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Abstract
We investigate the use of invariant polynomials in the construction of data-driven interatomic
potentials formaterial systems. The ‘atomic body-ordered permutation-invariant polynomials’
comprise a systematic basis and are constructed to preserve the symmetry of the potential energy
functionwith respect to rotations and permutations. In contrast to kernel based and artificial neural
networkmodels, the explicit decomposition of the total energy as a sumof atomic body-ordered terms
allows to keep the dimensionality of the fit reasonably low, up to just 10 for the 5-body terms. The
explainability of the potential is aided by this decomposition, as the low body-order components can
be studied and interpreted independently.Moreover, although polynomial basis functions are
thought to extrapolate poorly, we show that the lowdimensionality combinedwith careful
regularisation actually leads to better transferability than the high dimensional, kernel basedGaussian
Approximation Potential.

1. Introduction

There is a long and successful history of using empirical interatomic potentials for the simulation ofmaterials
[1]. One approach is to treat suchmodels as purely phenomenological, setting out a few key features of the true
interaction to be captured (e.g. the stability ordering of certain phases), and investigate what other properties,
bothmacroscopic or indeedmicroscopic, follow from these.More recently, as electronic structure calculations,
particularly density functional theory (DFT) [2], has increased both in accuracy and availability, there has been a
widely shared desire for potentials tomatch the Born–Oppenheimer potential energy surface as closely as
possible [3, 4]. This change of attitude in thematerials simulation community has come rather later than the
analogous one in theworld of organic force fields, partly due to themore systematic nature of quantum
chemistrymethods applicable to smallmolecules [5, 6].

Already a decade ago, it was clear that empirical potentials had reached their limits in terms of their ability to
match the potential energy surface ofDFT, essentially due to the use of simple, physically interpretable
functional formsAt around the same time significant developments started inwhichmodels with thousands of
free parameters (so-called high-dimensionalmodels)werefitted to electronic structure data. Themethods are
borrowed frommachine learning, e.g. artificial neural networks (ANN) [7–9] andGaussian processes (GP)
[10, 11]. Although formally thesemodels containmany degrees of freedom, they are often called nonparametric,
because there are either good recipes for determining the best parameters that fit the data (in the case of training
ANNs), or linear algebra expressions in the case of GPs. The fewmodel parameters that are still adjusted by hand
or by other ad hoc recipes are called hyper-parameters, e.g. the nonlinear transfer function of ANNunits, or the
kernel shapes inGPs. It was understood early on, similarly to themore traditional applications ofmachine
learning, that it is advantageous to use an appropriate representation of the input data (atomic positions in this
case) that captures all the known symmetries present in the problem [12]. Thesemodels achieve very high

OPEN ACCESS

RECEIVED

15 July 2019

REVISED

25 September 2019

ACCEPTED FOR PUBLICATION

16October 2019

PUBLISHED

4 February 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2632-2153/ab527c
https://orcid.org/0000-0003-1845-0387
https://orcid.org/0000-0003-1845-0387
https://orcid.org/0000-0002-7160-6064
https://orcid.org/0000-0002-7160-6064
https://orcid.org/000-0002-8180-2034
https://orcid.org/000-0002-8180-2034
https://orcid.org/0000-0003-1498-8120
https://orcid.org/0000-0003-1498-8120
mailto:casv2@eng.cam.ac.uk
mailto:gc121@cam.ac.uk
mailto:g.dusson@warwick.ac.uk
mailto:c.ortner@warwick.ac.uk
https://doi.org/10.1088/2632-2153/ab527c
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ab527c&domain=pdf&date_stamp=2020-02-04
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ab527c&domain=pdf&date_stamp=2020-02-04
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


accuracy on the training datasets and, when carefully used, on configurations that are ‘near’ the training, e.g. in a
molecular dynamics run under similar conditions. However, the transferability of suchmodels can still be poor.
A recent attempt at assembling and fitting to a very large and diverse training dataset of elemental silicon [13],
while generally staying physically sensible away from the training data, still showed up to 20%error in formation
energies andmigration barriers of some defects that were not in the training set. The data requirements to
achieve even this level of transferability are expected to grow significantly formulticomponent systems.

While a better choice of representations and kernel functionsmay improve the transferability somewhat, it is
conceivable that high-dimensional fits will, by their very nature, always suffer from this problem.

Similar effects can be seen in a related field, thefitting of the potential energy surfaces ofmolecules to high
level, wave function based quantum chemistry calculations. This endeavour has a rich history [14–19], which
also includes high-dimensional nonparametric fits that are very accurate for small systems (a handful of atoms),
yet it is recognised that once the dimensionality reaches a few tens, the fitting task becomes extremely difficult.

At present, the only plausible way to break the curse of dimensionality is to explicitly or implicitly identify
low-dimensional structures of the potential energy surface. If this can be done explicitly then the energy can be
broken up intomultiple low-dimensional terms, ideally ensuring that higher dimensional terms account for less
variation. The challenge is to do this generally, systematically, andwithout sacrificing accuracy.

A time-tested and obviousway to introduce lowdimensional terms is to use the body order expansion applied
in an atom-by-atom fashion [20–25], i.e. define the total energy as a sumof one-atom, two-atom (pair), three-
atom (angle) terms, and so forth. Let º =R rj j

M
1{ } be the positions ofM atomic nuclei of the same species,

representing a configurationof atoms (perhaps but not necessarily with periodic boundary conditions), thenwe
write the total energy as
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Note that if the n-body function En is permutation invariant then å ¹ ¹n i i
1

... n1!
may of course be rewritten as

å < <i i... n1
. Periodic boundary conditions are treated by taking into account the periodic images of atomswithin

the computational cell in (1).
Wemust strongly emphasize the distinction, on the one hand, between such a decomposition of the total

energy into additive components, each of which only depends on few coordinates, and on the other hand the
construction of complete, many-body, invariant representations of R using various combinations of two- and
three-body functions, which are subsequently used in a single high-dimensional nonlinear nonparametric fit
[26–28]. For example, consider the symmetry functions of Behler and Parrinello [29]. Although each element of
the descriptor is itself built out of just interatomic distances (2-body) or angles (3-body), the entire descriptor
vector taken as awhole is a high dimensional description of the neighbour environment of an atom, and
subsequentfits are of functions in that high dimensional space. In contrast, the individual energy terms in (1) are
all lowdimensional, and it is to be expected that they can befitted usingmuch less data, since low dimensional
spaces can be covered comprehensively by a relatively small number of training configurations. In particular we
conjecture excellent extrapolation properties. Note that this does not require an a prioridefinition or calculation
of these terms, thefitting is still to bemade to total energy E and its derivatives (forces and stresses)
corresponding to configurationswithmany atoms.

The utility of additive body order expansions has been recognised in the context of the recentmachine
learning based potentials. Bywriting the total energy as a sumof pair, triplet and amany-body termswith
explicit weight factors [11, 13, 30], it is possible to prevent catastrophically erroneous predictions at small
interatomic distances. Note that the failure of high dimensional fits at small interatomic distances is well known
by the quantum chemists who fit smallmolecule potential energy surfaces [31].

However,merely writing the total energy as a body order expansion does not in itself bring the benefits of
lowdimensionality. The terms in (1)may be highly redundant, e.g. a general three-body potential includes all
possible two-body potentials by simply not depending on one of its arguments, and this is true for all orders. A
potentialfittingmethodologywhose terms are intrinsically body-orderedwas introduced as theMoment Tensor
Potentials (MTPs) [32], although it would appear that no explicit use ismade of the lowest dimensional terms to
maximise transferability. Recently, the AtomicCluster Expansion (ACE)was introduced and the connection
between the body order expansion and the high dimensional representations used in the earliermany-body fits
was alsomade formally explicit [33]. There, transferability is achieved by defining and calculating the low order
terms in (1) explicitly using the total energy function of small clusters: the orderM term is the interaction energy
of theM-atom cluster in vacuum (with lower order interactions subtracted).

In both theMTP and theACE approaches, a basis of symmetric polynomials is introduced, whose elements
are body-ordered, and a linearfit in this basis is the fundamentalmodelling tool. The high computational cost of
themany-body expansion is avoided by taking the entiremany-body environment of each atom as a spatial
density, and projecting it onto a rotationally invariant basis set, the components of which turn out to be
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body-ordered. This density trick is the same that is used by high-dimensional descriptors, including SOAP-GAP
[12], Behler–Parrinello symmetry functions [29], and the bispectrum [34, 35], but without taking advantage of
the body-ordered decomposition.

Finally, it is notable that yet another route to the atomic body ordered expansion is afforded by the
Generalised Pseudopotential Theory approach ofMoriarty [36–38]. GPT treats perturbations of the electron
density within the framework ofDFTusing the uniform electron gas as reference, and via a series of
approximations derives individual body ordered terms formally—but also including the unit cell volume as a
variable. It has had considerable success inmodelling single species defect-freemetals in an essentially
parameter-freemanner. Its extension tomore complexmaterials is not straightforward, and calculating high
body order terms (3- and 4-body terms) is rather complicated even for the simpler cases. Nevertheless GPT can
be thought of as the explanation (or justification) ofwhy the body order expansion is a good idea for strongly
bound condensed phasematerials, especiallymetals.

In this work, wewill consider each body ordered term as an independent function to befitted, but only
whose sum is known.Wewill define a basis set withwhichwe do a linear fit, so at the end, all the unknown basis
coefficientsmay be determined in a single linear least squares problem, but separate and distinct distance based
cutoffs and regularisation strategies are applied to each term.Wewill also forgo the vacuum-cluster definition of
each term, and insteadfit the basis coefficients directly to condensed phase data only. The advantage infitting the
body-order expansion to a condensed phase training set is that it can be expected to converge faster. Indeed,
there is significant empirical evidence for this, such as the relative success of few-body interatomic potentials,
cluster expansion for alloys [39], GPT [36–38], however, we are not aware of any rigorous results that explicitly
show this in general.

For defining a basis set for the body ordered terms, we employ the theory of permutationally invariant
polynomials (PIP) a technique based on classical invariant theory, introduced tomolecularmodelling forfitting
the potential energy surfaces of smallmolecules; see e.g. [18, 23, 40] and references therein. To adapt this
formalism for condensed phase covalentmaterials wemake twomodifications: (i) an explicit introduction of
distance-based cutoffs into the basis functions, and (ii) each body-ordered termhas its own set of PIPs, taking
account of the specific symmetry group of that term. By contrast, in the original application of PIPs to small
molecules, eachmolecule (or a set of smallmolecules taken as a cluster) had its potential energy surface defined
andfit with the appropriate set of PIPs and each newmolecule ormolecular cluster required a completely new
fit. In a somewhat similar vein to our ideas here, the possibility to apply PIPs tomanually determined subsets
(fragments) of amolecule has previously been suggested in [40] and very recently first explored in [41].

Wewill call our basis set ‘atomic PIPs’ or aPIPs, to emphasize that the body order expansion inherent to the
use of PIPs is done here on an atomic rather thanmolecular basis. For the sake of simplicity, we limit the
exposition here to elementalmaterials, but the formalism generalises naturally tomultiple species, exactly in the
sameway as the original PIP formalism does formolecules.

Our overarching goal, for which the aPIPfits serve as examples, is to demonstrate for the case ofmaterials
(rather than isolatedmolecules) that (i) low body order potentials can reach the same high accuracies that high
dimensional fits can, and (ii) polynomial fits can be used to improve generalisation properties of interatomic
potentials and that sophisticated regularisation is the key to achieving this.

2. Symmetric polynomial basis

Our starting assumption is that (1) can be used to construct high-accuracy PESs formoderate to low body-order
N, which is certainly the case empirically. Next, we require that the individual contributions En inherit rotation
and permutation invariance (RPI) from E. Our aim is then to construct systematically improvable functional
forms to represent individual En functions that exactly preserve these symmetries:

1. Construct coordinate systems

=x x r r,...,n n n1( )

that are continuous, rotation and permutation invariant, and represent

= F=E r x r .n i i
n

n n i1({ } ) ( ({ }))

2. Choose basis sets {Bnj} and represent

åF = c Bx x .n
j

nj nj( ) ( )
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3. Apply a cut-off mechanism to prevent inclusion of clusters with atoms that are very far from each other that
have negligible contributions to the total energy.

4. Use regularised linear least squares (i.e. ridge regression, force matching [3]) to determine the coefficients
cnj n j,{ } , using total energies, forces and stresses calculated by afirst principles electronic structure approach
as training data.

Several aspects of this strategy are familiar from recentmachine-learningmodels: for example, the
motivation for employing a RPI coordinate system is the same as for the use of symmetry functions descriptors
for ANNpotentials of Behler and Parrinello [9] aswell as the SOAP descriptor and kernel of theGAP framework
of Bartók andCsányi [11]. Employing a polynomial basis to obtain a systematically improvable functional form
was also proposed byBraams andBowman [40], Shapeev [42].Wewill importmuch of the invariant theory
methodology for the representation of symmetric polynomials fromBraams andBowman [40]. In the following
wewill showhow this approach leads to a large design space and in particular describe different coordinate
systems as well as the basis functions to represent the potential energy.

2.1.Distance-based potentials
Ourfirst construction of a RPI coordinate system is achieved by closely following the ideas of Braams and
Bowman [40]: wefirst choose rotation invariant (RI) coordinates of transformed interatomic distances,

== < =E E ur ,n i i
n

n ij i j
n

1
D

1({ } ) ({ } )

where uij denotes a distance transform such as euclidean distance itself or the commonMorse or inverse distance
variables,

= = =a- -u r u e u r, , ,ij ij ij
r

ij ij
pij

where a >p, 0. The superscript ‘D’ in En
D indicates that the arguments of the function are distances.

Alternatively, distances and angles can be used, whichwe discuss below andwill denote with the super-
script ‘DA’.

In the case of the 2-body term, u12 is already a RPI coordinate system. For the 3-body contribution, the
permutation invariance of E3 with respect to exchanging atom indices gives rise to full S3 permutation
invariance of E3

D. Here, and throughout, Sn denotes the symmetric group over n elements. The elementary
symmetric polynomials therefore give a permutation invariant coordinate system,

= = FE E u u u f f fr r r, , , , , , ,3 1 2 3 3
D

12 13 23 3
D

3,1 3,2 3,3( ) ( ) ( )

where

= + +

= + +

=

f u u u

f u u u u u u

f u u u

,

,

. 2

3,1 12 13 23

3,2 12 13 12 23 13 23

3,3 12 13 23 ( )

The key property of the coordinates f3=( f3,1, f3,2, f3,3) is that they completely define r r r, ,1 2 3( ) up to rotations
and permutations. The choice of such invariant coordinates is not unique. For example, wemay choose

= å =<f u n, 1, 2, 3n i j ij
n and in section 2.2we replace distance coordinates with distance and angle

coordinates.
For the n-body termswith n 4, the permutation group Sn acting on =ri i

n
1{ } which encodes the symmetry

of En induces a non-trivial permutation group -S Sn n n
D

1 2( ) acting on < =uij i j
n

1{ } encoding the symmetry of

En
D. That is, a permutation p Î Sn of sites ri{ } is re-interpreted as a permutation in Sn

D of distances through the
action

p
p pu uij i j

see figure 1 for a visualisation in the four-body case.
Employing invariant theory techniques [40, 43]we then construct fundamental invariants = =f fn n a a

A
, 1

n{ } ,
whereAn>n is the dimensionality of the set fn and each fn a, is amulti-variate polynomial in uij{ } that is
invariant under Sn

D, such that we can rewrite En as

= = F=E E u fr .n i i
n

n ij n n a1
D D

,({ } ) ({ }) ({ })

A subtle point is that admissible arguments {uij} and fn a,{ }belong to (3n−6)-dimensional submanifolds of,

respectively, -n n 1 2( ) and An, where n(n−1)/2>(3n−6) for n 5 andAn>n(n−1)/2 for n 4; see
table 1. For illustration, a possible choice of the fundamental invariants for a 4-body distance-based potential are
given in table 2.
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To complete the definition of n-body distance-based potentials, we supplyEnwith a cut-offmechanism,
redefining them as

= F=
<

E f f rr , 3n i i
n

n n
i j

ij1
D

cut({ } ) ( ) ( ) ( )

where fcut(r) is smooth and vanishes outside some cut-off radius rcut. That is, we only account for n-body clusters
for which all edge lengths arewithin the cut-off radius. The choice of cut-offmechanism is far fromunique of
course, and can be adapted to the systems of interest.

Figure 1.Permutation of the edges of a tetrahedronwhen two corners are permuted. In blue and green are permuted edges. Although
there are six edges, the symmetry group of the edges induced by permuting pairs of atoms is a strict subset of S6, whichwe
denote by S4

D.

Table 1.Comparison of potentialminimal number of
coordinates, number of RI coordinates (distances), and
number of RPI coordinates (fundamental invariants).
For six-body invariantsMAGMA terminatedwithout
computing the fundamental invariants within several
weeks of CPU time. This is related to the rapidly
increasing cardinality of the symmetry group (6!=720).
Note that restricting the polynomial degree shortens the
computations, hence allows to compute invariants for
higher body-orders, as is performed in [44].

n 2 3 4 5 6

#coordinates 1 3 6 9 12

dim {uij} 1 3 6 10 15

An=dim fn a,{ } 1 3 9 56 —

Table 2. 4B distance-based invariants.

=f4,1 u12+u13+u14+ u23+u24+u34

=f4,2 + +u u u12
2
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2
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2 + + +u u u23

2
24
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=f4,4 + +u u u12
3

13
3

14
3 + + +u u u23

3
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2
24
2

34 + u u u13 14
2

34
2 +

u u u14
2

23 34
2 + u u r .14

2
24 34

2

5

Mach. Learn.: Sci. Technol. 1 (2020) 015004 C van derOord et al



2.2.Distance-angle potentials
While distance-based coordinates are seemingly canonical in that they inherit themaximum symmetry, it is
sometimes intuitive to employ a coordinate system that incorporatesmore ‘physically natural’ coordinates,
whichmay lead to alternative RI and RPI coordinate systems. For example, the success of employing bond-angle
coordinates in empirical force fields [22] suggests that using these coordinatesmay produce better fits at similar
cost. This idea is further supported by the success ofMTPs [42], which can be also interpreted as distance-angle
potentials.Within our framework,many-body distance-angle potentials are constructed as follows.

As in section 2.1 let uij denote transformed distance coordinates. In addition, letwijk denote angle
coordinates, the canonical choice being

q= =w r rcos ,ijk ijk ij ikˆ · ˆ

where = -r r rij j i and =r r rˆ ∣ ∣.We thenwrite an n-body term En in away that retains only partial symmetry,

== = < =E E u wr , ,n i i
n

n j j
n

jk j k
n

1
DA

1 2 1 2({ } ) ({ } { } )

where the superscript ‘DA’ indicates that the function En
DA is parametrised by distances and angles. The 2-body

contribution E2 is again a pure distance-based potential.
For body order n 3, we transform again to anRPI coordinate system. For the distance-angle potentials we

retain only permutation invariancewith respect to the n−1 neighbours, which induces a different symmetry
group -Sn 1

DA on the coordinates u w,j j jk jk1 1({ } { } ). Analogously to the distance based potentials, the fundamental

polynomial invariants for this permutation group -Sn 1
DA yield a RPI coordinate system =f f u w,n n j j jk jk1 1({ } { } )

and thus the representation

= F=E fr .n i i
n

n n1
DA({ } ) ( )

For 3-body potentials a possible choice of fundamental invariants is

= +

=

=

f u u w u u

f u u w u u

f u u w w

, , ,

, , ,

, , , 4

3,1 12 13 123 12 13

3,2 12 13 123 12 13

3,3 12 13 123 213

( )
( )
( ) ( )

while a possible set for four-body potentials is given in table 3.
The number of fundamental invariants is higher than for the distance based coordinate system,while the

degrees of the invariants are smaller. Thus, the invariants are cheaper to compute butmore basis functionswill
be required. This is due to the fact that we exploited less symmetry in the distance-angle potentials than in the
purely distance based potentials.

Finally, we propose a natural cut-offmechanism for distance-angle potentials,

= F=
=

E f f rr . 5n i i
n

n n
j

n

j1
DA

2
cut 1({ } ) ( ) ( ) ( )

This cut-offmechanism is different from the one in the distance-based potential (3) since it only acts on the
distance variables and thus the product is taken over a smaller set of rij values, leading to a summation over a

Table 3. 4B distance-angle-based invariants.

=f4,1 u12+u13+u23

=f4,2 w213+w214+w314
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2
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3
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different set of n-body clusters in the total potential energy assembly. In particular, themeaning of the cutoff
radius of fcut in (3) and (5) is not equivalent.

2.3. Polynomial approximation
In the following, wewrite Fn tomean Fn

D or Fn
DA depending onwhether we are considering distance or distance-

angle coordinates. To construct computable representations of the En
RPI wewill usemulti-variate polynomials:

the n-body functions Enwill be represented as polynomials of the invariants = =f fn n j j
A

, 1
n{ } , i.e.

= F =E f P fr ,n i n n n n({ }) ( ) ( )

where Pn is amulti-variate polynomial in fnwith coefficients that are to be determined; see section 2.4. By
increasing the polynomial degree ofPnwe can in principle approximate arbitrary smooth, symmetric functions
En. In particular, letting the body-order n, the cutoff rcut and the polynomial degrees all tend to infinity we can
represent an arbitrary smooth PES. That is, our construction is systematically improvable.

However, we briefly discuss a subtlety that arises for n 4 when the permutation groups become non-
trivial: in this case, the representation of a given symmetric polynomial in terms of the fundamental invariants is
not unique. This non-uniqueness can be avoided by introducing an alternative set of invariants, the primary
invariants = =

-p pn n a a
n n

, 1
1 2{ } ( ) and secondary invariants =s sn n b b,{ } both of which can be constructed from the

fundamental invariants [40, 43]. In terms of p s,n n

å= ==E P f s P pr , 6n i i
n

n n
b

n b n b n1 , ,({ } ) ( ) ( ) ( )

where eachPn,b is amulti-variate polynomial in n(n−1)/2 variables of the set pn, and the summation ranges
over all secondary invariants. Once the invariant sets pn, sn are specified, this decomposition of a symmetric
polynomial is unique, which gives a simpleway to generate all symmetric polynomials with a prescribed degree.
The choice of invariants pn, sn remains non-unique. A ‘manual’ construction for n=4 is proposed by Schmelzer
andMurrell [45], however, for n>4 this can practically only be achieved using a computer algebra system;we
employ theMAGMAsoftware package [46].

We briefly describe the primary and secondary invariants for 3- and 4-body terms For 3-body potentials, the
permutation group is trivial (all of S3), hence the =p f3 3 and =s 13 ( ). For 4-body potentials, the primary
invariants are

= =p f ,a a4 4, 1
6{ }

which thus depend on the choice of coordinate system,DorDA, through the definition of fn. The secondary
invariants also depend on the choice of RI coordinates. For distance-based potentials there are six secondary
invariants,

=s f f f f f f1, , , , , ,4 4,7 4,8 4,9 4,7
2

4,8 4,9( )

while for distance-angle potentials there are twelve secondary invariants,

=s f f f f f f f1, , ,..., , , , .4 4,7 4,8 4,14 4,7 4,8 4,8
2

4,10
2( )

Note that the constant polynomial 1 is usually not considered as a secondary invariant; we include it for
notational convenience.

For five-body potentials in distance based coordinates, wefind 144 secondary invariants out of which 21 are
irreducible. For distance-angle potentials there are 266 secondary invariants amongwhich 44 are irreducible.
Due to the complexity and large numbers of these polynomials we use theMAGMAoutput to auto-generate
source-code that evaluates the invariants and their derivatives for our aPIP implementation.

2.4. Least-squaresfit
All variants of the body-ordered interatomic potentials E R( )weproposed in the foregoing sections can be
expressed as a linear combination of basis functions Bnbk , where n is the body-order, Î -k n n 1 2( ) defines a
monomial in the primary invariants and Î b denotes the indices of the secondary invariant in (6).

To see this, wefirst specify a total polynomial degreeDn>0, and recall that the invariants pn,a and sn,b are
themselves polynomials in the RI coordinates and have therefore a well-defined total degree p sdeg , degn a n b, ,( ) ( ).
We can nowwrite the polynomials Pn,b from (6) as

å =
=

-

P p c p ,n b n a
k

nb
a

n n

n a
k

k, ,
1

1 2

,
a

a({ }) ( )
{ }

( )
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where the summation ranges over all tuples = =
-kk a a

n n
1

1 2( ) ( ) of non-negative integers with

å+ s k p Ddeg deg .n b
a

a n a n, ,( ) ( )

The coefficients cnbk are the unknowns to be determined in the least squares fit. Thuswe see that for each body-
order n, each secondary invariant indexed by b and for each tuple k specifying amonomial within the prescribed
degreeDnwe obtain a corresponding basis function for the total potential energy

å = ´=
< <

<¼<

= ¼
=

-



B F s pr r , 7nb i i
M

i i
i M

i l n n b
a

n n

n a
k

k 1
1

cut 1, , ,
1

1 2

,

n

l
a

1 2

⎡
⎣⎢

⎤
⎦⎥({ } ) ({ } ) ( ) ( )

( )

where s p,n b n a, , are evaluated at = ¼r i l n1, ,l
{ } and the definition of the cut-off function = ¼F r i l ncut 1, ,l

({ } ) depends
on the choice of variables and is defined in (3) for the distance-based case and (5) for the distance-angle case. In
the summation, only clusters respecting the cut-off condition >= ¼F r 0i l ncut 1, ,l

({ } ) taken into account to ensure
linear scaling cost.

It remains to determine the coefficients cnbk in the linear expansion

å== =E c Br r , 8i i
M

n b
nb nb i i

M

k
k k1

, ,
1({ } ) ({ } ) ( )

achieved via solving a linear least squares problem.
For each atomic configurationR in a training set, the corresponding energy R, forces R and possibly

virials R are given. Theminimized functional is of the form

å= - + - + -
Î

  


J W E W F W VR R R , 9E F V
R

R R R
2 2 2 2 2 2( ∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ∣ ) ( )

whereWE,WF,WV areweights thatmay depend on the configurationsR, and F(R) andV(R) are, respectively,
forces and virials computed from the energy functional E R( ).

In summary, since J is quadratic in the unknownpolynomial coefficients = cc nbk{ }, itsminimisation is a
standard linear least-squares problem

-A Ycmin , 10
c

2
2 ( ) 

whichwe solve using aQR factorisation. The size of the systemmatrixA isNobs×Nbasis whereNbasis is the
number of basis functionswhileNobs is the number of observations (energies, forces, virials, and regularisation,
if any, see below). In our examplesNobsmay be in the range of hundreds of thousands, however,Nbasis remains
low; on the order of hundreds to a few thousands. In this case, theQR factorisation of thematrixA is
computationally cheap ( ´O N Nobs basis

2( ) operations) and numerical stable.We postpone discussion of
regularisationmechanisms to the next section, some ofwhichwill showup as a regularisation functional added
to J, whichwill thus remain a quadratic functional in c.

2.5. Systematic convergence
The prospective accuracy of an interatomic potential is directly related to its functional form, in our case the
choice of basis functions to represent the PES. The family of potentials we constructed in the previous sections
are systematically improvable: by increasing the body-order, cutoff radius and polynomial degree they are in
principle capable of representing an arbitrarymany-body PES towithin arbitrary accuracy. To support this
claim, we begin by studying the convergence of the rootmean square error (RMSE) on two previously published
training sets for tungsten and silicon.

Wemeasure the convergence of the RMSE against two key features: Firstly, the number of basis functions
used to construct the potential gives a crudemeasure of the cost of the training. Secondly, we compare the
accuracy of the fit against the evaluation time of the forces, that is, the cost of onemolecular dynamics step.

For both training sets, we demonstrate the convergence of the potential for both the distance-based and the
distance-angle descriptors. For all potentials, the distance transformused is a polynomial transform, that is

=u r rij ij
p

nn( ) where rnn is an estimate for the nearest-neighbour distance (rnn=2.74Å forWand rnn=
2.35Å for Si) and pmay varywith the body-order. The cutoff function is given by

= - <
f r

r r r r1 , 0 ,

0, otherwise.
11cut

cut
2 2

cut
⎧⎨⎩( ) [( ) ] ( )

where rcut is a cut-off radius thatmay again varywith the body-order. The parameters for the individual
potentials and the least squares regressionweights are given inthe supplementarymaterial4.

4
See supplementarymaterial available online at link stacks.iop.org/MLST/1/015004/mmedia for a description of the 5-body invariants,

convergence tables for tungsten and silicon, and details on the titaniumdatabase generation and parameters.
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To choose the functional formof the distance transforms and cutoff functionwefirst performed low-
accuracy fits that showed that the fit accuracy varies little across different choices of cut-off function and distance
transform; see the supplement (see footnote 4). However, wewillfind that distance-angle potentials achieve a
higher accuracy at comparable computational cost than distance-based potentials, both on theWand Si
training sets.

2.5.1. Results for tungsten
Wenowpresent convergence results for a tungsten training set used for a previously published SOAP-GAP
model [47], generatedwithCASTEP [48], that consists of 9693 configurations including primitive unit cells,
surfaces, γ-surfaces, vacancies and dislocation quadrupoles. Every configuration provides one total energy and
3Nat force components whereNat is the number of atoms per configuration. Some configurations also provide
six virial components. The resulting total number of scalars used for the fit was 497271.

For both distance-based and distance-angle potentials we observe infigure 2(a) the systematic decrease of
the RMSE as the body-order and the polynomial degrees are increased. Extended convergence tables are
presented in the supplementarymaterial (see footnote 4).

In this test, distance-angle potentials perform slightly better than distance-based potentials, particularly in
the high accuracy regime. Indeed, the distance-based potentials with 5-body reach an energy RMSE of 2.05meV
with 6023 basis functions and 2.98ms force evaluation time per atom,while the distance-angle potentials for
4-body reach an energy RMSEof 1.85meVwith 2842 basis functions and 4.41ms force evaluation time per
atom. Thus, both the errors and computational costs are comparable. The 5-body distance-angle potentials
reach an energy RMSEof 1.38meVwith 5113 basis functions and 10.4ms force evaluation time per atom.

Figure 2. Systematic convergence on a tungsten (top) and a silicon (bottom) database. Note that the SOAP-GAPmodel takes about
30ms/atom to evaluate on a range of current CPUs, andMTP is 1 ms or faster depending on the number of basis functions used.
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2.5.2. Results for silicon
Wenowdemonstrate the convergence of the potential on a previously published silicon training set [13]which
contains 2475 diverse configurations.We restrict the published database to train only on the following subset of
configurations: diamond cubic, amorphous,β-tin, vacancies, sp2, and low index surfaces. The total amount of
scalars included in thefit (total energies, force/virial components) for this subset of the silicon database is
323414. Although there are fewer configurations overall than in the tungsten database, there are two distinct
solid phases, and the amorphous phase which is particularly challenging tofit. On the one hand, excluding
certain parts of the published database allows us to explore extrapolation. On the other hand, efficiently and
accurately fitting to the complete training set including a large variety of high coordination phases will likely
require amore flexible functional form,whichwewill revisit in future work.

The full convergence tables are presented in the supplementarymaterial (see footnote 4).
As for tungsten, the choice of descriptors gives similar accuracy and evaluation times for silicon, but

distance-angle potentials now reach significantly lower errors for large basis sets.Moreover, the convergence
plots presented onfigures 2(c) and (c) show a systematic convergence of the energy error for distance-angle and
distance-based descriptors.More precisely, the accuracy reaches the value of 2.13meV accuracy for a distance-
angle 4-body potential composed of 1933 basis functionswith a force evaluation time of 3.32msper atom, and
for a distance-based 5-body potential, the energy error reaches 2.49meV composed of 5396 basis functionswith
a force evaluation time of 2.51msper atom. Finally, the 5-body distance-angle potentials reach an energy error
of 1.47meVwith 3759 basis functions and a force evaluation time of 3.91msper atom.

3. Regularisation

3.1. Regularisation techniques
In the least-squaresmethod, regularisation is primarily seen as a procedure to improve conditioning on ill-
conditioned or even ill-posed problems. By contrast, in theGaussian process framework, it can be interpreted as
imposing ‘prior’ information about the potential energy surface, in particular its regularity. Robust heuristics for
choosing the strength of the regularisationwere crucial for the success of theGAP scheme formaterials, where
the regulariser was chosen to be consistent with the estimated convergence error in the input data e.g. with
respect to k-point sampling [49].

In the followingwe seek to apply a similar perspective in the standard least squares framework.Wewill show
how the low-dimensional functional forms obtained in our definition of aPIPs in section 2 allow us to
incorporate physicallymotivated ‘prior’ information or requirements that are not present in the database.

For example, consider the unregularised pair potential fit to theWdatabase displayed infigure 3(c), which is
obtained by fitting a degree 16 polynomial with distance transform =u r2.74ij ij

2( Å ) and cutoff radius
rcut=8.5Å; see section 3.2 formore details.While it gives lowRMSEon our dataset, it is a nonsensical pair
potential that is unsuitable formaterialsmodelling work.

A typical approach to detect overfitting and validate the generalisation capabilities of the fitted potential is to
first separate the data into a training set and a test set, then to perform the regression using only the training set,
andfinally compute the errors separately on the training and on the test set. A transferable fit should have
comparable training and test errors.

While such a procedure helps to prevent overfitting near the training set, wefind that it gives very limited
information about the ability of the potential to generalisemore broadly.While training and test errors are
comparable for a proportion of training configurations of 0.6 and higher (figure 3(a)), all potentials exhibit an
oscillatory shape (figure 3(c))which is pathological and clearly does not allow for extrapolation. In addition, the
pair potentialminimum is far from the nearest-neighbour distance. Therefore, the generalisation tests presented
in section 4 are performed directly on physical properties and not using a training/test splits.

We now introduce a range of tools that enable us to produce regularised aPIPfits that retain RMSE accuracy
close to the unregularised aPIPs, but become highly transferrable potentials that ‘extrapolate well’ and in
particular have no regions of ‘holes’ as those described in [31].

3.1.1. Tikhonov regularisation
First, we recall some background on regularisation. In the context of linear least squares, the problem (10) is
replacedwith the regularised least squares problem

- + GA Yc cmin , 12
c

2
2

2
2 ( )   

whereΓ is called the Tikhonovmatrix. The form Gc 2
2  may be used to represent any positive quadratic

functional acting on the aPIP potential energy surface E given by (8). Themost common choice isΓ=α I

10

Mach. Learn.: Sci. Technol. 1 (2020) 015004 C van derOord et al



(L2-regularisation)where the unknown parameterαmay be obtained through ad hoc procedures, or related to
the uncertainty of the data via the Bayesian interpretation of the least squares problem.

Such regularisation techniques are, for example, employed to render ill-posed problemswell posed, or
improve the conditioning of severely ill-conditioned problems. In our context, polynomial basis functions
generally lead to ill-conditioning, which is exacerbated by the fact that the space of n-body functions containsm-
body functionswithm<n, leading to a near-degeneracy that is only partly alleviated by using of a different cut-
off and distance transform at each body-order.

To solve the regularised least squares problemwe re-interpret it as a standard least squares problem through
the equivalent formulation

G
-A Ycmin

0
,

c 2

2⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

which is then solved using theQR factorisation.

3.1.2. Rank-revealing QR factorisation
L2-regularisation can be effectively replaced by the rank-revealingQR factorisation (rr-QR) [50], a
decompositionwhich reveals the near-degeneracy of thematrixA. The factorisation reads

=AP Q
R R

R0
,11 12

22
⎜ ⎟⎛
⎝

⎞
⎠

where P is a permutationmatrix,Q is an orthogonalmatrix,R11 andR22 are upper triangularmatrices and,
importantly, a given normof thematrixR22 is below some prescribed tolerance.

TruncatingR22 in the resolution of the least-square system can be seen as a regularisation as it removes the
smallmodes in thematrixA. To demonstrate this, let us compare rr-QR and L2-regularisation on a simple
example, whereA is the nearly rank-deficientmatrix

e
e=A 1 0

0
, small,( )

and the observations are =Y y y, T
1 2( ) . The solution of the unregularised least squares problem is c1=y1,

c2=y2/ε. The rr-QR algorithmwith a parameterαwill instead compute

e d= = e a
-

>c y c y, ,1 1 2
1

2

while the least squares solutionwith L2-regularisationwith parameterα is given by

a
e

e a
=

+
=

+
c y c y

1

1
, .1 2 1 2 2 2 2

Figure 3.Comparison of training and test errors, and the corresponding two-body potentials.
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The two solutions are asymptotically equivalent and tend to the unregularised solution as a  0. In particular,
thefirst coefficient is exactly right with the rr-QR factorisation but notwith the Tikhonov regularisation.

3.1.3. Integral functionals
Wenow introduce a class of regularisers that aremade possible by the fact that we decompose the PES into
relatively low-dimensional components, the body-orders. A special case, discussed in the next sectionwill be a
critical ingredient in ourfitting procedure.

Consider a PES given by a body-order expansion (1), and let us assume that wewrite En as a distance-based or
distance-angle potential, i.e. =E Vr u rn i i n n i({ } ) ( ({ })). Thenwe consider a regularisation functional of the form,

òG = w L V dc u u u, 13n n2
2 2( )∣ [ ( )]∣ ( ) 

where L is a linear differential operator,w an integrationweight and integration is taken over the domain of
definition ofVn, i.e. all admissible tuplesu that can bewritten as = uu rn i({ }). The right-hand side can be
written in the formof a Tikhonov functional sinceVn depends linearly on a subset of coefficients c.

To approximately evaluate this integral we choose integration points Ì= uj j
J d

1{ } that are distributed
according to themeasurew(u) du and replace the integral functional (13)with its discretised variant

åG =
=J

L Vc u
1

. 14n
j

J

n j2
2

1

2∣ [ ( )]∣ ( ) 

A canonical choice for =uj j
J

1{ } are low-descrepancy sequences; we simply use the classical Sobol sequence. This
is effective in low andmoderate dimensions where Sobol sequences ‘fill space’with few (O(1000) toO(100 000))
points [51]. In principle one could also use randomnumber sequences instead.

Infigure 4we showhow solid configurations are highly concentrated in the space of n-body clusters.
Amorphous configurations ‘fill space’much better (liquid evenmore so), and can to a certain degree be seen as a
‘natural’ regulariser, however they still concentrate in parts of configuration space. By contrast, randomor Sobol
sequences provide close to uniformdistributions of datapoints at which to apply the regularisation, or
alternatively their concentration can be easily tuned by adjusting the upper and lower bounds or through
applying a distance transformation.

3.1.4. Laplace smoother
Awide variety of choices for the differential operator L in (14) are possible. In the present workwewill only
consider the Laplace operator, g g= D º L 2, i.e. (14) becomes

åg
= DD

=

J
J

V u , 15n
n

j

J

n j
1

2∣ [ ( )]∣ ( )

where γn is an adjustable regularisation parameter. Although it is in principle possible to implement second
derivatives ofVn, we have chosen instead to approximateΔVnwith afinite-difference,

Figure 4.Distribution of 3-body clusters in theWand Si training sets versus artificially generated (random, Sobol) clusters.The
clusters are represented by distance-angle variables (r1, r2,w12)with the angle variable =w R R12 1 2

ˆ · ˆ restricted to
- - w0.3 0.212 . The picture is similar for other angle-intervals.
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åD = + - + -
a

a a
-

=

V h V h V V hu u e u u e2 .h n

d

n n n
2

1

( ) ( ( ) ( ) ( ))

Regularising the least squares fit with the functional DJn promotes that the curvatureDVn ismoderate, which is a
gentle requirement of smoothness. By adjusting the parameter γn, smoothness can be traded against accuracy
offit.

3.1.5. Two-sided cutoffs and repulsive core
For distances well below the nearest-neighbour distance regularisation is particularly crucial as demonstrated in
[31] and infigure 3(c).While we could apply the Laplace regulariser in this region to control oscillations of the
polynomials and thus prevent ‘holes’ in the PES, this would inhibit the ability of the polynomials to produce an
accuratefit in regions of interest. Instead, we chose to (1) apply an inner cutoff to allVn, n 3; and (2) replace
the global two-body polynomialV2 with a spline that guarantees repulsion at short interatomic distances. In
detail we apply these ideas as follows:

(a) Two-sided cutoff:Typically, the cutoff function fcut appearing in (3) and (5) are positive on an interval [0,
rcut) and vanish on ¥r ,cut[ ). For example, we often use the spline defined in (11).

In order to prevent oscillation and blow-up of the n-body functionsVn, n 3we require that fcut=0 on
both ¢r0, cut[ ] and ¥r ,cut[ ). A specific choice that we used in our tests is

x

x l

=
- ¢ < <

= - -

f r
C r r r

r r

1 , ,

0, otherwise,

exp 1 1, 16

cut

2 2
cut cut

nn

⎧⎨⎩( ) ( )

( ( )) ( )

where rnn is an estimate for the ground state nearest neighbour distance in thematerial under consideration,λ is
chosen such that the resulting fcut has its unique localmaximumat rnn andC such that fcut(rnn)=1. See figure 5
to visualise this construction.We emphasize, however, that there aremany reasonable alternatives to
implement this.

(b) Repulsive two-body:We initially perform the regularised least-squaresfit with a global polynomial
representation ofV2 as described in section 2.We then choose a spline point rS<rnn, sufficiently small so that
modifyingV2(r) for r<rS, ideally chosen small enough so that the RMSEs are not significantly affected. This
pointmust furthermore be chosen so that ¢ <V r 02 S( ) .We then define a new two-body potential

b

<

= + a
¥

- -


V r

V r r r
V r r r

V r e r e

, ,
, ,

,r

2
2 S

rep S

rep
1

⎧⎨⎩˜ ( ) ≔
( )
( )

( )

where <¥e V r2 S( ) is a tuning parameter that can be used to adjust the steepness of the potential, whileα,β are
chosen such thatV2̃ is continuous and continuously differentiable at rS. The formof the repulsive potentialVrep

is arbitrary, and in applications where it is important to accurately describe interactions between atoms at very
close distances it should be chosen as or similar to the universal ZBL function [52]. The repulsive core
constructions for the regularisedWand Sifits, described in detail in section 3.2, are visualised infigure 6.

In practice, the inner cutoff and spliningmechanisms interactmildlywith the regularised least squares
regression, andwe did not find it particularly difficult tofind suitable parameter choices.

Figure 5.Aone-sided cutoff function (11) for the two-body functionV2 and a two-sided cutoff function (16) for n-body functionsVn,
n 3. The illustrative parameters are ¢ = = =r r r2.3 , 2.8 , 5.0cut nn cutÅ Å Å.
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3.1.6. Sequential fits
A source of ill-conditioning in the least squares system (10) is due to the fact that anym-body functionVm can
nearly be represented as an n-body functionVnwith n>m. Thus, afinalmechanism that we employ is tofit
different n-body terms independently fromone another. For example, wemayfirstfit a two-bodyV2, followed
by themodification described in section 3.1.5(2). Then, in a separate stepwefitV3,V4, and possiblyV5 after
subtracting the values forV2 from the observations vector. At present we perform this procedure in a purely
ad hoc fashion.

3.2. Accuracy of regularised aPIPs
In this section, we investigate the effect of our regularisation procedures on the fit accuracy for theWand Si
training sets described in section 2.5, as well as a small selection ofmaterial properties.While the Sifits will be
performedwith a 5-body potential, for theWpotential we restrict the body-order to four since this already
achieves satisfactory accuracy on theW training set.

Themajority of hyperparameters for the Si andWfits are identical and can be summarized as follows: all
potentials are distance-angle potentials with the same distance transforms uij as in the RMSE convergence tests.
For the unregularised aPIPs the cutoff function is (11)while for the regularised aPIPswe use the one-sided cutoff
(11) only for the two-body potential but a two-sided cutoff (16) for all V n, 2n . The least squares functionals
areweighted differently from the RMSE convergence tests wherewewere targeting total RMSEs. For the
regularisation and extrapolation tests we chose theweights to aim for accuracy on subsets comparable to the
previously published SOAP-GAPmodels. The regularised fits employ the complete range of tools introduced in
section 3.1. The specific details of the aPIP potential parameters, fitting parameters and regularisation
parameters, and sequential fitting procedure, are given in the supplement.

The resulting unregularised and regularised potentials will, respectively, be denoted byaPIP(unreg) and
aPIP(reg).

3.2.1. Results: tungsten
Wecompare the aPIPRMSE for energies, forces and virials per configuration type in the tungsten training set
against the original SOAP-GAPmodel publishedwith the data set [47]. The results can be found in table 4. The
purpose of this test is to confirm that the regularisation only slightly reduces the RMSE accuracy per atom
compared to the unregularised aPIP(unreg).

Figure 6. Spline two-body potentials with repulsive core; see section 3.1.5(b).

Table 4.RMSE accuracy onW training set, comparing SOAP-GAP [47] against regularised and unregularised aPIP.

Energy (meV) Forces (meV Å−1) Virials (meV)

Config type GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg)

Unit cells 0.07 0.24 0.27 0.00 0.00 0.00 3.47 3.80 4.17

BulkMD 0.60 0.47 0.45 27.8 21.4 26.5

Vacancy 0.50 0.26 0.67 29.4 25.3 29.5

Dislocation 1.86 0.98 1.02 38.3 33.0 35.7

Surface 0.45 0.43 0.88 50.9 42.2 70.8

γ-surface 1.66 2.92 4.09 69.0 99.4 118.0

γ-s. vacancy 1.26 1.70 2.71 79.3 98.7 109.3
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Apart frommonitoring the RMSEwe also benchmark the fitted potentials by comparing their predictions
for variousmaterial properties: energy–volume curves of the aPIPmodels as well as the SOAP-GAPmodel are
compared against DFT infigure 7. These results are shown to be in excellent agreement for all the fitted
potentials. A second test is to calculate the elastic constantsB,C11,C12,C44 for a bcc tungsten structure. The aPIP
(unreg), aPIP(reg) and SOAP-GAP all achieve to predict the elastic constants within 1%.

3.2.2. Results: silicon
TheRMSE accuracy per configuration type of unregularised aPIP(unreg) and regularised aPIP(reg) are
compared against the SOAP-GAPfit [13] in table 5. Again the regularised aPIP(reg) is shown to decrease in
RMSE accuracy compared to the unregularised aPIP(unreg), and by larger factors than in the case of tungsten.

Thefitted potentials were again compared for a range of differentmaterial properties. The energy versus
volume curve for silicon is shown infigure 8 comparing thefitted potentials to theDFT reference, with excellent
agreement for each. The elastic constants were calculated as well as the surface and vacancy formation energies
and are presented in table 6. The unregularised aPIP(unreg) is shown to have larger errors on the elastic
constants compared to the aPIP(reg) andmost notably failed the vacancy energy test. That is, during the

Figure 7.Tungsten bcc energy versus volume comparing SOAP-GAP [47] against regularised and unregularised aPIP. The lower panel
shows the histogramof volumes in the data set.

Table 5.RMSE accuracy on Si training set, comparing SOAP-GAP [13] against regularised and unregularised aPIP.

Energy (meV) Forces (meV Å−1) Virials (meV)

Config type GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg)

dia 0.65 0.33 0.55 15.4 13.9 21.8 14.59 6.09 9.96

amorph 0.56 2.08 4.49 102.7 138.6 172.0 60.9 15.85 31.32

bt 0.72 0.27 0.45 17.2 18.2 31.2 26.47 12.94 22.15

vacancy 0.54 0.36 0.71 48.3 46.2 62.7 9.82 7.52 11.89

sp2 0.48 0.70 1.82 48.6 45.0 79.2

surface110 0.20 0.48 2.80 161.2 159.0 237.0

surface111 0.22 0.31 0.99 156.9 155.8 233.7

surface001 0.19 0.50 1.39 140.4 136.9 195.7
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relaxation of the vacancy using the aPIP(unreg) potential the optimiser failed tofind a localminimiser. This is a
manifestation of ‘holes’ in the fit whichwill be discussed in section 3.3. In comparison to SOAP-GAP the aPIP
(reg) performswell in calculating the elastic constants and vacancy formation energy. The aPIP(reg) performs
worse in the surface formation energies,most specifically the (111) direction, whichwe believe can only be
rectified by using even higher body order terms Implementing this efficiently is a focus of futurework.

3.3.Holes
As afirst test of the ‘transferability’ of our regularised aPIPfits we determinewhether the resulting potentials
have any ‘holes’ in the sense of [31]: regions of unphysically low potential energy values. The importance of
avoiding such behaviour is hard to overstate: inmostmolecularmodelling applications, samples will be drawn
using themodel distribution, and due to the exponential amplification of the Boltzmann distribution at low and
moderate temperature, holes can lead to catastrophic failure ofmodels.

Having decomposed the total PES into low-dimensional components gives the option of searching for low-
energy configurations in these individual componentsVn. Specifically, we choose aminimal inner distance
r0< ¢rcut, i.e. below the inner cutoff. Then, for each n-body termVnwe compute an approximateminimumof
V r r,...,n n1( ) over all clusters r r,..., n1( )with  r r rj0 cut, using Sobol sequenceswith a fewmillion points. The
results are summarized in table 7. It is interesting to note that the ‘holes’ in the unregularised Sifit are less severe.
We speculate that this is due to the fact that the Si training set ismuch richer; see figure 9.

Figure 8.Energy volume curve for diamond andβ-Sn silicon comparing the regularised and unregularised aPIPs, and SOAP-GAP
potentials against DFT. The lower panel shows the histogramof the volumes in the data set.

Table 6.Relative error on a range of different properties for Si, comparing the SOAP-GAP, aPIP and aPIP(reg)
potentials. The unregularised aPIP failed the vacancy test.

Model
Elastic constants (GPa) Surface energy (J m−2)

Point defect (eV)
B C11 C12 C44 (100) (110) (111) vacancy

DFT 87.45 152.21 55.07 74.95 2.17 1.52 1.57 3.67

Relative error (%)

GAP <1 −3 3 −7 −1 −1 −3 −2

aPIP(unreg) 8 5 12 −1 −6 −2 −5 —

aPIP(reg) <1 3 −5 −4 −3 −3 −10 −4

16

Mach. Learn.: Sci. Technol. 1 (2020) 015004 C van derOord et al



In the unregularised fit we visualise the location of holes by plotting slices through theV3 energy landscape in
figure 9. This shows in particular that holes appear both in regions of large angles andmoderate angles near the
ground-state.

4.Generalisation

This section presents a series of tests to benchmark the generalisation performance of the aPIP andGAPmodels
against aDFT reference. These tests were designed to probe configurational space far from the training data
region andmonitor eachmodels’ performance.We use the term ‘generalisation’ (also often called
‘extrapolation’ or ‘transferability’) in a loose sense and simply take it tomean ‘evaluation far from the training
set’whichmay technically also include interpolation—the distinction is tenuous in high dimension.

4.1. Tungsten
4.1.1. Interstitial
The tungsten aPIP(unreg) and aPIP(reg)models introduced in 3.2.1were compared against the original SOAP-
GAPmodel [47] and aDFT reference for the self-interstitial defect. TheDFTparameters were chosen to be
identical to those used in the original paper. These settingswere: 600 eV cutoff energy, 0.03Å−1 kpoint spacing
and 0.1 eV smearingwidth. The training set does not include interstitial data; see table 4.We formed the
interstitial defect by inserting an atom in aDFT relaxed 54 atom tungsten bcc cell at the octahedral site (1

2
, 0, 0) of

the primitive cell. The geometrywas then relaxed usingDFT. A linear path between the unrelaxed and relaxed
configurationswas created and theDFT, SOAP-GAP and aPIPmodels were evaluated along this path and are
shown infigure 10.

This interstitial test probes small interatomic distances which are not contained in the training database and
can therefore be strictly seen as an extrapolation test. Due to the smoothness prior, the SOAP-GAPmodel
underestimates the energy difference along the interstitial path compared to theDFT reference. As expected, the
unregularised aPIPmodel heavily oscillates along this test path since it explores configurations it was notfitted
to. By contrast, the combination of integral regularisers, repulsive core and inner cut-offs result in a regularised
aPIPmodel that shows an excellentmatch to theDFT curve. The level of agreement is likely fortuitous, but we
expect that in general the correct repulsive nature of the potential is obtained due to having enforced this
property in the two body functionV2.

Table 7. ‘Holes’ in the unregularised aPIP
(unreg) potentials.

Vinf n

n aPIP(unreg) aPIP(reg)

W 2 −273 eV −0.08 eV

3 −192 359 eV −0.06 eV

4 −4877 eV −0.18 eV

Si 2 −0.66 eV −0.08 eV

3 −2934 eV −0.6 eV

4 −447 eV −0.11 eV

Figure 9.Holes in the 3-body potentialV3 for the unregularisedWaPIP fit. Two slices through the potential energy landscape are
plotted.
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4.2. Silicon
4.2.1. Surface decohesion
We set up a bulk Si diamond 10×1×1 supercell and increase the lattice vector length in the long direction
while keeping the atomic positions fixedwhich in turn creates two surfaces [13]. Both the initial bulk structure
andfinal surfaces are configurations that arewell represented in the training set and fitted by the aPIP(unreg),
aPIP(reg) and SOAP-GAPmodels towithin 3meV accuracy; see table 5. The configurations along the path in
between are not contained in the database. Therefore this test can be seen as generalising in that it evaluates the
potential on a path between two accurately fitted configurations.

Figure 11 shows that the end points, bulk diamond and (100) surface, are accurately fitted.However, the
SOAP-GAPhas a localmaximumaround 2.5Å, unlike theDFT reference which shows a smooth andmonotone
transition along this path, a characteristic which both the aPIP(unreg) and aPIP(reg)mimicmore accurately
than SOAP-GAP.

4.2.2. Layer test
In this test we set up a bulk silicon diamond configuration and and gradually increase the interplanar spacing
between the (111) layers of silicon. The configurations along this path are arguably unphysical but should, as the
DFTmodel confirms, correspond to unstable high energy configurations. Past experience shows that poorly
fitted potentials can have unphysically low energies for such configurations. The aPIP and SOAP-GAPmodels
were evaluated on this path and are compared to theDFT reference infigure 12.

Figure 10. Linear path between unrelaxed and relaxed tungsten interstitial configuration. The unregularised aPIPfit explodes whereas
the regularised aPIP closelymatches theDFT reference.

Figure 11.Decohesion curve in silicon bulk diamond along the (100) direction. The bulk diamond structure corresponds to the left
end and the unrelaxed (100) surface is on the right.
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The SOAP-GAPmodel predicts a high energy localminimumalong this path, which should be entirely
unstable as shown by theDFT reference. The presence of such false high energy localminima are detrimental for
applications such as random structure search [53] but also high temperature or high stressmolecular dynamics.
The aPIP(unreg)model has amuchmore shallowhigh energy localminimum, but the aPIP(reg)model showno
minimumat all (while still not being quantitatively accurate in the unphysical region).

4.3. Titanium
Titanium is a difficultmaterial to construct interatomic potentials for, due to its bonding chemistry being
intermediate between covalent andmetallic andwe therefore chose it for ourfinal test system.Herewewant to
explore how the different functional forms and regularisation strategies perform in the limit of very little data.
Themotivation for this is partly that the large size of the published data sets in the previous sections in and of
itself acts like a regulariser, but also that in the futurewewish to eliminate extensive sampling as away to generate
data sets. Rather, wewould like to develop potential fitting frameworks that are explicitly regularised to the
extent that a few judiciously chosen training configurations are sufficient to obtain good interatomic potentials.

We generated two very limited training sets, denoted by Set 1 and Set 2. To Set 1, we fit unregularised and
regularised aPIP potentials denoted, respectively, by aPIP unreg1( ) and aPIP reg1( ), as well a SOAP-GAP potential
denotedGAP1. In additionwefit an unregularised aPIP potential, denoted aPIP2 (unreg) to Set 2. The detailed
potential and fitting parameters are described in the supplementary information.

Set 1 This set contains primitve cell bcc and hcp configurations, obtained by sampling the Boltzmann
distributionwith a temperature parameter set to 100K as the lattice vectors (and in case of bcc, the relative
positions of the two atoms) are varied. The obtained configurationswere evaluated using CASTEP [48]with
k-point spacing set to 0.015Å−1, 750 eV cutoff energy and 0.1 eV smearingwidth. In addition 3× 3× 3 bcc
and hcp supercells were added, and Phonopy [54]was used to generate the inequivalent finite displacements
(one for each structure) of a single atomby amagnitude of 0.001Å. These two configurationswere
evaluatedwith a larger k-point spacing equal to 0.03Å−1.

Set 2 This set contains Set 1 aswell as additional finite displacement configurations analogous to those in Set 1,
but nowwith a 0.01Ådisplacement.

4.3.1. Cohesive energy
Figure 13 shows the energy versus volume curves for the titaniumbcc and hcp phases for the various potentials
allfitted to Set 1. The distribution of the atomistic volumes are on the lower panel and show that training data
covers only volumes in the range between 15 and 17Å3/atom. In this region both aPIPmodels as well as the
GAPmodel agree well with theDFT reference. For smaller and larger volumes the fitted potentials all deviate
from theDFT reference as expected due to the lack of data.However, the unregularised aPIP shows a steep drop
for small volumes and a secondminimum for large volumeswhereas the regularised aPIP andGAPmimic the
DFT curve at least qualitatively, showing the benefits of regularisation.

Figure 12.The layer test alongwhich bulk silicon is split in layers of silicene. The SOAP-GAPmodel predicts a high energy local
minimawhereas the regularised aPIPmodel does not.
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4.3.2. Phonon spectrum
SOAP-GAP and aPIPmodelsfitted to Set 1 and Set 2were used to generate the phonon spectra for bcc and hcp
titanium and are compared to theDFT reference infigure 14. Although aPIP1(unreg) and aPIP1(reg)were both
fitted to Set 1, aPIP1(unreg) failed catastrophically while aPIP1(reg) produces a highly accurate phonon
spectrum. The negative frequencies of the bcc phonon spectrum at theΓ points demonstrates the instability of
the structure at 0K.

Of course an alternative, butmuch less controllable way to improve the regularity of a potential is to simply
addmore data to the training set.MLpotentials in the literature, even if they are not explicitly regularised, can
avoid the unphysical behaviour seen in here because they arefitted to large data sets. To see this effect, consider
the potentialsfitted to Set 2: aPIP2(unreg) phonon spectra are somewhat improved, but they remain highly
inaccurate quantitatively.We expect thatmuchmore training data would be required to accurately converge the
phonon spectrumof an unregularised potential.We suggest instead that regularisation and a single
displacement per crystal structure are enough to accurately reproduce phonon spectra.

4.3.3. Burgers’ path
The Burgers’ path is a pathway from the bcc to hcp crystal structure [55]. It consists of a shear deformation
applied to the bcc structure followed by a shuffle of atomic layers resulting in a hcp structure [56].

We evaluated the Set 1 fits on the Burgers’ path and the results are plotted against theDFT reference in
figure 15. The energy per atom along the Burgers’ path shows that the SOAP-GAPmodel overestimates the
barrier by 30meV along the transition frombcc to hcp. The aPIPmodels as well as theDFT reference do not
show such a barrier. The training database contains bcc/hcp configurations sampled at a low temperature
(T=100 K) resulting in a database containing structures close to the relaxed bcc and hcp configurations. As
expeced, figure 15 shows the aPIP and SOAP-GAPmodels both predict the energies for the hcp and bcc crystals
accurately. However, the aPIPmodelmanages to predict the energy along themiddle part of the pathmore
accurately compared to theDFT reference.

To analyse this we use body order expansion to investigate the Burgers’ path test in a different way. By
plotting the 3-body distances r12, r13, r23 of the primitive cell training database, Set 1, we can visualise the
clustering of data in theV3 space. Figure 16 shows the clustering of data around the relaxed bcc/hcp
configurations and shows the Burgers’ path connecting the two configurations aswell. The training data was
sampled at a low temperature (T=100 K) andwe therefore see a limited exploration of data away from the

Figure 13.Energy versus volume plots for Titaniumhcp and bcc phase. The volume histogrambelow shows the distribution of the
training data.
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relaxed configurations. The Burgers’ path clearly explores configurations in thisV3 spacewhere there is little to
no data present, showing that even in this low dimension this test can be considered as a non-trivial
generalisation.

Figure 14.Phonon spectra computed using the aPIP, SOAP-GAPmodels andDFT reference. Regularisation increases the accuracy of
the aPIPmodels, similarly to the addition of FDCdata.

Figure 15.Burgers’ path comparing aPIP, SOAP-GAP andDFT reference. The SOAP-GAPmodel correctly predicts the relaxed bcc/
hcp energies at both ends of the path but overestimates the energy along the remainder of the path.
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Webelieve that the lack of accuracy along the Burgers’ path of SOAP-GAPmodel is due to the lack of
training data in that region. It is amanifestation of high dimensional fits giving answers that are still regular, but
have uncontrolled errors when extrapolating away from the training database. The aPIPmodels perform
significantly better in this test because, as we propose,modelsfitted in lowdimension (e.g. the dimensionality of
the body orders)will in general performbetter in generalisation tests compared to high dimensional fits such as
SOAP-GAPmodels.

It will also be interesting to systematically explore the relative benefits and possible unification of
regularisation and active-learning style techniques that bring in new data in previously unexplored
regions [31, 57].

5. Conclusion

The purpose of this paperwas two-fold:firstly, we developed atomic PIPs (aPIPs), a generalisation of PIPs [40],
interatomic potentials constructed frompermutation invariant polynomials formaterial systems by applying
the PIP construction to atomic body ordered expansions of the total energy and endowing themwith usual
cutoffmechanisms. By fitting the polynomial coefficients to solid training sets (rather than clusters in vacuum)
wewere able to obtain an accuracy comparable with the SOAP-GAPmodels for tungsten [47] and silicon [13]
(on a non-trivial subset of the full training set) using low body-orders, four orfive, which are still at least an order
ofmagnitude faster to evaluate than SOAP-GAP.

Secondly, we studied the generalisation (extrapolation) properties of the aPIPs.We developed novel
regularisationmechanisms that exploit the low-dimensional structure of the body-ordered terms to ensure
correct qualitative behaviour of the potentials, such as smoothness, well away from the training set.We showed
that such a regularisation is crucial to achieve the extrapolation properties of theGaussian process based SOAP-
GAP [13, 47]. Indeed, our regularisation techniques are amenable tofine-tuningwhich enabled us to
significantly improve on the SOAP-GAPmodel in several tests. Thus, we have established that our framework
provides a novel ‘tool kit’ forfitting interatomic potentials formaterials with high accuracy and excellent
transferability, across awide range of bonding chemistries.

The silicon, tungsten and titaniumdatasets are openly available at http://libatoms.org/Home/
DataRepository, the aPIP framework can be found at https://github.com/cortner/NBodyIPs.jl.

Figure 16.Visualisation of the sparsity of the Ti training sets: each datapoint represents a 3-body cluster, described through
interatomic distances r12, r13, r23, contained in the primitive cell configurations of Set 1. The Burgers’ path explores regions of 3-body
space far from the regions with datapoints, which demonstrates that the Burgers’ path test requires significant generalisation away
from the training set.
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