used the second order properties of the data for learning the linear threshold
function, defined as an interaction between eigenvalues of the correlationmatrix of
the data and target vector. The performance analysis of SOP remains within the
mistake bound model of the online learning. The mistake bound depends on the
parameter controlling the sensitivity of the algorithm to the distribution of these
eigenvalues. The online Passive Aggressive (PA) (Keshet et al. 2006) follow the
margin-based online learning. The learning strategy of PA is based on the loss
function (Hinge loss). The updation is passive when the loss function value is zero
otherwise aggressively update the classifier when the loss is non-zero. PA updates
classifier in such a manner that new update classifier should stay as close as to the
previous classifier. It fails when the incoming data are non-separable. To overcome
above limitation there are two variant of PA. PAI and PAII balance the trade-off
between the “passiveness” and “aggressiveness” using the positive parameter
C called the aggressive parameter. Online Newton Step (ONS) (Kale, Hazan, and
Agarwal 2007) algorithm, which achieve the logarithmic loss for any arbitrary
sequence of strictly convex functions.ONSuse the secondorder information of the
loss function and is based upon newton method for offline classification. ONS
show the connection between follow-the-leader and Newton Method. It provides
a logarithmic regret for higher order derivative. The Confidence-Weighted (CW)
linear classification (Pereira, Dredze, and Crammer 2008) algorithm is defined
over the notion of confidence parameter. The less confident parameters are
updated more aggressively than more confident ones. The confidence parameter
is expressed in the term of Gaussian distribution over training vector. The con-
fidence weighted algorithm also work with other online learning methods such as
active learning (Dredze and Crammer 2008) and multi-class classification
(Crammer, Dredze, and Kulesza 2009). This is an online-learning technique that
perform better in the presence of noisy label data. The Adaptive Regularization of
Weight vector (AROW) (Dredze, Crammer, and Kulesza 2009) is variant of
confidence weight learning, beside that it holds various desirable properties
of online learning algorithms: (1) confidence weighting, (2) large margin training
and (3) handle the non-separable data. Another important feature of AROW is, it
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ability to be generalized to other online learning algorithms, such as second-order
online feature selection (wu, Hoi, andMei 2014) and online collaborating filtering
algorithm (Lu et al. 2013). NarrowAdaptive Regularization ofWeights (NAROW)
(Orabona andCrammer 2010) allows to design and relativemistake bound for any
loss function. The mistake bound for any loss function, allowing to recover and
improve the bounds of online classification algorithms. The new online classifica-
tion algorithm for optimize the general bound calledNAROW,whichmakes use of
adaptive and fixed-second order information. NAROW also provide bound for
diagonalmatrices. A new algorithmbased upon the velocity constraint in an online
learning algorithm. In the learning process of Normal Herd (NHERD) (Lee and
Crammer 2010) regularization of linear velocity term are used to herd the normal
distribution. NHERD update is more aggressive for diagonal covariance matrix.
Double UpdatingOnline Learning algorithm (DUOL) (Peilin Zhao andHoi 2011)
is other online learning algorithm, when incoming instance is misclassified, it will
be added into the pool of support vector and assigned with a weight, which often
remain unchanged during the rest of the learning process. DUOL is dynamically
tuned the weights of the support vector in order to improve the classification
performance. LIBOL is an open-source library for large-scale online learning
algorithms (Zha, Hoi, and Wang 2014) which includes all the state-of-arts algo-
rithms for online classification. SOLAR (Scalable Online Learning Algorithms for
Ranking) (Yongdong Zhang Steven, Hoi Jialei Wang, and Wan 2015) learning to
rank is learn some ranking model from training data using machine learning
method, which is a type of information retrieval. This algorithm learns a ranking
model from sequence of training data in an online learning fashion. This algorithm
tackles the pairwise learning to ranking problem using scalable online learning
approach. Soft Confidence-Weighted Learning (SCW) (Steven, Wang, and Zhao
2016), which is the variant of confidence-weighted (CW) capable to handle non-
separable cases, that is the limitation of CW. It is first online learning algorithm
that holds the four silent properties: (1) confidenceweighting, (2) capable to handle
non-separable data, (3) large margin training, (4) adaptive margin. SCW exploits
the adaptive margin by assigning different margin to different vector via
a probability formulation. Online Bayesian Passive Aggressive (BayesPA) ((Shi
and Zhu 2017)) framework for Bayesian models with maximummargin posterior
regularization. For great flexibility and explorative analysis, BayesPAperformnon-
parametric Bayesian inference. A survey on online learning algorithms (Zhao,Hoi,
and Sahoo 2018), which presents state-of-art algorithms in this research field and
their behavior has been discussed recently. It includes categorization of the online
learning in three types: (1) Online supervised learning (2) online learning with
limited feedback (3) Online unsupervised learning. In Lu et al. (2017) proposed
a second-order online learning via sketching (Luo, Agarwal, and Cesa-Bianchi
2016), which substantially improved the regret guarantee for ill-condition data.
This technique enhances version of online newton step (Kale, Hazan, andAgarwal
2007). To the best of our knowledge, we are first to introduce MTWU model
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updating using multiple iteration for the same data points and our finding proves
the efficiency of MTWU. The MTWU applied to all popular online learning
algorithms including binary and multiclass environment with benchmark data
sets. Our method establishes the fact that most of the online-learning algorithms
reduce mistake rate to very low value. This paper includes four section including
this section as introduction. The Section 2 presents preliminaries of online learning
and proposed method has been discussed in Section 3. The Section 4 presents the
experimentation using benchmarks datasets. The Section 5 presents the
Conclusion and future directions for proposed method.

Preliminaries

This section include the working of online learning algorithms that handle the
data points in the form xi; yið Þwhere yi is the class label of instance xi. The online
algorithm works in rounds where xi and its prediction function is h xið Þ. The
prediction results are class label ŷi and the loss function isL yi; ŷi

� �
. This updates

the model with prediction rule h and form problems to minimize the loss as
The Algorithm 1 presents the nature of simple online learning algorithm.

Algorithm 1 Working of Online Learning Algorithm

1: Initialize w1 ¼ 0
2: for i = 1 to n do % n is the number of data point
3: Predict by1 ¼ <wi; xi >
4: Compute Loss as L yi;byl� �
5: if L yi;byl� �

> 0 then
6: wiþ1 ¼ wi þ < update rule> % update rule is depend on the
selected algorithm

The goal is to minimize the loss value, which is used in predication task in
learning method. It takes target value as input and determined the loss i.e.
difference between target value and the predicated value. Few common types
of loss functions are hinge loss and squared error loss

For the “Maximum Margin” classification hinge loss is the most promising
function. For the predicted value ŷi is defined as:

L yð Þ ¼ max 0; 1� yi:ŷi
� �

(1)

Note that ŷi output of the classifier function.
Quadratic loss is also called Mean Square Error (MSE), which is commonly

used for regression loss functions. Quadratic loss is the sum of squared
difference between the actual output and the predicated output.
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L yð Þ ¼
Pn

i¼1 yi;byi� �
n

(2)

Convergence of logistic loss and hinge loss is similar, but logistic is continues.
The continuous property of logistic loss may be utilized by the gradient descent
method. At any point logistic loss does not assign a zero penalty.

L yð Þ ¼ log 1þ e�yt :ŷt
� �

(3)

The update rule values vary with respect different algorithms. For example,
few selected update rules are discussed in following paragraph.

The loss function use by PA (Keshet et al. 2006) is in Equation 1. The
updation is passive when l ¼ 0 otherwise aggressively updation comes into
an action. The closed form updation rules of three variant of PA is

wtþ1 ¼ wt þ τtytxt; τt ¼
lt=j xtj jj2; PA
minðC; lt=j xtj jj2Þ; PA1

lt
j xtj jj2þ 1

2C
; PA2

0
B@ (4)

The OGD (Zinkevich 2003) used to solve the online convex optimization
problems. The OGD used Equation 1 as a loss function and updation rule is

wtþ1 ¼ wt þ ηtytxt (5)

OGD use some predefined learning rate (ηt).
SOP (Gentile, Cesa-Bianchi, and Conconi 2005) is the incremental variant

of whitened perceptron algorithm. The weight updation strategy of SOP is

vk ¼ vk�1 þ ytxt;Xk ¼ St (6)

The SOP predication is computed in trial t, use vk�1 an n-dimensional weight
vector and Xk�1 use n-row matrix, where subscript k� 1 indicates the number
of times vector v and the matrix X have been updated in the first t � 1 trials.

ONS (Kale, Hazan, and Agarwal 2007) is the online variant of the Newton-
Raphson method and use the second order properties of the loss function. The
updation rule of ONS is

xt ¼ �At�1
p xt�1 � 1

β
A�1
t�1�t�1

� �
(7)

where �t and At are gradient and hessian values. In this algorithm projection is
according to the norm defined by the matrix At. CW (Pereira, Dredze, and
Crammer 2008) learning method for linear classification is based upon stan-
dard deviation. CW updates the weight that is based upon the confidence of the
weight vector. The confidence of the weight vector is calculated using the
Gaussian distribution and the covariance matrix. The updation rule of CW is:

μtþ1;Σtþ1
� � ¼ arg min DKLðN μ;Σð Þjj μt;Σt

� �Þ (8)
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μ is the mean vector and Σ is covariance matrix. DKL is the KL divergence
distance between two distributions. The online algorithms are successfully
applied to binary and multiclass data. In literature, all the successful
online-learning algorithms have been proved with upper bound mistake
rate that further prove the strong mathematical foundations behind these
techniques.

The MTWU Step

Our proposed MTWU is applicable to mostly state-of-art algorithms. The
MTWU include simple but powerful step as multiple times weight updating
of single instance. The algorithm 2 presents the working of MTWU.

Algorithm 2 MTWU

1: Initialize w1 ¼ 0
2: for i = 1 to n do % n is the number of data point
3: for k = 1 to m % m = 1 to 32 in this study
4: Predict byi ¼ wi; xih i
5: Compute Loss as L yi; byið Þ
6: if L yi; byið Þ > 0 then
7: wiþ1 ¼ wi þ update ruleh i % update rule is depend on the
selected algorithm

A loop is applied to train the weights for one instance at a time that results
in loss minimization and weights are trained optimally. We have noticed less
mistake rate at m ¼ 2 and achieve constant mistake rate (zero in some cases)
from m ¼ 8 onwards. The updation for mostly cases improve m ¼ 2 onwards
where mistake rate appears zero for few data sets. The MTWU do not include
any other changes in established algorithms other than introduction of loop.
Also, no changes are made to feature vector and predicted class in each
iteration of introduced loop. The weights are updated in each iteration subject
to the dependent values used in the each algorithm and in single iteration of
respective algorithm. The results of MTWU are discussed in next section to
prove the efficiency of proposed method.

As MTWU used with established online learning techniques, we noticed
that algorithm used with MTWU has been discussed in literature thoroughly.
This also includes regret bound for respective algorithms. Our MTWU is
a step that repeat definite number of times, therefore, it do not interfere with
regret bound of used algorithms. We have derived Theorem 1 to establish
that for a single instance to achieve optimum value is bounded.

Theorem 1 The weight wi at ith iteration updated multiple times achieve
optimum value w�

i bounded as:
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0 � w�
i

�� �� � w0
i

�� ��þ
ffiffiffiffiffi
M

p XM

j¼1
Δwj

i

��� ���2� �1
2

(9)

Proof. Let wi is the ith data point update for n data points and wk
i is the ith

data point updated k number of points. Let Δwi is update rule value for
respective ith data point and Δwk

i is the update rule value for k
th iteration of

ith data point. A weight update is,

wi ¼ wi�1 þ Δwi (10)

and weight update for kth iteration at ith point is

wk
i ¼ wk

i�1 þ Δwk
i (11)

Let w�
i is the optimum weight at wk

i , therefore,

w�
i ¼ wk�1

i þ Δwk
i

¼ wk�2
i þ Δwk�1

i þ Δwk
i

¼ w0
i þ Δw1

i þ Δw2
i þ : : : :þ Δwk

i

w�
i � w0

i ¼ Δw1
i þ Δw2

i þ . . . :þ Δwk
i (12)

using norm and square both sides above Equation 12

w�
i � w0

i

�� ��2 ¼ Δw1
i þ Δw2

i þ . . . :þ Δwk
i

�� ��2
w�
i � w0

i

�� ��2 ¼ Δw1
i � 1þ Δw2

i � 1þ . . . :þ Δwk
i � 1

�� ��2 (13)

using cauchy schwartz inequality, given in Equation 14, used for Equation 13Xn

i¼1
aibi

� 	2
�

Xn

i¼1
a2i

� 	 Xn

i¼1
b2i

� 	
(14)

jjw�
i � wo

i jj2 � jjΔw1
i jj2 þ jjΔw2

i jj2 þ . . . ::þ jjΔwk
i jj2

� �
12 þ 12 þ . . . ::þ 12
� �

�
XK

j¼1
jjΔwijj2

� 	
� K; letM � K

� M
XM

j¼1
jjΔwijj2

� 	
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� jjw0
i jj � jjw�

i jj � jjw0
i jj �

ffiffiffiffiffi
M

p XM

j¼1
Δwj

i

��� ���2� �1
2

(16)

adding w0
i



 



 

 in above Equation 16, we get

0 � jjw�
i jj � jjw0

i jj þ
ffiffiffiffiffi
M

p XM

j¼1
Δwj

i

��� ���2� �1
2

Hence it proves the result. Ↄ
In above theorem 1 the Equation 10 presents weight update rule for an
instance, where as Equation 11 presents weight update rule for an instance
multiple times. The Equation 11 is expanded recursively and using algebraic
properties, we are able to derive Equation 9 as result. This Equation 9 proves
that optimal weight for a single instance using multiple iteration is bounded.
Therefore, we are able to achieve optimal weight value for all MTWU bound
step for representative algorithms.

Experimental Results

In this section, we apply MTWU to popular and selected online learning
algorithms mentioned in Section 1 introduction. The benchmark datasets are
used and experiments are conducted for both binary and multiple classes
datasets. We have used benchmark tool as Libol (Zha, Hoi, and Wang 2014)
to prove the effectiveness of our proposed technique MTWU. The Table 1
present names for online learning algorithms as used in tool Libol. The
experiments are performed in machine with i7 processor and 8 GB ram.

Binary Class Datasets

The binary datasets used are svmguide3 and covtype. The svmguide3 includes
1243 data points 21 features. We have used MTWU for m ¼ 1; 2; 4; 8; 16; 32
for each algorithm. This m is the variable used for iteration in algorithm 3 at
line 3. Table 2 presents results for dataset svmguide3. We find that each
algorithm in Table 2 achieves mistake rate as zero for some value of m. The
algorithms SOP, SCW, PA2, PA1, OGD, CW, ALMA, and IEELIP achieve zero
mistake rates at m ¼ 4 where as algorithm SCW2 at m ¼ 8. Table 3 presents
covtype dataset results that achieve mistake rate as zero using the algorithms
PA2, PA1, PA, ALMA, aROMMA, and IELLIP at m ¼ 2 where as SOP and
OGD at m ¼ 8.
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Multi Class Datasets

7The used datasets for multiple classes are mnist, glass and segment. The
dataset mnist include 60 K data points and 780 features in each data point for
10 classes. The segment dataset contains 2310 data points and 19 features for
7 classes, respectively. The glass dataset include 214 data points and 300
features for 6 classes. Similar to the binary class experiments, MTWU applied
with m ¼ 1; 2; 4; 8; 16 and 32. Table 4 presents mnist dataset results that
achieve mistake rate as zero at some value of m. The algorithm M_PA,
M_PA1, M_PA2, M_ROMMA, M_PerceptronS, M_PerceptronM,
M_PerceptronU, M_SCW2 and M_CW achieves zero mistake at m ¼ 4
where as algorithm M_OGD achieve mistake rate zero at m ¼ 8. Table 5
presents glass dataset results where algorithms M_PA, M_PA1, M_PA2,
M_PerceptronS, M_PerceptronM, M_PerceptronU, M_SCW2 and M_CW
achieves zero mistake at m ¼ 4where as algorithm M_OGD, M_ROMMA,
M_aROMMA achieve mistake rate zero at m ¼ 8. Table 6 presents segment
dataset results, the algorithm M_PA, M_PA1, M_PA2, M_PerceptronS,
M_PerceptronM, M_PerceptronU, M_SCW2 and M_CW achieve zero mis-
take at m ¼ 4 where as algorithm M_OGD, M_ROMMA, M_aROMMA
achieve mistake rate zero at m ¼ 8.

Comparison

The m ¼ 1 value refers to working of original algorithms. We have updated
weights for m ¼ 2; 4; 8; 16; 32 times and noticed that most of the algorithms
achieved mistake rate close to zero. The convergence rate of representative
algorithm is explained in their respective references. The limitation of
MTWU is additional compilation time but we witnessed that zero mistake

Table 1. Online-learning algorithms and their used abbreviations.
Algorithm Name Name References

The Second Order Perceptron (SOP) algorithm SOP (Gentile, Cesa-Bianchi, and
Conconi 2005)

The Confidence-Weighted (CW)learning algorithm CW Pereira, Dredze, and Crammer (2008)
Online learning algorithms by improved ellipsoid
method

IELLIP Ye, Yang, and Jin (2009)

The Adaptive Regularization of Weight Vectors AROW Dredze, Crammer, and Kulesza (2009)
New variant of Adaptive Regularization NAROW (Orabona and Crammer 2010)
The Normal Herding method via Gaussian Herding NHERD Lee and Crammer (2010)
Soft Confidence Weighted algorithms SCW Steven, Wang, and Zhao (2016)
The classical online learning algorithm Perceptron Rosenblatt (1958)
A New Approximate Maximal Margin Classification
Algorithm

ALMA Gentile (2001)

The relaxed online maximum margin algorithms ROMMA Yi and Long (2002)
The Online Gradient Descent (OGD) algorithms OGD Zinkevich (2003)
The Passive Aggressive (PA) online learning algorithms PA Keshet et al. (2006)
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rate come for most of algorithms at m � 4. This further strengthens the role
of MTWU in online learning.

The online learning is real time prediction in data but lack in mistake rate as
compare to batch processing. Using MTWU, it could overcome mistake rate
challenge. The overburden extra time is very less using MTWU as each instance
trained for very few iterations and most of algorithms achieve zero mistake rate
for m ≤ 4 iterations. This study shows MTWU is an effective technique that has
promising results to deliver. In particular, its use to multiple classes is praise-
worthy as complexity to classify data increases with multiple classes. We have
witnessed the importance of MTWU to both first and second order online
learning algorithms. The disadvantage of MTWU is extra cost of running time
but achieving zero mistake rate do not discourage the importance of MTWU.
From this situation we feel that MTWU will be a useful to all platfrom of online
learning algorithms to meet the real life data challenges.

Concluding Remarks and Future Directions

In the present work, we have presented a novel approach to minimize mistake
rate in online learningmethods. Certainly, the state-of-art of the online-learning
algorithms that it learns the model in online environments quickly and better
regret bound. Also, mistake rate control is equally important. That is the reason
why proposed technique MTWU is applicable in online learning to reduce
mistake rate. TheMTWU technique re-train the weights in online environments
and for the single instance at a time. The validity of these techniques have been
proved with different state-of-art algorithms. The experimental results observe
that the proposed technique attains consistent and reliable results in different
algorithms and datasets. The present research work examines the following
imperative outcomes:

● The available work for online learning control mistake rate for single
iteration only, but present work further minimize mistake rate with
multiple iterations, and using small number of iterations.

● The proposed research represents one of the first attempts in this direction.
● The present study presents a significant analysis of different algorithms
and datasets using proposed technique MTWU.

● For justifying the proposed technique, the present work has been ver-
ified with more than twelve state-of-art algorithms and five bench-
marked datasets including both binary and multi classes datasets.

● The proposed technique is suitable to future algorithms in online learning.
● The MTWU is very useful for reducing mistake rate of classification in
large datasets with multiple classes.

● The consistent experimental outcomes presented in the proposed study
are without huge preprocessing and it results in less time complexity.
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● The time complexity with MTWU for more than one iteration is not too
expensive as compared to one iteration, and this strengthens propose
technique.

Although, the online learning with MTWU needs attention of more research-
ers across the globe and its implementation in real life scenarios requires
rigorous experimentation, the present study is a breakthrough for online
learning. The future work also comprises the extension of present work to
other big datasets and reducing both mistake rate and time cost. The MTWU
technique could open scope to new online learning methods in future.
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