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Xiao-Jian Ding @, Fan Yang @, Jian Liu, and Jie Cao

College of Information Engineering, Nanjing University of Finance and Economics, Nanjing, China

ABSTRACT

Extreme learning machine for regression (ELR), though effi-
cient, is not preferred in time-limited applications, due to the
model selection time being large. To overcome this problem,
we reformulate ELR to take a new regularization parameter nu
(nu-ELR) which is inspired by Schélkopf et al. The regularization
in terms of nu is bounded between 0 and 1, and is easier to
interpret compared to C. In this paper, we propose using the
active set algorithm to solve the quadratic programming opti-
mization problem of nu-ELR. Experimental results on real
regression problems show that nu-ELR performs better than
ELM, ELR, and nu-SVR, and is computationally efficient com-
pared to other iterative learning models. Additionally, the
model selection time of nu-ELR can be significantly shortened.

Introduction

Recently, researchers in the area of artificial intelligence have given more
attention to single hidden layer feedforward neural networks (SLFNs) due to
their strong performance, such as RBF networks, SVM (considered as
a special type of SLFNs), polynomial networks, Fourier series, wavelet, etc.
(Bu et al. 2019; Cortes and Vapnik 1995; Park and Sandberg 1991; Shin and
Ghosh 1995; Zhang and Benveniste 1992). Extreme Learning Machines
(ELMs) are one of the most popular SLENS, first introduced by Huang and
his group in the mid-2000s (Huang, Chen, and Siew 2006; Huang et al. 2006;
Huang, Zhu, and Siew 2006). Different from previous works, ELM provides
theoretical foundations on feedforward neural networks with random hidden
nodes. It can handle classification, regression, clustering, representational
learning, and many other learning tasks (Ding, Zhang, and Zhang et al.
2017; He, Xin, and Du et al. 2014; Lauren, Qu, and Yang et al. 2018). In
this paper, we focus on regression learning task.

The law of large numbers suggests an interesting characteristic of trained
ELM, a minimum empirical error can ensure minimum testing error with
high probability for large training samples. In theory, it happens with prob-
ability one for infinite training samples. However, due to limit samples in real
world, ELM may learn a function that perfectly separates the training
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samples but that does not generalize to unseen data. To address this issue, an
optimization extreme learning machine for binary classification (ELC) was
proposed (Ding and Chang 2014; Huang, Ding, and Zhou 2010; Huang et al.
2012). ELC implements the bartlett’s theory (Bartlett 1998), for which the
smaller the norm of the output weights is the better generalization perfor-
mance the system tends to have. Compared to ELM, the minimization norm
of output weights enables ELC to get the better generalization performance.
Then, the optimization idea is generalized to solve multi-class classification
and regression learning tasks. Empirical studies based on real benchmark
problems have shown that compared with classical learning algorithms (such
as SVR and ELM), optimization ELM for regression (ELR) tends to provide
better generalization performance with low computational cost. From the
model selection point of view, ELR builds the training model without fre-
quently tuning the parameters.

It has been shown that there are two parameters of ELR needed to be
tuned, kernel parameter L and penalty parameters. Several papers suggest
that the ELM-style optimization model generally maintains good general-
ization ability with large parameter L (Frénay and Verleysen 2010; Huang,
Ding, and Zhou 2010; Huang et al. 2012). In fact, one can set proper L (e.g.
10%) before seeing the training samples. ELR uses parameters C and € to
apply a penalty to the optimization for samples which are not correctly
predicted. However, C ranges from 0 to infinity and can be a bit hard to
estimate the best value. In the case of SVM formulation, a new version of
SVM for regression was developed where the epsilon penalty parameter was
replaced by an alternative parameter nu (Chang and Lin 2002; Scholkopf
et al. 2000). Parameter nu operates between 0 and 1 and represents the lower
and upper bound on the number of samples that are support vectors and that
lie on the wrong side of the hyperplane. It is the intuitive meaning that nu is
more intuitive to tune than C or €, and nu is successfully applied to ELC
formulation (Ding et al. 2017).

In this paper, we extend ELR formulation to a new formula with such
parameter nu, named nu-ELR, to address the problem mentioned above. In
nu-ELR, the parameter € is introduced into the new formula and it is
estimated automatically for user. Compared to ELR, parameter nu lies in
a smaller range than C (which goes from 0-infinity), which is tested on
a linear scale.

This paper is organized as follows. In Section 2, the fundamental knowl-
edge of ELR and v-SVR is introduced. Section 3 presents the optimization
problem of nu-ELR and derives its dual problem. In section 4, we propose an
active set algorithm for solving the dual problem of nu-ELR. Section 5
compares v-OELM with other state-of-the-art regressors for real benchmark
datasets. Section 6 concludes the paper.
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Related Works

In this section, the fundamentals of ELR and nu-SVR are reviewed.

ELR

Considering a regression problem with training samples{(x;, ;) }~ ,, where
x; € R is the input pattern and t; € R is the corresponding target. ELM is to
minimize the training error as well as the norm of the output weights:

Minimize: Y |- h(x;) — | and ||| (1)

where B is the vector of the output weights between the hidden layer of L nodes
and the output node and h(x;) is the output (row) vector of the i-th hidden
node with respect to the input x;. The function h(x) actually maps the training
data x from the input space to the L-dimensional ELM feature space.

Note than the norm term ||B|| can be replaced by one half the norm

squared, 1 || B||>. Here, we use the e-insensitive loss function:
|B- h(xi) — til, = max{0, |B - h(x;) — ti| — &} (2)

where € > 0 is the width of the e-insensitive tube. Using the e-insensitive loss
function, only the training points outside the e-tube contribute the loss,
whereas the training points closest to the actual regression have zero loss.
According to ELM learning theory (Huang, Chen, and Siew 2006), ELM can
approximate any continuous target functions so that any set of distinct
training points lies inside the tube. However, some testing points may lie
outside the tube for noisy problems. In this case, potential violations are

represented using positive slack variables ; and Er.
—€—£i§ti—ﬁ'h(xi)§€+£:\vq (3)

ELR attempts to strike a balance between minimization of training error and
the penalization term.

Minimize : 1[|B]* + CN, (& + &)
Subjectto : —¢ — & < t; = B-h(x;) < e+ & (4)
£, >0,i=1,....N,e>0

The parameter C controls the trade-off between the norms of weights and the
training error.

nu-SVR

The nu-SVR primal formulation problem, as given in (Chang and Lin 2002),
is as follows:
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Minimize : 5[|w]* + C(ve + {300, (& + 7))
Subject to: (w- @(x;) +b) —t; < e+¢;
ti— (w-(x;) +b) < e+
§,6,>0,i=1,....N,e>0

(5)

where £€ RV ¢, b € R. The regression hyperplane of nu-SVR is w - ¢(x;) + b
if § = 0. Here v is the user-specified parameter between 0 and 1, and training
data x; are mapped into a feature space by through a mapping ¢(x). The
Wolfe dual formulations of this problem are

o 1 N N o . N o,
Minimize : EZi:le:l (ocl. — oci) ((xj — ocj)K(xi,xj) — Zi:l (ai — oci) ti
. N N « C N .
Subject|to :Zizl(cx- —a;) =0,0< al?) < N,andZ:i:1 (af + &) < Cv
i=1,...,N

(6)
where Lagrange multipliers a;, af > 0, K (x;,%;) = ¢(x:), ¢(x;) is the implicit
mapping kernel. Scholkopf et al. (Scholkopf et al. 2000) showed that v is an
upper bound on the fraction of margin errors, a lower bound on the fraction
of support vectors, and both of these quantities approach v asymptotically.
Chang and Lin (Chang and Lin 2002) suggested that for any given v, at least
one optimal solution of (6) satisfies the equation e’(a + a*) = Cv, where
e=[1,...,1]" € RN. Thus, the inequality constraint of (2) can be solved by
an equality constraint 3N | (af + a;) = Cv.

Optimization Problem of nu-ELR

The original ELM formulations for regression (ELR) used parameter C [0,
inf] to apply a penalty to the optimization for points which were not
correctly predicted. Parameter C is difficult to choose correctly and one has
to resort to cross-validation or direct experimentation to find a suitable
value. In this section, we will present a new formulation for nu-ELR, whose
parameter C is replaced by parameter v.

Optimization Formulation

Similar to ELR’s formulation, ¢ is used as the width of the ¢-insensitive tube,
which is slacked by variables f§*>. In the objective function, ¢ is penalized by

constant v, and both variables ¢ and EE*) are traded off against model
complexity via a constant parameter C. Thus, the optimization formulation
of nu-ELR can be shown as
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Minimize : L, = L[|B||* + C(ve + LN (&, + &)
Subjectto : B - h(x;) — t; < e+¢;
ti—P-h(xi) <e+§
§,6>0,i=1,...,N,e>0

(7)

It should be noted that there are two major differences between nu-ELR and
nu-SVR formulations:

(1) The mapping mechanism of nu-SVR is inexplicit, in contrast to
explicit mapping in nu-ELR. Thus, ¢(x;) in (5) is usually unknown
and cannot be computed directly.

(2) All kernel parameters in nu-SVR need to be tuned manually, whereas
all parameters for v-OELM are chosen randomly.

Considering many constraints of (7), we consider the Lagrangian:

L (e 6,a0,0.0) =B + Coe+ S5 (6+€)
-3 (g niE)
=3V ailet+ &+t — B h(x)
ST e+ E b+ ()

where multipliers «*),#*), 8 > 0. This function has to be minimized with

(8)

respect to variables (ﬁ, g, f(*)> of the primal problem and maximized with
respect to dual variables ((x(*),& 11(*)). Setting the gradients of this
Lagrangian with respect to (ﬁ, g, f(*)) equal to 0 gives the following KKT

optimality conditions:

aLl (I‘;7£7E(*> 7‘¥<*) 767’1(*)> N *
9B :Ojﬂ:;(“:‘ — ai)x;
Ly (B.e.) ) 6. N
1(Be 8: "):O:>Cv—zl(oci+oc,')—6: )
1=
OLy (B.et™) o) 8. (%) (%)
\ 1( 0.{(* )_0:>C_“i —n; =0

Substituting three equations of (9) into Lp leaves us with the following
quadratic optimization problem:

Minimize : Lp = 22: ) ZJ o — o) (oc}k - ocj)KELM (xi,%7) — Zf\; (af — ai)t;
Subjectto : 0 < oc,( < goand) ) (o) + o) < Cv
(10)
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where Kgim (x,-,xj) = h(x;) - h(xj) is ELM kernel. Similar to nu-SVR’s for-
mulation, inequation constraint 3N, (af 4+ &;) < Cv can be converted to
equation constraint Zil (oc;k + oc,») = Cv.

The resulting decision function can be shown as

flx) = Zil (“i - “?)KELM(xiax) (11)

From the dual formulatiog point of view, nu-SVR needs to satisfy one more
optimization condition Y (af —a;) =0 as compared to nu-ELR. In this
case, nu-SVR tends to fifd'a solution which is the sub-optimal to nu-ELR’s
solution.

Karush-Kuhn-Tucker Conditions of nu-ELR

From the KKT optimality condition (Fletcher 1981), primal and dual optimal
solutions satisfy the following slackness conditions.
Primal feasibility

B-h(x)—ti<e+& ti—PB-h(x)<e+& &) >0e>0Vi (12)
Dual feasibility
«; >0, >0,1,>0,5; >0, § >0, Vi (13)
Complementary slackness
aie+&+t—P-h(x) =0, of (e+& —t;+B-h(x;)) =0, Vi  (14)
de=0,1,6, =0,7¢ =0, Vi (15)
By substituting (9) into (15), we have

(5-a)a=o (5-a)e =0 (16)

From Equation (9) and (11), we have f; = B - h(x;), where f; is the predicted
value of nu-ELR for the sample (x;, t;). If a; = 0, from (16) we have &; = 0.
By primal feasibility condition (12), we have f; —t; < e. If a; = %, from (14)
we have e+ &+ t; — B+ h(x;) = 0. By primal feasibility condition (12) we
further have f; — t; > e. If 0< a; < %, from (16) we have &; = 0. By comple-
mentary slackness condition (14) we have e + & +t; — - h(x;) = 0, that is
fi — ti = e. Likewise, KKT conditions of & can be concluded. In the light of
the above, we have the following conditions:

™ =0 Sfi—ti<e
o<aV<Cefi-f=¢ (17)
a; :% Sfi—ti>e
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Solving Algorithm of nu-ELR

It is well known that an active set algorithm is an effective method for solving
quadratic programming problems with inequality constraints. As far as we
know, it has been successfully applied to many ELM style quadratic pro-
gramming optimization problems, such as ELM for classification, ELM for
regression, SVM, etc. In the method, a subset of the variables is fixed at their
bounds and the objective function is minimized with respect to the remain-
ing variables. After a number of iterations, the correct active set is identified
and the objective function converges to a stationary point.
The objective function of (10) can be rewritten as

Lp ((x( )> = 3 Zi,j:l ((xioc]- — 0 — 0 0 + o )KELM (xi, xj)

— Zil (OC;k — OC,‘) t;

L] e S le] - [5] [e] o0
2|« —Kgim Keim | | @ -T o

Thus, formulation (10) can be equivalently written as

Minimize : Lp(®@) = 1@’ Kpy@ — T @ (19)
Subjectto : 0 < oc,(*) < %,and ela=Cv
where @ = [a; a*], Kppv = [ Kei _KETLM], T=[T;-T)], e=[ee|, e=
—Keim Keim
[1,...,1]" € RN. For simple computation, we set < as C, so the constraint
e’a = Cv can be rewritten as é’@ = CNv. We begin an active set algorithm

with some notations. For a point & in the feasible region, we define Sy :
{ila; = 0}, Sc: {ila; = C} and Syow : {il@; € (0,C)}. Vectors &y, @¢ and
®york are defined according to these sets. The vector of elements in &
whose indices belong to set Sy denotes o), and other elements in @ denote
ac and @y respectively. Likewise, we define Ty, T,, and T¢, where
T =TyUT,UTc. Corresponding to the choice of indices set Sy, Sc, and
Swork» We partition and rearrange matrix Kgpy as follows:
Koo I:<0w Koc

RELM = KWO wa KWC

Koo Kew Kec

Thus, the objective function of (19) is equal to & K®york + @EKucOwork+

15 —  m=T_ =T_ ) L .
%agKCC(xC — T, &york — T-&c. At each iteration, a¢ is fixed and the formulation
(19) can be equivalently written as
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c e _ _1=T 1 = T — =l
Minimize : Ll ((xwork) ) “workwa“work + “CKWC“work - Tw‘xwork (20)

Subject to: Y &york + 2 &c = CNv
Then, formulation (20) can be further rewritten as

Minimize : Ly (@york) = &1 KuwGvork + P Gawork

. rol (21)

Subject to : A®york = T

where p = K .@c — T,y 1=CNv— Y%, A=][1, ... ,1]" €R", and n is
the number of elements in vector @ qx.

The Lagrangian for this problem (21) is
_ 1 T & — T— —
LZ(“worka A) = 5 “workKWW“work + P &Kywork — A(A“work - T)

The partial derivatives of the Lagrangian are set to zero, which leads to the
following simple linear system.

A e
A 0 A T
So, the optimal solution @&y« with the corresponding A can be solved by (22).
Based on the above derivation of quadratic formulations, the proposed
active set algorithm can be summarized by two loops: The first loop iterates
over all samples violating the KKT conditions (17), and the first step of
iterative process beginning from samples that are not on bound. The iterator
keeps alternating between passes over entire training samples and passes over
the non-bound instances. If the optimality conditions are satisfied over all
samples, the algorithm stops with the solution; otherwise, the second loop
begins; The second loop is a series of iterative steps to solve the formulation
(21). As K,,, is convex, the strict decrease of the objective function holds, and
a global minimum of (21) can be obtained. The theoretical convergence
proof of similar formulation was given in (Ding and Chang 2014).

Numerical Experiments and Comparison of Results

In this section, the performance of nu-ELR will be investigated by comparing
it numerically not only with ELR but also with two other well-accepted
learning models: ELM and nu-SVR. All the experiments have been con-
ducted on a 4-core, i7-7700HQ CPU @ 2.8 GHz laptop with 8 GB RAM
and a MATLAB implementation. We have evaluated four learning models on
26 famous real-world benchmark data sets on UCI Machine Learning
Repository (Blake and Merz 2013) and Statlib (Mike 2005). All the inputs
of the data sets have been normalized to the range [0,1], while the outputs are
kept unchanged. To find the average performance, 50 trials are conducted for
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each dataset with every learning model. The training and testing samples of
the corresponding data sets are reshuffled at each trial of simulation.

In these data sets, some features are in nominal format, which are used to
identify the objects only, and they cannot be manipulated as numbers. Some
steps should be performed to convert these features into numeric attributes,
which are quantitative because, they are some measurable quantities, repre-
sented in integer or real values. For example, in ‘Abalone’ dataset, the ‘sex’
attribute has three states: M, F, and I, which are represented by 1, 2, and 3; In
‘Cloud’ dataset, the ‘season’ attribute has four states: AUTUMN, WINTER,
SPRING, and SUMMER. We simply use ‘1, 0, 0, 0" to represent AUTUMN,
and ‘0, 1, 0, 0', ‘0, 0, 1, 0, ‘0, 0, 0, 1" are used to represent other three states.
After attribute preprocessing, the number of attributes in ‘Cloud’ dataset is
increased from 6 to 9, and 7 to 36 for ‘Machine_cpu’ dataset, 4 to 19 for
‘Servo’ dataset.

Selection of Parameters

The popular Gaussian kernel functionK(x;,x;) = exp(—ny,» - Xsz)is used in
both nu-SVR. To train nu-ELR and ELR, the Sigmoid type of ELM kernel is used:
Kem (X, %) = [G(ay, by, X), ..., G(ag, by, x)]" - [G(ay, by, X,), ..., G(ag, by, x,)]
whereG(a, b,x) = 1/(1 + exp(—(a - x + b))). In addition, for the Sigmoid active
function of ELM kernel, the input weights and biases are randomly generated from
(=1, DVx(0, 1) based on the uniform probability distribution.

In order to achieve good generalization performance, we use grid search to
determine the kernel parametery and v for nu-SVR. Similar to Ghanty, Paul, and
Pal (2009), parameters v and y of SVM are tuned on a grid of {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1} x {0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1, 2, 5, 10, 20, 50, 100,
1000, 10000}. According to the suggestion of (Ding and Chang 2014; Ding et al.
2017; Huang, Ding, and Zhou 2010; Huang et al. 2012), ELR tends to achieve
better generalization performance when kernel parameter L is large enough. For
ELR, L is set 1000, and parameter C is tuned on {0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1,
2, 5, 10, 20, 50, 100, 1000, 10000}. For nu-ELR, L is set 1000, parameters v and
C are tuned on a grid of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} x {0.001, 0.01,
0.05,0.1,0.2,0.5, 1, 2, 5, 10, 20, 50, 100, 1000, 10000}. For ELM, there is only one
parameter L (optimal number of hidden nodes) that needs to be determined. As
the generalization performance of ELM is not sensitive to the number of hidden
nodes L, parameter L is tuned on {5, 10, 20, 30, 50}.

The generalization performance of four models (ELM, ELR, nu-SVR, and nu-
ELR) on the ‘Sensory’ dataset for different combinations of model parameters (cf
Figure 1) is presented. It is clear that the best generalization performance of nu-
SVR depends heavily on the combinations (v, y). The best generalization
performance is usually achieved in a narrow range of such combinations. In
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ELM . ELR

5 10 15 20 25 30 35 40 45 50 0.001 0.01 0.1 1 10 100 1000 10000
Hidden nodes number c

(@) (b)

Nu-SVR Nu-ELR

(© (d)

Figure 1. Generalization performance of four learning models on sensory dataset for different
combinations of parameters. (a) ELM, (b) ELR, (c) nu-SVR, (d) nu-ELR.

contrast, the generalization performance of nu-ELR is less sensitive to combina-
tions (v, C), especially in a narrower range (0.1-1, 0.1-100).

To analyze this phenomenon, four more data sets (Baskball, Autoprice,
Abalone, and Lowbwt) are selected to run different combinations of para-
meters, as shown in Figure 2. For both these data sets, we can confirm that
nu-ELR performs smoother on local parameter combinations (v, C) of
(0.1-1, 0.1-100) than the whole combinations. For (d) of Figure 2, if we fix
the regularization parameter C at some value and vary the parameter v in
a large range, we found that generalization performance of nu-ELR is less
sensitive to the variation of parameter v.

Statlib Data Sets

In this section, the performance of four learning models is tested through
experiments of Statlib data sets, which contain 15 benchmark data sets, as
listed in Table 1.
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Baskball data Autoprice data

Abalone data

Lowbwt data

<~ 10000 - >

03 —

01 0.001%% ¢

(© (d)

Figure 2. Generalization performance of nu-ELR on four data sets. (a) Baskball, (b) Autoprice, (c)
Abalone, (d) Lowbwt.

In our experiments, for each evaluated learning model, we use one train-
ing/testing partition to do parameter selection. Once the parameter selection
process is completed, the selected model is used for other partitions. The
selected parameter combination is then used for all independent trials, and
the training and testing samples are randomly selected for each trial. First of
all, we report model selection results for both four learning models, the
selected combinations of parameters are listed in Table 2.

For both 15 data sets, 50 trials have been conducted for each dataset.
Experimental results include the root-mean-square error (RMSE) and the
training time (s), as shown in Tables 3 and 4. For 11 out of 15 data sets, nu-
ELR gives the best performance of RMSE. We also see that nu-ELR achieves
the second-best performance for four other data sets when compared with
three learning models. Clearly, nu-ELR performs better than ELR for all 15
data sets. Another observation is worth noting. It can be seen that for
Balloon, Mbagrade, Space-ga data sets, compared to other learning models,
nu-SVR performs significantly worse. A possible explanation is that the
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Table 1. Statlib data sets.

# Training # Testing
Data sets samples samples # attributes
1 Bodyfat 130 122 14
2 Balloon 1000 1001 2
3 Baskball 50 46 4
4 Bolts 20 20 7
5 Elusage 25 20 2
6 fruitfly 60 65 4
7 lowbwt 100 89 9
8 Gascons 15 13 4
9 Mbagrade 30 31 2
10 Pollution 30 30 15
1 Quake 1000 1178 3
12 Sensory 300 276 1"
13 Strike 300 325 6
14 Space-ga 1500 1607 6
15 Veteran 70 67 7
Table 2. Parameters setting on Statlib data sets.
Data set ELML ELRC nu-SVR(v,y) nu-ELR(v, €)
Bodyfat 20 0.1 (0.8,5) (0.5,100)
Balloon 10 1 (0.1,5) (0.6,1000)
Baskball 10 0.01 (0.5,10) (0.5,100)
Bolts 5 0.1 (0.4,5) (0.6,2)
Elusage 5 1000 (0.1,2) (0.2,50)
fruitfly 5 0.1 (0.7,5) (0.2,0.01)
lowbwt 10 0.01 (0.1,1) (0.5,1)
Gascons 5 0.1 (0.1,1) (0.2,10)
Mbagrade 5 10 (0.8,2) (0.6,0.5)
Pollution 10 0.01 (0.3,10) (0.6,1)
Quake 20 100 (0.3,1000) (0.5,1)
Sensory 5 0.001 (0.3, 0.001) (0.3,0.1)
Strike 5 0.001 (0.3, 0.01) 0.2, 1)
Space-ga 10 0.1 (0.5, 1) (0.2, 1000)
Veteran 5 0.1 (0.2, 0.2) (0.4, 0.2)

generalization performance of nu-SVR is very sensitive to the model para-
meters. After parameter selection, even nu-SVR performs well on one train-
ing/testing partition, it may perform very bad on other partitions.

The training time experiment (see Table 4) shows that the advantage of the ELM
is quite obvious, as iteration is no need in the ELM training process. The training
time of three learning models is similar to each other, except nu-SVR on some data
sets (Balloon, Mbagrade, Space-ga). This phenomenon is originated from the fact
that nu-SVR hardly finds the global solution within the limited iterations.

UCI Data Sets

In this section, the performance of four learning models is tested through
experiments of UCI data sets, which contain 11 benchmark data sets, as listed
in Table 5. Table 6 shows the model selection results.
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Table 3. Performance comparison of four learning models (RMSE) on
Statlib data sets.

Data sets ELM ELR nu-SVR nu-ELR
Bodyfat 0.0313 0.0219 0.0233 0.0209
Balloon 0.0075 0.0092 0.3464 0.0087

Baskball 0.1401 0.1329 0.1313 0.1300
Bolts 0.2571 0.1524 0.1998 0.1442
Elusage 0.1371 0.1549 0.2466 0.1391

fruitfly 0.2005 0.1985 0.2034 0.1929
lowbwt 0.1113 0.1062 0.1262 0.1025
Gascons 0.0861 0.0816 0.0518 0.0696
Mbagrade 0.2350 0.2167 0.4103 0.2164
Pollution 0.1616 0.1291 0.1404 0.1247
Quake 0.1735 0.1813 0.2316 0.1739
Sensory 0.1651 0.1645 0.1648 0.1643
Strike 0.0780 0.0791 0.0819 0.0733
Space-ga 0.0394 0.0389 0.1657 0.0369
Veteran 0.1583 0.1552 0.1572 0.1543

Table 4. Training time comparison of four learning models (s) on Statlib data

sets.
Data sets ELM ELR nu-SVR nu-ELR
Bodyfat 7.1439e-04 0.0940 0.1234 0.0917
Balloon 7.3773e-04 24.0715 30.667 5.2424
Baskball 4.9741e-04 0.0280 0.0217 0.0268
Bolts 4.5620e-04 0.0106 0.0165 0.0113
Elusage 2.7205e-04 0.0110 0.0193 0.0083
fruitfly 2.8080e-04 0.0242 0.2113 0.0088
lowbwt 4.7517e-04 0.0481 0.4072 0.0382
Gascons 2.1406e-04 0.0090 0.0035 0.0072
Mbagrade 3.5045e-04 0.0149 0.1081 0.0057
Pollution 2.2938e-04 0.0100 0.0103 0.0174
Quake 0.0016 25.3534 1.1842 3.3344
Sensory 4.6532e-04 0.3414 0.2442 0.0626
Strike 4.2776e-04 0.4175 0.1477 0.0648
Space-ga 8.1541e-04 81.2082 14.1243 7.1489
Veteran 3.7889¢-04 0.0244 0.0294 0.0177

From Table 7, out of 11 data sets, nu-ELR performs the best on 7 data sets,
while nu-SVR performs the best on 4 other data sets. For Machine_cpu data
set, we see that original nu-SVR is significantly better than other learning
models when compared with RMSE. The most likely explanation for the
superior performance of nu-SVR is that this data set is not sensitive to
different training/testing partitions. For the Mpg dataset, it is worth noting
that nu-SVR performs very badly compared to three other learning models,
which has been discussed above. Table 8 gives the training time comparison.
An interesting point of comparison is with the Mpg data set. Although nu-
SVR performs very badly, less training time is need compared to ELR and
nu-ELR.
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Table 5. UCI data sets.

# Training # Testing
Data sets samples samples # attributes
1 Abalone 2000 2177 8
2 Autoprice 80 79 15
3 Cleveland 150 153 13
4 Cloud 50 58 9
5 Housing 250 256 13
6 Machine_cpu 100 109 36
7 Mpg 200 192 7
8 Pyrim 40 34 27
9 Servo 80 87 19
10 triazines 90 96 58
1 Mg 700 685 6

Table 6. Parameters setting on UCI data sets.

Data sets ELML ELRC nu-SVR(v, y) nu-ELR(v, C)
Abalone 10 10 (0.1,5) (0.4,10000)
Autoprice 20 0.01 (0.4,0.1) (0.6,100)
Cleveland 20 0.1 (0.5,10) (0.5,1)
Cloud 10 0.1 (0.5,5) (0.6,10)
Housing 50 0.01 (0.5,2) (0.2,17000)
Machine_cpu 10 10 (0.3,2) (0.2,2)
Mpg 20 1 (0.5,1) (0.7,1000)
Pyrim 10 0.001 (0.6,1) (0.8,0.5)
Servo 20 0.1 (0.2,1) (0.8,20)
triazines 10 0.01 (0.4,0.5) (0.4,2)
Mg 10 1 0.3,1) (0.6,100)

Table 7. Performance comparison of four learning models (RMSE) on UCI data

sets.
Data sets ELM ELR nu-SVR nu-ELR
Abalone 0.0803 0.0788 0.1239 0.0785
Autoprice 0.1024 0.0916 0.1361 0.0913
Cleveland 0.2279 0.2250 0.2158 0.2173
Cloud 0.0852 0.0731 0.0733 0.0729
Housing 0.0963 0.0837 0.0872 0.0826
Machine_cpu 0.1089 0.0638 0.0397 0.0629
Mpg 0.0789 0.0760 0.4228 0.0746
Pyrim 0.1616 0.1120 0.1097 0.1108
Servo 0.1363 0.1062 0.1139 0.0967
triazines 0.2007 0.1859 0.1961 0.1850
Mg 0.1738 0.1723 0.1658 0.1682

A Performance Evaluation of Kernel Methods

Obviously, the kernel Kgpm(x;, x) plays an important role in determining
the characteristics of the nu-ELR learning model and choosing different
kernels may result in different performances. In this section, another
experiment was set up to see how the kernel affects the performance of
different data sets for nu-ELR. Four commonly used kernel functions of
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Table 8. Training time comparison of four learning models (s) on UCI data sets.

Data set ELM ELR nu-SVR nu-ELR
Abalone 4.8428e-04 3.6564 6.3009 0.3711
Autoprice 5.4263e-04 0.0433 0.0393 0.0376
Cleveland 4.4052e-04 0.1024 0.0317 0.0506
Cloud 3.6650e-04 0.0374 0.0241 0.0273
Housing 0.0012 0.4195 0.1272 0.0761
Machine_cpu 4.1463e-04 0.0527 0.0277 0.0155
Mpg 6.5349¢e-04 0.1734 0.0828 0.1277
Pyrim 5.2440e-04 0.0188 0.0148 0.0179
Servo 4.1062e-04 0.0592 0.0344 0.0142
triazines 4.4782e-04 0.0364 0.0377 0.0322
Mg 3.2492e-04 0.0278 0.0265 0.0286
ELM kernel Kgpm(x,X;) = [G(al,bl,x),...,G(aL,bL,x)]T - [G(ay, by, xq), ...,

G(ar, by, x,)]" in literatures are adopted in this experiment:

e Sigmoid function:

G(a,b,x) =1/(1 +exp(—(a-x+b)))

e Sin function:

G(a,b,x) = sin(a-x+ b)

e Hard-limit function:

G(a, b,x) = hardlimit(a - x 4 b)

e Exponential function:

G(a,b,x) =exp(— (a-x+ b))

All the vectorsaand variables b in these kernel functions are set the same,
which are randomly generated from (-1, 1)¥%(0, 1) based on the uniform
probability distribution. The RMSE of regression performance on the test
sets, across the Statlib data sets and UCI data sets, for the different nu-ELR

kernels is shown in Tables 9 and 10.

From both two tables, we see that the Sigmoid kernel shows the best
performance over most of the data sets. The Sin and Hard kernels show
similar performance over more than half of all data sets. Hard kernel is
the second most accurate in our experiments, but is clearly less accurate than
Sigmoid kernel. As the computational cost of each kernel is very similar, the
comparison of training time is not shown in this experiment.
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Table 9. Comparison results of four kernel functions on Statlib data sets.

Data sets Sin Hard Exp Sigmoid
Bodyfat 0.0139 0.0380 0.0422 0.0084
Balloon 0.0093 0.1519 0.0063 0.0057
Baskball 0.1685 0.1826 0.1657 0.1559
Bolts 0.3475 0.3156 1.0543 0.1492
Elusage 0.1281 0.1319 0.1248 0.1424
fruitfly 0.1876 0.1826 0.1919 0.1842
lowbwt 0.2043 0.2808 0.3129 0.2373
Gascons 0.5156 0.3786 0.7419 0.2849
Mbagrade 0.2225 0.2314 0.2180 0.2110
Pollution 0.2283 0.1579 0.5764 0.1603
Quake 0.1693 0.1691 0.1693 0.1693
Sensory 0.1984 0.1720 0.2427 0.1512
Strike 0.0642 0.0695 0.0730 0.0564
Space-ga 0.0463 0.0702 0.0471 0.0395
Veteran 0.3758 0.2223 0.5527 0.1630

Table 10. Comparison results of four kernel functions on UCI data sets.

Data sets Sin Hard Exp Sigmoid
Abalone 0.1129 0.3151 0.1264 0.1059
Autoprice 0.2095 0.1072 0.2592 0.0991
Cleveland 0.2569 0.2480 0.3321 0.2241
Cloud 0.1343 0.1286 0.1643 0.0918
Housing 1.1795 0.2573 2.6837 0.1901
Machine_cpu 0.0600 0.0631 0.0386 0.0555
Mpg 0.2035 0.1444 0.2243 0.1060
Pyrim 0.0890 0.0827 0.1368 0.0939
Servo 0.0907 0.0950 0.1153 0.0875
triazines 0.2156 0.1893 0.4323 0.1936
Mg 0.1744 0.1679 0.1749 0.1769
Conclusions

By a simple reformulation of ELR with parameter nu, a novel ELR
formulation is proposed in this work as an inequality-constrained mini-
mization problem with the key advantage being the new parameter nu is
only searched within the range [0, 1]. It is further proposed to solve the
minimization problem using the active set algorithm. Experimental results
on two different data repositories, including 26 regression problems,
demonstrate that nu-ELR achieves the best performance over most of
the regression problems, compared with ELM, ELR, and nu-SVR learning
models. In particular, it provides a fair comparison on the RMSE of the
different kernels of nu-ELR. It is clear from these results that some
kernels are better than others, and certain kernels are better suited to
certain types of problems. In future works, the proposed approach will be
extended for other kernel-based learning methods.
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