
British Journal of Mathematics & Computer Science
4(20): 2917-2928, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

An Approximate Sequential Bundle Method for Solving a
Convex Nondifferentiable Bilevel Programming Problem

Jie Shen1∗, Li-Ping Pang2, Xi-Jun Liang3 and Zun-Quan Xia2

1School of Mathematics, Liaoning Normal University, Dalian 116029, 0086-0411-84258356, China.
2School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.

3College of Science, China University of Petroleum, Qingdao 266555, China.

Original Research
Article

Received: 13 June 2014
Accepted: 09 July 2014

Published: 01 August 2014

Abstract
By combining two bundle methods, PBMASL (proximal bundle method with approximate
subgradient linearizations) and DPLBM (descent proximal level bundle method), we present
an approximate sequential bundle algorithm for solving a bilevel programming problem with
a nondifferentiable convex objective function and two separable constraints. In the proposed
algorithm, the values of the objective function in the constraints and its subgradients are computed
approximately, the estimates of the tolerances are not required for convergence proof. The
presented results improve and extend the earlier work.

Keywords: Nonsmooth optimization; Bilevel programming problem; Bundle method; Subgradient;
Proximal bundle method
2010 Mathematics Subject Classification: 90C30; 90C25; 49M37; 90C59

1 Introduction
We consider a bilevel programming problem of the form

(P)

{
min f(x, y)
s. t. (x, y) ∈ Ω1 × Ω2 ⊂ Rm ×Rn,

(1.1)

where f : Rm+n → R1 is convex and nondifferentiable, Ω1 is compact convex and Ω2 is defined by
Ω2 =Arg infy∈S ϕ(y) = {y |ϕ(y) = infy∈S ϕ(y)}, ϕ : Rn → R1 is convex and level bounded, S is a
nonempty closed convex set in the Euclidean space Rn.

*Corresponding author: E-mail: tt010725@163.com. This research was partially supported by
National Natural Science Foundation of China (Grants 11301246, 11171049 and 11171138).

www.sciencedomain.org

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

For the case S = Rn, a bundle method for solving problem (P) is presented by Zun-Quan Xia,
Jie Shen and Li-Ping Pang [1] , in which the function values and subgradients of ϕ are assumed to
be computed exactly. The following algorithm framework is presented for solving (P) [1]:

Algorithm 1.1 :

Step 1 Take x̄ ∈ Ω1 and find ȳ ∈ Ω2 by solving

(Pa) min
y∈S⊂Rn

ϕ(y) via a bundle method. (1.2)

Step 2 Minimize f on Ω1 × Ω2,

(Pb) min
(x,y)∈Ω1×Ω2

f(x, y) with (x̄, ȳ) ∈ Ω1 × Ω2 as a starting point. (1.3)

End of Algorithm 1.1
In this article, we still use Alg.1.1 to solve problem (P), but this time we will focus on solving

problem (Pa). There are many algorithms designed for solving problem (Pa) [2-8], but they all need
to compute the exact function values, this necessity may bring much difficulty when it comes to
constructing an implementable algorithm [9-11]. It was established that the proximal bundle algorithm
based on the inexact linearizations of the objective function converges to an exact optimal solution,
if ε, the approximation error of objective function values and its subgradients, satisfies ε → 0 in the
course of the iterations [9]. Solodov considered the proximal form of a bundle algorithm for minimizing
a nonsmooth convex function, the algorithm assumed that the function values and its subgradients
are evaluated approximately, and it answered the question that how the approximation error ε should
be controlled in order to satisfy the desired optimality tolerance, that is, given some nonzero (and
not tending to zero) approximation error ε, some kind approximate optimal solution can be obtained
which depends on the given approximation error ε [11]. Kiwiel proposed a proximal bundle method
which only requires evaluating the objective function values and its subgradients with an accuracy
ε > 0, it asymptotically finds points that are ε− optimal [10], this algorithm is denoted by PBMASL in
our paper and will be used to solve problem (Pa). According to [10], for given εf > 0, εg > 0, one
could obtain an ε-optimal solution y of problem (Pa), where ε = εf + εg, i.e., find a y satisfying

y ∈ Ω2,ε = {y |ϕ(y) ≤ inf
y∈S

ϕ(y) + ε}, (1.4)

and this algorithm can be slightly revised by modifying the initial parameter such that it terminates in
finite steps to obtain an approximate solution to problem (Pa). The assumptions for using approximate
subgradients and approximate values of the objective function are realistic in many applications, for
instance, the Lagrangian relaxation problem: if f is a max-type function of the form

f(y) = sup{Fz(y) | z ∈ Z}, (1.5)

where each Fz(y) is convex and Z is an infinite set, then it may be impossible to calculate exactly
f(y). However, we may still consider two cases. In the first case, for each positive ε > 0 one can
find an element zy ∈ Z satisfying Fzy (y) ≥ f(y) − ε; in the second case, this may be possible only
for some fixed (any possibly unknown) ε < ∞. In both cases we may set f̄y = Fzy (y) ≥ f(y) − ε.
A special case of (1.5) arises from Lagrangian relaxation [12], where the problem min{f(y) | y ∈ S}
with S = Rn+ is the Lagrangian duality problem of the primal problem

sup ψ0(z) s.t. ψj(z) ≥ 0, j = 1, 2, · · · , n, z ∈ Z

with Fz(y) = ψ0(z) + 〈y, ψ(z)〉 for ψ = (ψ1, ψ2, · · · , ψn). Then, for each multiplier y ≥ 0, we need
only find zy ∈ Z such that f̄y = Fzy (y) ≥ f(y)− ε.

Level bundle methods is a class of bundle method variants based on minimizing a quadratic
function subjected to some level set [13-16]. Among them a descent proximal level bundle method
(DPLBM) [14] will be used in our paper to solve problem (Pb).

2918

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

The problem
(Pε) min

(x,y)∈Ω1×Ω2,ε

f(x, y) (1.6)

is an approximation to problem (P), where ε is a given nonnegative number. We firstly focus our
attention on solving problem (Pε) and then construct an approximate sequential bundle method
for solving problem (P) by combing two bundle methods, PBMASL and DPLBM. The proposed
approximate algorithm is easier to implement than [1] since it only requires the inexact information of
the objective function in the constraints.

This paper is organized as follows. In Sections 2 and 3 two bundle methods, PBMASL and
DPLBM, are used to solve problem (Pa) and problem (Pb), respectively. An approximate sequential
bundle method for solving problem (P) is presented in Section 4, and its convergence analysis is given
in Section 5. In Section 6, we report on numerical testing of the proposed algorithm. Finally, some
conclusions are given in Section 7.

2 Solving Problem (Pa)
In this section we use PBMASL to get an ε-optimal solution to problem (Pa). The method PBMASL
generates a sequence of trial points {ykb}∞kb=1 ⊂ S, and at these trial points the approximate function
values ϕkby = ϕ

ykb
, the approximate subgradients gkb = g

ykb
are computed and the linearization

ϕkb(·) is given such that

ϕk
b
(·) = ϕ

kb
y + 〈gkb , · − ykb〉 ≤ ϕ(·) + εg,

ϕk
b
(ykb) = ϕ

kb
y ≥ ϕ(ykb)− εf

(2.1)

hold for fixed εf ≥ 0 and εg ≥ 0. Thus, we have ϕkby ∈ [ϕ(ykb)− εf , ϕ(ykb) + εg] is an approximation
to ϕ(ykb), and gkb ∈ ∂εϕ(ykb) for ε = εf + εg. At the kbth iteration, the cutting-plane model of ϕ

ϕ̌kb(·) = max
j∈Jk

b

ϕj(·), Jkb ⊂ {1, 2, · · · , kb} (2.2)

is used for finding

ykb+1 = argmin{hk
b
(·) = ϕ̌k

b
(·) + is(·) +

1

2tk
b

|| · −xkb ||2}, (2.3)

where tkb > 0 is a stepsize, at xkb = ykb(l) one has ϕkbx = ϕ
kb(l)
y for some kb(l) ≤ kb and is(·)

denotes the indicator function associated with S (i.e., is(x) = 0, if x ∈ S and +∞ otherwise). The
predicted descent is defined by

vk
b

= ϕkbx − ϕ̌k
b
(ykb+1). (2.4)

Note that 0 ∈ ∂hkb(ykb+1), there exist pkbϕ ∈ ∂ϕ̌kb(ykb+1) and pkbs ∈ ∂is(ykb+1) such that

pkbs = −(ykb+1 − xkb)/tkb − p
kb
ϕ (2.5)

and there are multipliers vkbj , j ∈ J
kb such that

p
kb
ϕ =

∑
j∈Jkb v

kb
j g

j ,
∑
j∈Jkb v

kb
j = 1,

v
kb
j [ϕ̌kb(ykb+1)− ϕj(ykb+1)] = 0, j ∈ Jkb .

(2.6)

We define the following aggregate linearizations of ϕ̌kb , is, and ϕs(·) = ϕ(·) + is(·), respectively:

ϕ̄kb(·) = ϕ̌kb(ykb+1) + 〈pkbϕ , · − ykb+1〉
≤ ϕ̌k

b
(·) ≤ ϕ(·) + εg,

(2.7)

2919

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

īkbs (·) = 〈pkbs , · − ykb+1〉 ≤ is(·), (2.8)

ϕ̄kbs (·) = ϕ̄kb(·) + īkbs (·) ≤ ϕ̌kbs (·) = ϕ̌kb(·) + is(·) ≤ ϕs(·) + εg. (2.9)

Furthermore, we have

ϕkbx + 〈pkb , · − xkb〉 − αkb = ϕ̄kbs (·) ≤ ϕs(·) + εg, (2.10)

where pkb = p
kb
ϕ + p

kb
s = (xkb − ykb+1)/tkb , αkb = ϕ

kb
x − ϕ̄kbs (xkb). Hence, it is not difficult to obtain

that
ϕkbx ≤ ϕ(x) + εg + ||pkb || ||x− xkb ||+ αkb , for all x ∈ S. (2.11)

Inequality (2.11) shows that xkb is ε-optimal (i. e., ϕ(xkb) ≤ ϕ∗ + ε, ε = εf + εg) if the optimality
measure

Vkb = max{||pkb ||, αkb} (2.12)

is zero; xkb is approximately ε-optimal if Vkb is small.

Algorithm 2.1 (PBMASL):
Step 0 Select x1 ∈ S, κ ∈ (0, 1), a stepsize bound T1 > 0, t1 ∈ (0, T1]. Set kb = kb(0) = 1, y1 = x1,

J1 = {1}, ϕ1
x = ϕ1

y, g
1 = gy1 , i1t = 0, l = 0 (kb(l) − 1 denotes the iteration of the lth descent

step). Take ε′ > 0 such that 0 < ε′ < ε = εf + εg.

Step 1 Compute ykb+1 and vkbj such that (2.5) and (2.6) hold.

Step 2 If Vkb = 0, stop (ϕkbx ≤ ϕ∗ + εg).

Step 3 If vkb < −αkb , then set tkb = 10tkb , Tkb = max{Tkb , tkb}, i
kb
t = kb and loop to Step 1,

else set Tkb+1 = Tkb .

Step 4 Evaluate ϕkb+1
y and gkb+1.

If the descent test holds:
ϕkb+1
y ≤ ϕkbx − κvkb , (2.13)

then set xkb+1 = ykb+1, ϕ
kb+1
x = ϕ

kb+1
y , i

kb+1
t = 0, kb(l + 1) = kb + 1 and increase l by one;

else set xkb+1 = xkb , ϕ
kb+1
x = ϕ

kb
x and ikb+1

t = i
kb
t .

Step 5 Choose Jkb+1 ⊃ {Ĵkb ∪ {kb + 1}}, where Ĵkb = {j ∈ Jkb : v
kb
j 6= 0}.

Step 6 If kb(l) = kb + 1, select tkb+1 ∈ [tkb , Tkb+1],
otherwise, either set tkb+1 = tkb , or choose tkb+1 ∈ [0.1tkb , tkb] if ikb+1

t = 0 and ϕ
kb
x −

ϕkb+1(xkb) ≥ Vkb .
Step 7 Increase kb by one and go to Step 1.

End of Algorithm 2.1

Note that the parameter ε′ will be replaced by εk in Alg. 4.1 and Alg. 4.2.
The loop between Step 1 and Step 3 is infinite iff ϕkbx ≤ inf ϕ̌

kb
s < ϕ̌kb(xkb), in which case the

current iterate xkb is already ε′-optimal [10].

Lemma 2.1. [10]If lim inf
k
b

V ′k
b

= 0 (e. g., lim
k
b

Vk
b

= 0), where V ′kb denotes the minimum value of

Vkb at each iteration kb, and xkb is bounded, then ϕ∞x ≤ ϕ∗ + εg, where ϕ∞x = limkϕ
k
x, ϕ∗ =

inf{ϕ(x)|x ∈ S}. 2

Lemma 2.2. [10] If infinitely many descent steps occur, then ϕ∞x ≤ ϕ∗ + εg. 2

Theorem 2.3. [10] The following two assertions are true:

1. ϕkbx ↓ ϕ∞x ≤ ϕ∗ + εg;

2920

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

2. lim sup
kb

ϕ(xkb) ≤ ϕ∗+ε′ for ε′ = εf +εg so that each cluster x∗ of {xkb} (if any) satisfies x∗ ∈ S

and ϕ(x∗) ≤ ϕ∗ + ε′. 2

According to Theorem 2.3 above, we obtain the following results.

Theorem 2.4. For given ε′ > 0, if ε > ε′, then {ϕ(ykb)}kb∈N generated by Alg. 2.1 satisfies

lim sup
k
b
→∞

ϕ(ykb) < inf
y∈S

ϕ(y) + ε,

which implies that there exists a N̄ ∈ ℵ]∞ and a K ∈ N̄ such that

ϕ(ykb) ≤ inf
y∈S

ϕ(y) + ε, ∀ kb > K, kb ∈ N̄ , (2.14)

where ℵ]∞ denotes the collection of all infinite subsequences of nature number set N , i. e.,

ykb ∈ {y |ϕ(y) ≤ inf
y∈S

ϕ(y) + ε}, ∀ kb > K, kb ∈ N̄ . (2.15)

2

Corollary 2.5. Alg. 2.1 terminates finitely at some approximate optimal solution to problem (Pa).

2

3 Solving Problem (Pb)

In this section DPLBM is used to solve problem (Pb). Suppose that at the kcth iteration one has
generated linearizations

f j(x, y) = f(x̂j , ŷj) + 〈g(x̂j , ŷj), (x, y)− (x̂j , ŷj)〉

of f at trial points (x̂j , ŷj) ∈ Ω1 × Ω2,ε, where g(x̂j , ŷj) ∈ ∂f(x̂j , ŷj), j ∈ Jkc ⊂ {1, 2, ..., kc}. We
define f̌kc(x, y) = maxj∈Jkc f

j(x, y) and let

(ukc+1, vkc+1) = argmin{1

2
‖(x, y)− (xkc , ykc)‖2|(x, y) ∈ Ω1 × Ω2,ε, f̌

kc(x, y) ≤ fkclev },

where fkclev < f(xkc , ykc) is chosen to ensure that fkclev → f∗ = infΩ1×Ω2,ε f as kc → ∞. If a finite
lower bound fkclow ≤ f

∗ is already known, then we usually take

fkclev = klf
kc
low + (1− kl)f(xkc , ykc) = f(xkc , ykc)− kl∆kc ,

where 0 < kl < 1, ∆kc = f(xkc , ykc)−fkclow. The desired descent δkc is defined by δkc = f(xkc , ykc)−
fkclev .

Solving the problem
min 1

2
‖(x, y)− (xkc , ykc)‖2

s. t. f j(x, y) ≤ fkclev , ∀j ∈ Jkc ,
(x, y) ∈ Ω1 × Ω2,ε

(3.1)

is required in the following algorithm.

2921

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

We give two stopping criteria which will be used in Alg. 4.2.

TWO STOPPING CRITERIA

Stopping Criterion 1(SC1) : If ∆kc ≤ εopt, then stop;

Stopping Criterion 2(SC2) : If max{‖pkc‖, α̃kcp } ≤ εopt, then stop,
where pkc ∈ ∂f̌kcΩ1×Ω2,ε

(ukc+1, vkc+1),

f̌kcΩ1×Ω2,ε
(·, ·) = f̌(·, ·) + δΩ1×Ω2,ε(·, ·),

α̃kcp = f(xkc , ykc)− f̄kcΩ1×Ω2,ε
(xkc , ykc),

f̄kcΩ1×Ω2,ε
(·, ·) = f̌kc(ukc+1, vkc+1) + 〈pkc , (·, ·)− (ukc+1, vkc+1)〉.

TWO STOPPING CRITERIA

We put SC1 in Step 1 of Alg. 3.1, and SC2 in Step 2 of Alg. 3.1 if necessary.

Algorithm 3.1: (DPLBM)
fkclev = f(xkc , ykc)− δkc , (dkc , ekc) = (ukc+1, vkc+1)− (xkc , ykc).

Given positive numbers tmax > 0, kd, kl, kδ ∈ (0, 1).

Step 0 Choose (x1, y1) ∈ Ω1 × Ω2,ε, f
1
low ≤ f∗. If ∆1 <∞, let δ1 = kl∆

1, otherwise choose δ1 > 0.
Set J1 = {1}, kc = 1, l = 0, kc(0) = 1. Jkc has at most N indices.

Step 1 If (3.1) is feasible, then go to Step 2, otherwise choose fkclow ∈ [fkclev , f
∗], compute ∆kc , δkc =

kl∆
kc , and go to the beginning of this step.

Step 2 Find the solution (ukc+1, vkc+1) of (3.1) and multipliers λkcj such that

J̄kc = {j ∈ Jkc |λkcj > 0}, |J̄kc | ≤ N.

Set tkc =
∑
j∈Jkc λ

kc
j and compute (dkc , ekc).

Step 3 If tkc > tmax, then replace δkc by kδδkc and go to Step 1.
If f(ukc+1, vkc+1) ≤ f(xkc , ykc) − kdδkc , then set tkcL = 1, kc(l + 1) = kc + 1 and l = l + 1,
otherwise set tkcL = 0. Compute (xkc+1, ykc+1) = (xkc , ykc) + tkcL (dkc , ekc).

Step 4 Select Jkcs ⊂ Jkc such that J̄kc ⊂ Jkcs . Set Jkc+1 = Jkcs ∪ {kc + 1}.
Step 5 Set fkc+1

low = fkclow, compute ∆kc+1.
Set δkc+1 = δkc if tkcL = 0, otherwise set δkc+1 ∈ [min{δkc , kl∆kc+1},∆kc+1].
Let kc = kc + 1, go to Step 1.

End of Algorithm 3.1

Theorem 3.1. [14] Either

(xkc , ykc)→ (x∗, y∗) ∈ Ω∗ = {(x, y) | f(x, y) = inf
Ω1×Ω2,ε

f(x, y)}

or Ω∗ = ∅ and {||(xkc , ykc)||}∞kc=1 → ∞. In both cases, one has that {f(xkc , ykc)}∞kc=1 ↓ f∗ =
infΩ1×Ω2,ε f(x, y). 2

4 Algorithm

By taking a descent sequence {εk}∞k=1 ↓ 0, we obtain a sequence of solutions {(xk, yk)}∞k=1 to
problems {(Pεk)}∞k=1. At the beginning of each iteration for generating (xk, yk) one needs to provide
a solution

y ∈ Ω2,εk = {y |ϕ(y) ≤ inf
y∈S

ϕ(y) + εk}, (4.1)

2922

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

instead of providing a starting point that belongs to Arginfy∈Sϕ(y). Then a pair (xk, yk) will be
generated at the kth iteration satisfying

(xk, yk) ∈ {(x, y) |f (x, y) = inf
(x,y)∈Ω1×Ω

2,εk

f(x, y)}. (4.2)

If εk reaches the value that satisfies the stopping criterion, then stop and the solution (xk, yk) is
an εk approximate solution to problem (P). Otherwise, repeat the process presented above until the
stopping criterion is satisfied.

Definition 4.1. PBMASL(k) is defined by PBMASL in which ε is replaced by εk. DPLBM(k) is defined
by DPLBM in which ε is replaced by εk. 2

Algorithm 4.1: Solve problem (P)
Step 0 Initialization.

Take ε1 > 0, γ ∈ (0, 1), set k = 1.
Step 1 Compute initial point of DPLBM(k).

If k = 1, then find x̄1 ∈ Ω1, otherwise set x̄k = xk−1.
Find a ȳk ∈ Ω2,εk using PBMASL(k).

Step 2 Update iterate points of problem (1.1).
Find the kth iterate point (xk, yk) starting form (x̄k, ȳk) using DPLBM(k).

Step 3 Update εk and k.
If (xk, yk) ∈ Ω1 × Ω2 then stop, otherwise set εk+1 = γεk, k = k + 1 and loop to Step 1.

End of Algorithm 4.1

Remark: γ is a contraction parameter, in general, the smaller γ is, the faster the approximate
algorithm will converge. γ plays an important role in controlling the accuracy degree of the approximate
solution (xk, yk) to problem (P).

Lemma 4.1. Let εopt > 0 be a constant. If ∆kc ≤ εopt, then (xkc , ykc) is a εopt optimal solution to (4.2)
for ε = εk.

Proof. Since ∆kc = f(xkc , ykc)− fkclow and fkclow < f∗ = infΩ1×Ω
2,εk

f(x, y), we have

f(xkc , ykc)− f∗ ≤ f(xkc , ykc)− fkclow = ∆kc .

The condition ∆kc ≤ εopt leads to f(xkc , ykc) ≤ f∗ + εopt. The lemma is proved. 2

Definition 4.2. [3] Given ε ≥ 0, x̃ is called an ε−popt optimal solution to f on S if x̃ satisfies

f(x̃) ≤ f(x) + ε‖x− x̃‖+ ε, ∀x ∈ S.

2

Lemma 4.2. If max{‖pkc‖, α̃kcp } ≤ εopt, then (xkc , ykc) is an εopt-popt optimal solution to (4.2) for
ε = εk.

Proof. Since f(xkc , ykc) + 〈pkc , (x, y) − (xkc , ykc)〉 − α̃kcp ≤ f(x, y) for all (x, y) ∈ Ω1 × Ω2,εk

[14], we have

f(xkc , ykc) ≤ f(x, y) + ‖pkc‖‖(x, y)− (xkc , ykc)‖+ α̃kcp , ∀(x, y) ∈ Ω1 × Ω2,εk .

It follows form max{‖pkc‖, α̃kcp } ≤ εopt that

f(xkc , ykc) ≤ f(x, y) + εopt‖(x, y)− (xkc , ykc)‖+ εopt, ∀(x, y) ∈ Ω1 × Ω2,εk .

This implies that (xkc , ykc) is a εopt-popt optimal solution to (4.2) for ε = εk. 2

Algorithm 4.2: Approximately solve problem (P).

2923

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

Step 0 Initialization.
Take ε1 > 0, γ ∈ (0, 1), ε∗ > 0, set k = 1.

Step 1 Compute initial point of DPLBM(k).
The same as Step 1 in Algorithm 4.1.

Step 2 Update iterate points.
Solve (4.2) to get the kth iterate point (xk, yk) using DPLBM(k) with two stopping criteria
SC1 and SC2 starting from (x̄k, ȳk). If Alg. 3.1 stops at some index kc, then set (xk, yk) =
(xkc , ykc).

Step 3 Update εk and k.
If εk < ε∗, then stop, otherwise set εk+1 = γεk, k = k + 1 and go to Step 1.

End of Algorithm 4.2

5 Convergence Analysis

Theorem 5.1. Suppose the optimal solution set of problem (P) is nonempty. Then any accumulation
point of the sequence {(xk, yk)}∞k=1 generated by Algorithm 4.1 is an optimal solution of problem (P).

Proof. According to the design of Algorithm 4.2, (xk, yk) ∈ Ω1 × Ω2,εk and

f(xk, yk) ≤ f(x, y), ∀(x, y) ∈ Ω1 × Ω2,εk ,

ϕ(yk) ≤ infy∈S ϕ(y) + εk
(5.1)

since (xk, yk) ∈ {(x, y)|f(x, y) = infΩ1×Ω
2,εk

f(x, y)}. Ω2,εk is convex and compact according to
the fact that ϕ(y) is convex and level bounded. The sequence {(xk, yk)}∞k=1 must have accumulation
points since Ω1 is convex and closed. Without loss of generality, we assume that (xk, yk) → (x̂, ŷ),
where x̂ ∈ Ω1. Functions ϕ and f are continuous because they are finite and convex. In view of
εk ↓ 0, for the second inequality of (5.1), taking the limit we obtain

ϕ(ŷ) = inf
y∈S

ϕ(y). (5.2)

For the first inequality of (5.1), taking the limit we have

lim
k→∞

f(xk, yk) = f(x̂, ŷ) ≤ f(x, y), ∀(x, y) ∈ Ω1 × Ω2,εk . (5.3)

Therefore,
f(x̂, ŷ) ≤ f(x, y), ∀(x, y) ∈ Ω1 × Ω2,

i. e., (x̂, ŷ) is an optimal solution of problem (P). 2

Theorem 5.2. The following conclusions hold:
a. If (xk, yk) is an εopt−optimal solution to (4.2) for ε = εk, generated by DPLBM with two stopping

criteria, then any accumulation point (x̂, ŷ) of {(xk, yk)}∞k=1 satisfies

(x̂, ŷ) ∈ {(x̂, ŷ)|f(x̂, ŷ) ≤ inf
(x,y)∈Ω1×Ω2

f(x, y) + εopt};

b. If (xk, yk) is an εopt− popt optimal solution to (4.2) for ε = εk, generated by DPLBM with two
stopping criteria, then any accumulation point (x̂, ŷ) of {(xk, yk)}∞k=1 satisfies

(x̂, ŷ) ∈ {(x̂, ŷ) | f(x̂, ŷ) ≤ f(x, y) + εopt‖(x, y)− (x̂, ŷ)‖+ εopt, ∀(x, y) ∈ Ω1 × Ω2}.

2924

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

Proof. (a) Since (xk, yk) ∈ {(xk, yk)|f(xk, yk) ≤ inf(x,y)∈Ω1×Ω
2,εk

f(x, y) + εopt} by Algorithm
4.2, we have

f(xk, yk) ≤ f(x, y) + εopt, ∀(x, y) ∈ Ω1 × Ω2,εk , (5.4)

ϕ(yk) ≤ inf
y∈S

ϕ(y) + εk, (5.5)

and xk ∈ Ω1. The set Ω2,εk is compact since ϕ is convex and level bounded, so {(xk, yk)}∞k=1 has
accumulation points. Without loss of generality, we may assume that (xk, yk) → (x̂, ŷ) as k → ∞.
For (5.5), taking the limit we obtain ϕ(ŷ) = infy∈S ϕ(y). It is clear from the compactness of Ω1 that
x̂ ∈ Ω1. Similarly, for (5.4), taking the limit we have

lim
k→∞

f(xk, yk) = f(x̂, ŷ) ≤ f(x, y) + εopt, ∀(x, y) ∈ Ω1 × Ω2,εk . (5.6)

Therefore,
f(x̂, ŷ) ≤ f(x, y) + εopt, ∀(x, y) ∈ Ω1 × Ω2.

(b) The proof is omitted. 2

6 Numerical Tests
We shall now report on numerical testing of Algorithm 4.2 with Matlab-code on the platform of Matlab
(R2009b) in a computer with Intel (R) 2 Duo 2.93 GHz CPU and 2.0 GB Memory. All these examples
can be found in [17] except for the constraints which are appended by ourselves.

Consider the following problem:

(P)

{
min f(x, y)
s. t. (x, y) ∈ Ω1 × Ω2 ,

(6.1)

where Ω1 := {x ∈ R |A1x ≤ b1}, A1 := 2, b1 := 12, Ω2 =Arg infy∈S ϕ(y) = {y |ϕ(y) = infy∈S ϕ(y)},
ϕ(y) := F2d(y) := max{ 0.5 ∗ (y2

1 + y2
2) − y2, y2}, S := {y = (y1, y2)T ∈ R2 |A2y ≤ b2}, A2 :=[

−1 −1
1 −1.5

]
, b2 := (8.5 6.5)T . We take f(z):=F3d Uv(z) also from [17], with v = 0, 1, 2, 3,

respectively, these four functions F3d U0,F3d U1,F3d U2,F3d U3 of z = (x, y1, y2)T are defined as

F3d Uv(z) := max{ 0.5 ∗ (0.1x2 + y2
1 + y2

2)− eT z − βv1 , y2
1 − 3y1 − βv2 , y2 − βv3 , y2 − βv4},

where e = (0, 1, 1)T and four parameter vectors βv ∈ R4 are given with v = 0, 1, 2, 3, respectively,
β0 := (0.5, −2, 0, 0), β1 := (0, 10, 0, 0), β2 := (−5, 10, 0, 10) and β3 := (−5.5, 10, 11, 20).

The parameters have values: kd = kl = kδ := 0.382, tmax := 1.0e15, εopt := 1.0e − 6, ε1 :=
1.0e − 4, γ = 0.1, ε∗ := 1.0e − 8, f1

low := −50. The maximum iteration number in the PBMASL
algorithm is set 1000.

In the subsequent Table 1, z∗ and z0 denote the optimal solution and the initial point, respectively,
fz∗ indicates the optimal function value.

Table 1: Problem data

Problem z∗ fz∗ z0

F3d-U0 (1 0 0)T 0 (-1 0.9 1.9)T

F3d-U1 (0 0 0)T 0 (-1 0.9 1.9)T

F3d-U2 (0 0 0)T 5 (-1 0.9 1.9)T

F3d-U3 (0 0 0)T 5.5 (-1 0.9 1.9)T

2925

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

Table 2: Results of solving four examples

problem zT (z − z∗)T fz − fz∗ seconds

F3d U0 (1.000e0 -1.919e-7 3.748e-9) (5.627e-7 -1.919e-7 3.748e-9) 7.508e-7 36.1
F3d U1 (-1.127e-3 -2.605e-8 1.268e-8) (-1.127e-3 -2.605e-8 1.268e-8) 6.483e-7 72.4
F3d U2 (6.257e-4 2.131e-3 1.417e-6) (6.257e-4 2.131e-3 1.417e-6) -2.130e-3 105.5
F3d U3 (-1.183e-4 3.570e-3 2.814e-6) (-1.183e-4 3.570e-3 2.814e-6) -3.566e-3 69.4

Table 2 shows the obtained solution z, the difference between z and the optimal solution z∗, the
difference between the corresponding function values fz and fz∗, and at the same time the elapsed
seconds are listed in Table 2.

Upon studying Table 1 and 2, it can be seen that all the obtained solutions by Algorithm 4.2 are
near the optimal solutions. However, in problems F3d U2,F3d U3, the obtained objective function
values are less than the optimal ones. A possible explanation is that Ω2,ε is too larger than Ω2. We
also notice that although the problems considered are only three dimensions, they still cost much time
in order to obtain the solution. In fact, some conclusions may be drawn: much time is cost on running
the inner algorithm DPLBM, more precisely, on checking the feasibility and solving problem (3.1)
which is implemented by the fmincon() function built in the Matlab, this is one drawback of algorithm
DPLBM, and may be discussed in the future work.

The favorable testing results demonstrate that it is worthwhile to continue the development of the
applications of bundle methods to MPEC problems.

7 Conclusions
In this paper we present an approximate sequential bundle method for solving a MPEC (Mathematical
Programs with Equilibrium Constraints) problem (P) by combining two bundle methods PBMASL and
DPLBM. The proposal of the algorithm is based on the construction of the approximate problem (Pε)
and by focusing our attention on solving the approximate problem (Pε) step by step, we finally prove
that the optimal solution (xk, yk) of problem (Pεk) converges to the (approximate) optimal solution
of problem (P) as k → ∞. We once used the similar technique to solve a MPEC problem with the
constraint being an unconstrained optimization problem [1], but in that paper, the exact values of the
objective function in the constraints are used. Just like the discussion in the first part of our paper,
sometimes it is not so easy or even impossible to compute the exact function values. Our algorithm
can be viewed as an improvement to [1]. The presented algorithm, utilizing the approximate function
values and approximate subgradients, can be applied to the situations in which the exact objective
function values are difficult or even impossible to be computed. For example, consider problem (P)
with

ϕ(y) = min
z∈Rn

{h(z) +
1

2λ
‖z − y‖2}, (7.1)

where λ is a fixed positive parameter and ‖ · ‖ denotes the Euclidean norm, and we assume h
is strongly convex. The function ϕ(y) is called the Moreau-Yosida regularization of h(z), it has
the following properties [18]: the function ϕ(y) is convex, everywhere finite and differentiable with
Lipschitz continuous gradient given by

g(y) =
1

λ
(y − p(y)), (7.2)

2926

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

where p(y) is the unique minimizer of problem (7.1), i.e.,

p(y) = arg min
z∈Rn

{h(z) +
1

2λ
‖z − y‖2}. (7.3)

Since the Moreau-Yosida regularization ϕ(y) is defined through a minimization problem involving
another function h(z), the exact evaluation of the function values of ϕ and its gradients g at an arbitrary
point y is practically impossible in general, therefore, we shall consider using their approximate values.
Specifically, suppose that, for each y ∈ Rn and ε > 0, we can find an approximation pa(y, ε) to
p(y) such that h(pa(y, ε)) + 1

2λ
‖pa(y, ε) − y‖2 ≤ ϕ(y) + ε. Some implementable algorithms to find

such an approximation pa(y, ε) to p(y) for a general convex function can be found [2, 19, 20]. With
pa(y, ε), we define the approximations ϕa(y, ε) and ga(y, ε) to ϕ(y) and g(y), respectively, ϕa(y, ε) =
h(pa(y, ε)) + 1

2λ
‖pa(y, ε) − y‖2, ga(y, ε) = 1

λ
(y − pa(y, ε)). For these approximations, we have the

following inequalities [20],
ϕ(y) ≤ ϕa(y, ε) ≤ ϕ(y) + ε,

‖ga(y, ε)− g(y)‖ ≤
√

2ε/λ.

These inequalities indicate that the approximations ϕa(y, ε) and ga(y, ε) can be made arbitrarily close
to the exact values ϕ(y) and g(y) by choosing the parameter ε small enough.

Acknowledgment

The authors acknowledge the anonymous referees and the associate editor for their careful
reading and valuable comments..

Competing Interests

The authors have declared that no competing interests exist.

References
[1] Zun-Quan Xia, Jie Shen, Li-Ping Pang: A sequential bundle method for solving a class of MPEC

problems, Journal of Information and Computational Science. 2007;4(1):331-336.

[2] Auslender A. Numerical methods for nondifferentiable convex optimization, Mathematical
Programming Study. 1987;30:102-126.

[3] Hintermüller M. A proximal bundle method based on approximate subgradients, Computational
Optimization and Applications. 2001;20:245-266.

[4] Kiwiel KC. Proximity control in bundle methods for convex nondifferentiable optimization,
Mathematical Programming. 1990;46:105-122.

[5] Lemaréchal C, Strodiot JJ, Bihain A. On a bundle algorithm for nonsmooth optimization, in:
Nonlinear Programming OL. Magasarian, R.R. Meyer, S.M. Robinson (Eds), Academic Press, NY.
1981;4:245-282.

[6] Outrata J, Kocvara M, Zowe J. Nonsmooth Approach to Optimization Problems with Equilibrium
Constraints, Kluwer Acad. Publ., Springer, Berlin; 1998.

2927

British Journal of Mathematics and Computer Science 4(20), 2917-2928, 2014

[7] Rockafellar RT. Monotone Operators and the Proximal Point Algorithm, SIAM J. on Control and
Optimization. 1976;14:877-898.

[8] Schramm H, Zowe J. A version of the bundle idea for minimizing a nonsmooth function:
conceptual idea, convergence analysis, numerical results, SIAM J. Optim. 1992;2;121-152.

[9] Kiwiel KC. Approximations in proximal bundle methods and decomposition of convex programs,
Journal of Optimization Theory and Applications. 1995;84;529-548.

[10] Kiwiel KC. A proximal bundle method with approximate subgradient linearizations. SIAM J.
Optim. 2006;2;1007-1023.

[11] Solodov MV. On approximation with finite precision in bundle methods for nonsmooth
optimizatioon, Journal of Optimization Theory and Applications. 2003;119(1):151-165.

[12] Bertsekas DP. Nonlinear programming, Athena Scientific, Belmont, MA; 1999.

[13] Brännlund U. A descent method with relaxation type step, In: J. Henry and J. P. Yvon (Eds),
Lecture Notes in Control and Information Sciences, Springer-Verlag, New York. 1994;177-186.

[14] Brännlund U, Kiwiel KC, Lindberg PO. A descent proximal level bundle method for convex
nondifferentiable optimization, Operation Research Letters. 1995;17:121-126.

[15] Kiwiel KC. Proximal level bundle methods for convex nondifferentiable optimization, saddle-point
problems and variational inequalities, Mathematical Programming. 1995;69:89-109.

[16] Lemaréchal C, Nemirovskii A, Nesterov Yu. New variants of bundle methods, Mathematical
Programming. 1995;69:111-147.

[17] Mifflin, R. and Sagastizábal, C.: A UV-algorithm for convex minimization, Mathematical
Programming, Ser. B. 2005;104:583-608.

[18] Hiriart-Urruty J, Lemaréchal, C. Convex analysis and minimization algorithms, Springer Verlag,
Germany, Berlin; 1993.

[19] Fukushima M. A descent algorithm for nonsmooth convex optimization, Mathematical
Programming. 1984;30;163-175.

[20] Correa R, Lemaréchal C. Convergence of some algorithms for convex minimization,
Mathematical Programming. 1993;62:261-275.

———-
c©2014 Shen et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=615&id=6&aid=5612

2928

http://creativecommons.org/licenses/by/3.0

	Introduction
	Solving Problem (Pa)
	Solving Problem (Pb)
	Algorithm
	Convergence Analysis
	Numerical Tests
	Conclusions

