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Abstract

We investigate the use of invariant polynomials in the construction of data-driven interatomic
potentials for material systems. The ‘atomic body-ordered permutation-invariant polynomials’
comprise a systematic basis and are constructed to preserve the symmetry of the potential energy
function with respect to rotations and permutations. In contrast to kernel based and artificial neural
network models, the explicit decomposition of the total energy as a sum of atomic body-ordered terms
allows to keep the dimensionality of the fit reasonably low, up to just 10 for the 5-body terms. The
explainability of the potential is aided by this decomposition, as the low body-order components can
be studied and interpreted independently. Moreover, although polynomial basis functions are
thought to extrapolate poorly, we show that the low dimensionality combined with careful
regularisation actually leads to better transferability than the high dimensional, kernel based Gaussian
Approximation Potential.

1. Introduction

There is along and successful history of using empirical interatomic potentials for the simulation of materials
[1]. One approach is to treat such models as purely phenomenological, setting out a few key features of the true
interaction to be captured (e.g. the stability ordering of certain phases), and investigate what other properties,
both macroscopic or indeed microscopic, follow from these. More recently, as electronic structure calculations,
particularly density functional theory (DFT) [2], has increased both in accuracy and availability, there has been a
widely shared desire for potentials to match the Born—Oppenheimer potential energy surface as closely as
possible [3, 4]. This change of attitude in the materials simulation community has come rather later than the
analogous one in the world of organic force fields, partly due to the more systematic nature of quantum
chemistry methods applicable to small molecules [5, 6].

Already a decade ago, it was clear that empirical potentials had reached their limits in terms of their ability to
match the potential energy surface of DFT, essentially due to the use of simple, physically interpretable
functional forms At around the same time significant developments started in which models with thousands of
free parameters (so-called high-dimensional models) were fitted to electronic structure data. The methods are
borrowed from machine learning, e.g. artificial neural networks (ANN) [7-9] and Gaussian processes (GP)

[10, 11]. Although formally these models contain many degrees of freedom, they are often called nonparametric,
because there are either good recipes for determining the best parameters that fit the data (in the case of training
ANN:Gs), or linear algebra expressions in the case of GPs. The few model parameters that are still adjusted by hand
or by other ad hoc recipes are called hyper-parameters, e.g. the nonlinear transfer function of ANN units, or the
kernel shapes in GPs. It was understood early on, similarly to the more traditional applications of machine
learning, that it is advantageous to use an appropriate representation of the input data (atomic positions in this
case) that captures all the known symmetries present in the problem [12]. These models achieve very high
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accuracy on the training datasets and, when carefully used, on configurations that are ‘near’ the training, e.g. ina
molecular dynamics run under similar conditions. However, the transferability of such models can still be poor.
A recent attempt at assembling and fitting to a very large and diverse training dataset of elemental silicon [13],
while generally staying physically sensible away from the training data, still showed up to 20% error in formation
energies and migration barriers of some defects that were not in the training set. The data requirements to
achieve even this level of transferability are expected to grow significantly for multicomponent systems.

While a better choice of representations and kernel functions may improve the transferability somewhat, it is
conceivable that high-dimensional fits will, by their very nature, always suffer from this problem.

Similar effects can be seen in a related field, the fitting of the potential energy surfaces of molecules to high
level, wave function based quantum chemistry calculations. This endeavour has a rich history [14—19], which
also includes high-dimensional nonparametric fits that are very accurate for small systems (a handful of atoms),
yet itis recognised that once the dimensionality reaches a few tens, the fitting task becomes extremely difficult.

Atpresent, the only plausible way to break the curse of dimensionality is to explicitly or implicitly identify
low-dimensional structures of the potential energy surface. If this can be done explicitly then the energy can be
broken up into multiple low-dimensional terms, ideally ensuring that higher dimensional terms account for less
variation. The challenge is to do this generally, systematically, and without sacrificing accuracy.

A time-tested and obvious way to introduce low dimensional terms is to use the body order expansion applied
in an atom-by-atom fashion [20-25], i.e. define the total energy as a sum of one-atom, two-atom (pair), three-
atom (angle) terms, and so forth. Let R = {1; }911 be the positions of M atomic nuclei of the same species,
representing a configuration of atoms (perhaps but not necessarily with periodic boundary conditions), then we
write the total energy as

N!

iZ...ZiN

ER) = > Er) + %ZEz(l‘i, ) + % > Es(rprjpr) + - + €L > EN(isenTiy). (D
j

i=j . iijik

Note that if the n-body function E, is permutation invariant then %Z,—limiin
> i< .. <i, Periodic boundary conditions are treated by taking into account the periodic images of atoms within
the computational cell in (1).

We must strongly emphasize the distinction, on the one hand, between such a decomposition of the total
energy into additive components, each of which only depends on few coordinates, and on the other hand the
construction of complete, many-body, invariant representations of R using various combinations of two- and
three-body functions, which are subsequently used in a single high-dimensional nonlinear nonparametric fit
[26-28]. For example, consider the symmetry functions of Behler and Parrinello [29]. Although each element of
the descriptor is itself built out of just interatomic distances (2-body) or angles (3-body), the entire descriptor
vector taken as a whole is a high dimensional description of the neighbour environment of an atom, and
subsequent fits are of functions in that high dimensional space. In contrast, the individual energy terms in (1) are
all low dimensional, and it is to be expected that they can be fitted using much less data, since low dimensional
spaces can be covered comprehensively by a relatively small number of training configurations. In particular we
conjecture excellent extrapolation properties. Note that this does not require an a priori definition or calculation
of these terms, the fitting is still to be made to total energy E and its derivatives (forces and stresses)
corresponding to configurations with many atoms.

The utility of additive body order expansions has been recognised in the context of the recent machine
learning based potentials. By writing the total energy as a sum of pair, triplet and a many-body terms with
explicit weight factors [11, 13, 30], it is possible to prevent catastrophically erroneous predictions at small
interatomic distances. Note that the failure of high dimensional fits at small interatomic distances is well known
by the quantum chemists who fit small molecule potential energy surfaces [31].

However, merely writing the total energy as a body order expansion does not in itself bring the benefits of
low dimensionality. The terms in (1) may be highly redundant, e.g. a general three-body potential includes all
possible two-body potentials by simply not depending on one of its arguments, and this is true for all orders. A
potential fitting methodology whose terms are intrinsically body-ordered was introduced as the Moment Tensor
Potentials (MTPs) [32], although it would appear that no explicit use is made of the lowest dimensional terms to
maximise transferability. Recently, the Atomic Cluster Expansion (ACE) was introduced and the connection
between the body order expansion and the high dimensional representations used in the earlier many-body fits
was also made formally explicit [33]. There, transferability is achieved by defining and calculating the low order
terms in (1) explicitly using the total energy function of small clusters: the order M term is the interaction energy
of the M-atom cluster in vacuum (with lower order interactions subtracted).

In both the MTP and the ACE approaches, a basis of symmetric polynomials is introduced, whose elements
are body-ordered, and a linear fit in this basis is the fundamental modelling tool. The high computational cost of
the many-body expansion is avoided by taking the entire many-body environment of each atom as a spatial
density, and projecting it onto a rotationally invariant basis set, the components of which turn out to be

may of course be rewritten as
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body-ordered. This density trick is the same that is used by high-dimensional descriptors, including SOAP-GAP
[12], Behler—Parrinello symmetry functions [29], and the bispectrum [34, 35], but without taking advantage of
the body-ordered decomposition.

Finally, itis notable that yet another route to the atomic body ordered expansion is afforded by the
Generalised Pseudopotential Theory approach of Moriarty [36—38]. GPT treats perturbations of the electron
density within the framework of DFT using the uniform electron gas as reference, and via a series of
approximations derives individual body ordered terms formally—but also including the unit cell volume as a
variable. It has had considerable success in modelling single species defect-free metals in an essentially
parameter-free manner. Its extension to more complex materials is not straightforward, and calculating high
body order terms (3- and 4-body terms) is rather complicated even for the simpler cases. Nevertheless GPT can
be thought of as the explanation (or justification) of why the body order expansion is a good idea for strongly
bound condensed phase materials, especially metals.

In this work, we will consider each body ordered term as an independent function to be fitted, but only
whose sum is known. We will define a basis set with which we do a linear fit, so at the end, all the unknown basis
coefficients may be determined in a single linear least squares problem, but separate and distinct distance based
cutoffs and regularisation strategies are applied to each term. We will also forgo the vacuum-cluster definition of
each term, and instead fit the basis coefficients directly to condensed phase data only. The advantage in fitting the
body-order expansion to a condensed phase training set is that it can be expected to converge faster. Indeed,
there is significant empirical evidence for this, such as the relative success of few-body interatomic potentials,
cluster expansion for alloys [39], GPT [36-38], however, we are not aware of any rigorous results that explicitly
show this in general.

For defining a basis set for the body ordered terms, we employ the theory of permutationally invariant
polynomials (PIP) a technique based on classical invariant theory, introduced to molecular modelling for fitting
the potential energy surfaces of small molecules; see e.g. [18, 23, 40] and references therein. To adapt this
formalism for condensed phase covalent materials we make two modifications: (i) an explicit introduction of
distance-based cutoffs into the basis functions, and (ii) each body-ordered term has its own set of PIPs, taking
account of the specific symmetry group of that term. By contrast, in the original application of PIPs to small
molecules, each molecule (or a set of small molecules taken as a cluster) had its potential energy surface defined
and fit with the appropriate set of PIPs and each new molecule or molecular cluster required a completely new
fit. In a somewhat similar vein to our ideas here, the possibility to apply PIPs to manually determined subsets
(fragments) of a molecule has previously been suggested in [40] and very recently first explored in [41].

We will call our basis set ‘atomic PIPs’ or aPIPs, to emphasize that the body order expansion inherent to the
use of PIPs is done here on an atomic rather than molecular basis. For the sake of simplicity, we limit the
exposition here to elemental materials, but the formalism generalises naturally to multiple species, exactly in the
same way as the original PIP formalism does for molecules.

Our overarching goal, for which the aPIP fits serve as examples, is to demonstrate for the case of materials
(rather than isolated molecules) that (i) low body order potentials can reach the same high accuracies that high
dimensional fits can, and (ii) polynomial fits can be used to improve generalisation properties of interatomic
potentials and that sophisticated regularisation is the key to achieving this.

2. Symmetric polynomial basis

Our starting assumption is that (1) can be used to construct high-accuracy PESs for moderate to low body-order
N, which is certainly the case empirically. Next, we require that the individual contributions E, inherit rotation
and permutation invariance (RPI) from E. Our aim is then to construct systematically improvable functional
forms to represent individual E,, functions that exactly preserve these symmetries:

1. Construct coordinate systems
Xy = Xp(T150ee )
that are continuous, rotation and permutation invariant, and represent

En({ri}?:l) - q)n(xn({ri}))~

2. Choose basis sets { B,;;} and represent

D, (x) = Z anan(X)-
j
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3. Apply a cut-off mechanism to prevent inclusion of clusters with atoms that are very far from each other that
have negligible contributions to the total energy.

4. Use regularised linear least squares (i.e. ridge regression, force matching [3]) to determine the coefficients
{¢ujlnj> using total energies, forces and stresses calculated by a first principles electronic structure approach
as training data.

Several aspects of this strategy are familiar from recent machine-learning models: for example, the
motivation for employing a RPI coordinate system is the same as for the use of symmetry functions descriptors
for ANN potentials of Behler and Parrinello [9] as well as the SOAP descriptor and kernel of the GAP framework
of Bart6k and Csényi [11]. Employing a polynomial basis to obtain a systematically improvable functional form
was also proposed by Braams and Bowman [40], Shapeev [42]. We will import much of the invariant theory
methodology for the representation of symmetric polynomials from Braams and Bowman [40]. In the following
we will show how this approach leads to a large design space and in particular describe different coordinate
systems as well as the basis functions to represent the potential energy.

2.1. Distance-based potentials
Our first construction of a RPI coordinate system is achieved by closely following the ideas of Braams and
Bowman [40]: we first choose rotation invariant (RI) coordinates of transformed interatomic distances,

En({ri}zr'l:l) = E;P({uij}?<j:1))

where u;; denotes a distance transform such as euclidean distance itself or the common Morse or inverse distance
variables,

7(1'1’,’]" uij — ri;p’

Ujj = nj Uj=e¢€
where o, p > 0. The superscript ‘D’ in E,” indicates that the arguments of the function are distances.
Alternatively, distances and angles can be used, which we discuss below and will denote with the super-
script ‘DA’.

In the case of the 2-body term, 1, is already a RPI coordinate system. For the 3-body contribution, the
permutation invariance of E; with respect to exchanging atom indices gives rise to full S; permutation
invariance of E{. Here, and throughout, S,, denotes the symmetric group over n elements. The elementary

symmetric polynomials therefore give a permutation invariant coordinate system,
D D
E3 (rl’ I, r3) = E3 (ulz’ U3, M23) = (1)3 (f;},l’ f3,2 > f;;):;))
where

fr1=tha + th3 + w23,
fip = otz + unnts + w33,

f3)3 = U Uh3U3. 2

The key property of the coordinates f; = (f3,1, 3,2, f3,3) is that they completely define (1}, r,, r3) up to rotations
and permutations. The choice of such invariant coordinates is not unique. For example, we may choose
[, =2ic jui;?, n = 1, 2, 3andin section 2.2 we replace distance coordinates with distance and angle
coordinates.

For the n-body terms with # > 4, the permutation group S, acting on {r;}\_; which encodes the symmetry
of E, induces a non-trivial permutation group S’ C S,(,_1y/2 actingon {u;}ij— encoding the symmetry of

EP.Thatis, apermutation € S, of sites {r;} is re-interpreted as a permutation in S, of distances through the
action

™
Ujj — Urinj

see figure 1 for a visualisation in the four-body case.
Employing invariant theory techniques [40, 43] we then construct fundamental invariants f, = {f, Jar,,
where A,, > nis the dimensionality of the set f, and each f,  isa multi-variate polynomial in {u;;} thatis

invariant under S,P , such that we can rewrite E,, as
E,({r:¥-)) = EY ({uy}) = <I>nD({f,1,a})-

A subtle point is that admissible arguments {u;;} and {f, ,} belongto (3n — 6)-dimensional submanifolds of,
respectively, R*"~1/2and R4, where n(n — 1)/2 > (3n — 6)forn > 5and A, > n(n — 1)/2forn > 4;see
table 1. For illustration, a possible choice of the fundamental invariants for a 4-body distance-based potential are
given in table 2.
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Figure 1. Permutation of the edges of a tetrahedron when two corners are permuted. In blue and green are permuted edges. Although
there are six edges, the symmetry group of the edges induced by permuting pairs of atoms is a strict subset of S, which we
denote by SP.

Table 1. Comparison of potential minimal number of
coordinates, number of RI coordinates (distances), and
number of RPI coordinates (fundamental invariants).
For six-body invariants MAGMA terminated without
computing the fundamental invariants within several
weeks of CPU time. This is related to the rapidly
increasing cardinality of the symmetry group (6! = 720).
Note that restricting the polynomial degree shortens the
computations, hence allows to compute invariants for
higher body-orders, as is performed in [44].

n 2 3 4 5 6
#coordinates 1 3 6 9 12
dim {uii} 1 3 6 10 15
A, =dim(f, ) 1 3 9 56 —
Table 2. 4B distance-based invariants.
fia= v+ s+ gtz + oy + Uz
2 2 2 2 2 2
fap= uitoutou U+ g+ ouy
faz= itz + Uiplig+ Uity + Uiolizg + W3t + W33+ Uislag + Uiglias + Uialay + Uaalig + Upstisy + Unalizg
3 3 3 3 3 3
fag= up tou +oug sy oug, 4 oug
fas=  tnathsthg + Uiotgtiss + Uistoslizg + Uigliasting

_ 4 4 4 4 4 4
Jae= it ou ot gy + Uy + Uy
fi= ubus + ubing + ud + upisg + upud + L+ A+ maudy + uf + uduys + ulusg + wsuly + msus+

47— 12M3 12U14 T U Uy 12434 12Uy T UpplUyy T Upplyy 12U3y 13414 13423 13U34 13U14 13U3
2 2 2 2 2 2 2 2 2 2 2
U3tz + Ujglas + Ujgtis + gty + gty + Ustps + Uy3Uss + g3ty + Up3tizy + U Uss + Uiz
_ 2 2 2 2 2 2 2 2 2
fas=  Uiathsths + uthaths + Upthsthy + U th3Usy 4 iUty + a3ty Ui th3Usy + taUigUsg 4 g tss +
2 2 2 2 2 2 2 2 2
tpUratizy + thaty3tag + UpUy3tize + Uzlhatly + U3Up3lps + U3laatisg + Uizl gUse + th3thatyy + th3thatisy +
2 2 2 2 2 2
W3Up3 sy + U3l Uss + UjglazUsg + Uigllpg sy + Upgtp3tisy + UialpaUsy

_ 2 2 2 2 2 2 2 2 2 2 202 2 2 2 2,22 22

fao=  Uithslyy + upthatiyy + U3ty + UG U3 Uz U Uy + Walig sy T U3ty U3 U3 Uy T3 U Use F W3ty Usy +

2 2 2 2
UjgUp3Usy + UjgUpyTsy.

To complete the definition of n-body distance-based potentials, we supply E,, with a cut-off mechanism,
redefining them as

E ({ri¥=) = (D] fou ) )

i<j

where f,,(r) is smooth and vanishes outside some cut-off radius 7. That is, we only account for n-body clusters
for which all edge lengths are within the cut-off radius. The choice of cut-off mechanism is far from unique of
course, and can be adapted to the systems of interest.




I0OP Publishing Mach. Learn.: Sci. Technol. 1(2020) 015004 Cvander Oord etal

Table 3. 4B distance-angle-based invariants.

fa= gy + Uz + U3

fir= Wa13 + Waig + Wiy

fiz= uh 4 uf + us

faa= UpWa13 + U13W314 + Up3Waig

fis= Wois + Wiy + Wiy

fas= upy + ufs + U3+ WisWars + Waswiyy + Wiy Wi
fi7= UpaWarg + UpzWai3 + UpzWaiy

fus= wiis + Wi + Wi

fio= Uiy + oty + whs3ug

fa0= UppU13Wa13 + UnlixzWars + Ui3Ua3W314
fan= Wi + 3wy + 3wy

fa= uhWars + uBwas+ U Wi

f:;,13: UpaWa13Wa14 + UpsWa13W314 + UpsWo1aW31g
f4,14: W2213W314 + W213W2214 + W214W3214-

2.2. Distance-angle potentials
While distance-based coordinates are seemingly canonical in that they inherit the maximum symmetry, it is
sometimes intuitive to employ a coordinate system that incorporates more ‘physically natural’ coordinates,
which maylead to alternative RI and RPI coordinate systems. For example, the success of employing bond-angle
coordinates in empirical force fields [22] suggests that using these coordinates may produce better fits at similar
cost. This idea is further supported by the success of MTPs [42], which can be also interpreted as distance-angle
potentials. Within our framework, many-body distance-angle potentials are constructed as follows.

Asin section 2.1 let u;; denote transformed distance coordinates. In addition, let w;; denote angle
coordinates, the canonical choice being

Wik = co0s Oy = Tjj - Tigo
where rjj = r; — r;and £ = r/|r|. We then write an n-body term E,, in a way that retains only partial symmetry,
DA
E,({rifio) = E; " ({wjlj—as {widjcr=a)s

where the superscript ‘DA’ indicates that the function E * is parametrised by distances and angles. The 2-body
contribution E, is again a pure distance-based potential.

Forbody order n > 3, we transform again to an RPI coordinate system. For the distance-angle potentials we
retain only permutation invariance with respect to the n — 1 neighbours, which induces a different symmetry
group SP4 on the coordinates ({ ugj}j, {wijk}ix). Analogously to the distance based potentials, the fundamental
polynomial invariants for this permutation group SP4 yield a RPI coordinate system 1, = f,Qwili> {wedio)
and thus the representation

E,({ri}i_)) = NS

For 3-body potentials a possible choice of fundamental invariants is

f3.1 (2, w13, wia3) =ty + w3,
f3,2(U12> U3, W123) = Upplhi3,

f3,3(M12> U3, Wi23) = W13, (4)

while a possible set for four-body potentials is given in table 3.

The number of fundamental invariants is higher than for the distance based coordinate system, while the
degrees of the invariants are smaller. Thus, the invariants are cheaper to compute but more basis functions will
be required. This is due to the fact that we exploited less symmetry in the distance-angle potentials than in the
purely distance based potentials.

Finally, we propose a natural cut-off mechanism for distance-angle potentials,

E,({ry_) = @) T fouemp)- 5)

j=2

This cut-off mechanism is different from the one in the distance-based potential (3) since it only acts on the
distance variables and thus the product is taken over a smaller set of r;; values, leading to a summation over a

6
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different set of n-body clusters in the total potential energy assembly. In particular, the meaning of the cutoff
radius of f.,,; in (3) and (5) is not equivalent.

2.3.Polynomial approximation

In the following, we write &, to mean ®2 or ®P* depending on whether we are considering distance or distance-
angle coordinates. To construct computable representations of the EX*' we will use multi-variate polynomials:
the n-body functions E,, will be represented as polynomials of the invariants f, = {f, j}?;p ie.

E.({r;}) = ®u(f,) = B(f);

where P, is a multi-variate polynomial in f,, with coefficients that are to be determined; see section 2.4. By
increasing the polynomial degree of P, we can in principle approximate arbitrary smooth, symmetric functions
E,. In particular, letting the body-order n, the cutoff r, and the polynomial degrees all tend to infinity we can
represent an arbitrary smooth PES. That is, our construction is systematically improvable.

However, we briefly discuss a subtlety that arises for n > 4 when the permutation groups become non-
trivial: in this case, the representation of a given symmetric polynomial in terms of the fundamental invariants is
not unique. This non-uniqueness can be avoided by introducing an alternative set of invariants, the primary
invariants p, = { pn,a}z(:"f D/2 and secondary invariants s, = {s,p}, both of which can be constructed from the
fundamental invariants [40, 43]. In terms of p,, s,

E,({t}=) = B(f) = > supbub(p,)s (6)
b

where each P, ;, is a multi-variate polynomial in n(n — 1)/2 variables of the set p,, and the summation ranges
over all secondary invariants. Once the invariant sets p,,, s,, are specified, this decomposition of a symmetric
polynomial is unique, which gives a simple way to generate all symmetric polynomials with a prescribed degree.
The choice of invariants p,,, s, remains non-unique. A ‘manual’ construction for n = 4 is proposed by Schmelzer
and Murrell [45], however, for n > 4 this can practically only be achieved using a computer algebra system; we
employ the MAGMA software package [46].

We briefly describe the primary and secondary invariants for 3- and 4-body terms For 3-body potentials, the
permutation group is trivial (all of S3), hence the p; = f; and s3 = (1). For 4-body potentials, the primary
invariants are

b= {ﬁl,a 2:1 2
which thus depend on the choice of coordinate system, D or DA, through the definition of f,,. The secondary
invariants also depend on the choice of RI coordinates. For distance-based potentials there are six secondary
invariants,

se = (1, f4,7’ f4,8’ f4,9’ f42,7’ f4,8f4,9)’

while for distance-angle potentials there are twelve secondary invariants,

se = (1, f4,7> f4,8 s--->f4,14’ f4,7f4,8’ f42,8’ f42,10)'

Note that the constant polynomial 1 is usually not considered as a secondary invariant; we include it for
notational convenience.

For five-body potentials in distance based coordinates, we find 144 secondary invariants out of which 21 are
irreducible. For distance-angle potentials there are 266 secondary invariants among which 44 are irreducible.
Due to the complexity and large numbers of these polynomials we use the MAGMA output to auto-generate
source-code that evaluates the invariants and their derivatives for our aPIP implementation.

2.4. Least-squares fit

All variants of the body-ordered interatomic potentials E (R) we proposed in the foregoing sections can be
expressed as alinear combination of basis functions B,x, where 1 is the body-order, k € N"*~1/2 defines a
monomial in the primary invariants and b € N denotes the indices of the secondary invariantin (6).

To see this, we first specify a total polynomial degree D,, > 0, and recall that the invariants p,, ,ands,, ; are
themselves polynomials in the RI coordinates and have therefore a well-defined total degree deg(p, ), deg(s,,»)-
We can now write the polynomials P,, , from (6) as

nn—1)/2
BouU{pua) =D e [ (B
{ka}

a=1
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nn—1)/2
a=1

where the summation ranges over all tuples k = (k,),2 of non-negative integers with

deg(snp) + Y kadeg(p,,) < Dy

The coefficients ¢, are the unknowns to be determined in the least squares fit. Thus we see that for each body-
order n, each secondary invariant indexed by b and for each tuple k specifying a monomial within the prescribed
degree D,, we obtain a corresponding basis function for the total potential energy

nn—1)/2
Bux({r}it) = > Eut({riz}l—l,“.,n)x|:5n,b 11 (pn,u)k“], )
1<ii<i, a=1
<. <ip <M

where s,, ;, b, qare evaluated at {r;},=;, .. ,and the definition of the cut-off function F,({r;}=1,...,,) depends
on the choice of variables and is defined in (3) for the distance-based case and (5) for the distance-angle case. In
the summation, only clusters respecting the cut-off condition F.,({r;}i=1,...,,) > 0 taken into account to ensure
linear scaling cost.

It remains to determine the coefficients c,, in the linear expansion

E({r) = > cuBux({riliL), (®
n,b,k

achieved via solving a linear least squares problem.

For each atomic configuration Rin a training set R, the corresponding energy &, forces Fy and possibly
virials Vg are given. The minimized functional is of the form

J= 3 (WEER) — &P + WEIF(R) — Fr* + Wy [V(R) — VrP), ©)
ReER

where Wg, Wg, Wy are weights that may depend on the configurations R, and F(R) and V(R) are, respectively,
forces and virials computed from the energy functional E (R).

In summary, since Jis quadratic in the unknown polynomial coefficients ¢ = {c,;k}, its minimisationisa
standard linear least-squares problem

min ||Ac — Y3, (10)
[

which we solve using a QR factorisation. The size of the system matrix A is Nyps X Npasis Where Ny, is the
number of basis functions while N, is the number of observations (energies, forces, virials, and regularisation,
ifany, see below). In our examples N,s may be in the range of hundreds of thousands, however, N ,;s remains
low; on the order of hundreds to a few thousands. In this case, the QR factorisation of the matrix A is
computationally cheap (O (Nyps X Ni,;) operations) and numerical stable. We postpone discussion of
regularisation mechanisms to the next section, some of which will show up as a regularisation functional added
to J, which will thus remain a quadratic functional in c.

2.5. Systematic convergence

The prospective accuracy of an interatomic potential is directly related to its functional form, in our case the
choice of basis functions to represent the PES. The family of potentials we constructed in the previous sections
are systematically improvable: by increasing the body-order, cutoff radius and polynomial degree they are in
principle capable of representing an arbitrary many-body PES to within arbitrary accuracy. To support this
claim, we begin by studying the convergence of the root mean square error (RMSE) on two previously published
training sets for tungsten and silicon.

We measure the convergence of the RMSE against two key features: Firstly, the number of basis functions
used to construct the potential gives a crude measure of the cost of the training. Secondly, we compare the
accuracy of the fit against the evaluation time of the forces, that is, the cost of one molecular dynamics step.

For both training sets, we demonstrate the convergence of the potential for both the distance-based and the
distance-angle descriptors. For all potentials, the distance transform used is a polynomial transform, that is
u; = o(rnn /)P where r,, is an estimate for the nearest-neighbour distance (r,,, = 2.74 A forWand Ton =
2.35 A for Si) and p may vary with the body-order. The cutoff function is given by

f (r) = {[(fl/rcut)2 - 1]2’ 0<r <t
cut

0, otherwise.

(1D

where 1. is a cut-off radius that may again vary with the body-order. The parameters for the individual
potentials and the least squares regression weights are given in the supplementary material*.

4 See supplementary material available online at link stacks.iop.org/MLST/1/015004 /mmedia for a description of the 5-body invariants,
convergence tables for tungsten and silicon, and details on the titanium database generation and parameters.
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Figure 2. Systematic convergence on a tungsten (top) and a silicon (bottom) database. Note that the SOAP-GAP model takes about
30 ms/atom to evaluate on a range of current CPUs, and MTP is 1 ms or faster depending on the number of basis functions used.

To choose the functional form of the distance transforms and cutoff function we first performed low-
accuracy fits that showed that the fit accuracy varies little across different choices of cut-off function and distance
transform; see the supplement (see footnote 4). However, we will find that distance-angle potentials achieve a

higher accuracy at comparable computational cost than distance-based potentials, both on the W and Si
training sets.

2.5.1. Results for tungsten

We now present convergence results for a tungsten training set used for a previously published SOAP-GAP
model [47], generated with CASTEP [48], that consists of 9693 configurations including primitive unit cells,
surfaces, y-surfaces, vacancies and dislocation quadrupoles. Every configuration provides one total energy and
3N,, force components where N, is the number of atoms per configuration. Some configurations also provide
six virial components. The resulting total number of scalars used for the fit was 497271.

For both distance-based and distance-angle potentials we observe in figure 2(a) the systematic decrease of
the RMSE as the body-order and the polynomial degrees are increased. Extended convergence tables are
presented in the supplementary material (see footnote 4).

In this test, distance-angle potentials perform slightly better than distance-based potentials, particularly in
the high accuracy regime. Indeed, the distance-based potentials with 5-body reach an energy RMSE of 2.05 meV
with 6023 basis functions and 2.98 ms force evaluation time per atom, while the distance-angle potentials for
4-body reach an energy RMSE of 1.85 meV with 2842 basis functions and 4.41 ms force evaluation time per
atom. Thus, both the errors and computational costs are comparable. The 5-body distance-angle potentials
reach an energy RMSE of 1.38 meV with 5113 basis functions and 10.4 ms force evaluation time per atom.
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2.5.2. Results for silicon

We now demonstrate the convergence of the potential on a previously published silicon training set [ 13] which
contains 2475 diverse configurations. We restrict the published database to train only on the following subset of
configurations: diamond cubic, amorphous, 3-tin, vacancies, sp2, and low index surfaces. The total amount of
scalars included in the fit (total energies, force/virial components) for this subset of the silicon database is
323414. Although there are fewer configurations overall than in the tungsten database, there are two distinct
solid phases, and the amorphous phase which is particularly challenging to fit. On the one hand, excluding
certain parts of the published database allows us to explore extrapolation. On the other hand, efficiently and
accurately fitting to the complete training set including a large variety of high coordination phases will likely
require a more flexible functional form, which we will revisit in future work.

The full convergence tables are presented in the supplementary material (see footnote 4).

As for tungsten, the choice of descriptors gives similar accuracy and evaluation times for silicon, but
distance-angle potentials now reach significantly lower errors for large basis sets. Moreover, the convergence
plots presented on figures 2(c) and (c) show a systematic convergence of the energy error for distance-angle and
distance-based descriptors. More precisely, the accuracy reaches the value 0of 2.13 meV accuracy for a distance-
angle 4-body potential composed of 1933 basis functions with a force evaluation time of 3.32 ms per atom, and
for a distance-based 5-body potential, the energy error reaches 2.49 meV composed of 5396 basis functions with
aforce evaluation time of 2.51 ms per atom. Finally, the 5-body distance-angle potentials reach an energy error
of 1.47 meV with 3759 basis functions and a force evaluation time of 3.91 ms per atom.

3. Regularisation

3.1. Regularisation techniques

In the least-squares method, regularisation is primarily seen as a procedure to improve conditioning on ill-
conditioned or even ill-posed problems. By contrast, in the Gaussian process framework, it can be interpreted as
imposing ‘prior’ information about the potential energy surface, in particular its regularity. Robust heuristics for
choosing the strength of the regularisation were crucial for the success of the GAP scheme for materials, where
the regulariser was chosen to be consistent with the estimated convergence error in the input data e.g. with
respect to k-point sampling [49].

In the following we seek to apply a similar perspective in the standard least squares framework. We will show
how the low-dimensional functional forms obtained in our definition of aPIPs in section 2 allow us to
incorporate physically motivated ‘prior’ information or requirements that are not present in the database.

For example, consider the unregularised pair potential fit to the W database displayed in figure 3(c), which is
obtained bZ fitting a degree 16 polynomial with distance transform u;; = (2.74A / ;)% and cutoff radius
et = 8.5 A;see section 3.2 for more details. While it gives low RMSE on our dataset, it is a nonsensical pair
potential that is unsuitable for materials modelling work.

A typical approach to detect overfitting and validate the generalisation capabilities of the fitted potential is to
first separate the data into a training set and a test set, then to perform the regression using only the training set,
and finally compute the errors separately on the training and on the test set. A transferable fit should have
comparable training and test errors.

While such a procedure helps to prevent overfitting near the training set, we find that it gives very limited
information about the ability of the potential to generalise more broadly. While training and test errors are
comparable for a proportion of training configurations of 0.6 and higher (figure 3(a)), all potentials exhibit an
oscillatory shape (figure 3(c)) which is pathological and clearly does not allow for extrapolation. In addition, the
pair potential minimum is far from the nearest-neighbour distance. Therefore, the generalisation tests presented
in section 4 are performed directly on physical properties and not using a training/test splits.

We now introduce a range of tools that enable us to produce regularised aPIP fits that retain RMSE accuracy
close to the unregularised aPIPs, but become highly transferrable potentials that ‘extrapolate well’ and in
particular have no regions of ‘holes’ as those described in [31].

3.1.1. Tikhonov regularisation
First, we recall some background on regularisation. In the context of linear least squares, the problem (10) is
replaced with the regularised least squares problem

min ||[Ac — Y| + [|T¢|3, (12)
C

where I'is called the Tikhonov matrix. The form ||I'c|; may be used to represent any positive quadratic
functional acting on the aPIP potential energy surface E given by (8). The most common choiceisI" = a1
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with the data set.

Figure 3. Comparison of training and test errors, and the corresponding two-body potentials.

(L*-regularisation) where the unknown parameter ov may be obtained through ad hoc procedures, or related to
the uncertainty of the data via the Bayesian interpretation of the least squares problem.

Such regularisation techniques are, for example, employed to render ill-posed problems well posed, or
improve the conditioning of severely ill-conditioned problems. In our context, polynomial basis functions
generally lead to ill-conditioning, which is exacerbated by the fact that the space of n-body functions contains -
body functions with m < n,leading to a near-degeneracy that is only partly alleviated by using of a different cut-
off and distance transform at each body-order.

To solve the regularised least squares problem we re-interpret it as a standard least squares problem through
the equivalent formulation

o [[#)- 511
c r 0

>

2

which is then solved using the QR factorisation.

3.1.2. Rank-revealing QR factorisation
Lz-regularisation can be effectively replaced by the rank-revealing QR factorisation (rr-QR) [50], a
decomposition which reveals the near-degeneracy of the matrix A. The factorisation reads

Ry Rz
AP = Q( : Rzz),
where Pis a permutation matrix, Q is an orthogonal matrix, R;; and Ry, are upper triangular matrices and,
importantly, a given norm of the matrix R,, is below some prescribed tolerance.
Truncating R,, in the resolution of the least-square system can be seen as a regularisation as it removes the
small modes in the matrix A. To demonstrate this, let us compare rr-QR and L*-regularisation on a simple
example, where A is the nearly rank-deficient matrix

A:(l 0), € small,
0 ¢

and the observationsare Y = (3, y,)". The solution of the unregularised least squares problemis ¢; = y;,
¢, = y,/€. The rr-QR algorithm with a parameter o will instead compute

aq= yp Q= 57165>a)’2,
while the least squares solution with L*-regularisation with parameter « is given by
1 €

a=——y, 6=——
1+ ao? e? + o?

Y
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Figure 4. Distribution of 3-body clusters in the W and Si training sets versus artificially generated (random, Sobol) clusters.The
clusters are represented by distance-angle variables (1, r,, wy,) with the angle variable wy, = R, - R, restricted to
—0.3 < wyp < —0.2. The picture is similar for other angle-intervals.

The two solutions are asymptotically equivalent and tend to the unregularised solution as &« — 0. In particular,
the first coefficient is exactly right with the rr-QR factorisation but not with the Tikhonov regularisation.

3.1.3. Integral functionals
We now introduce a class of regularisers that are made possible by the fact that we decompose the PES into
relatively low-dimensional components, the body-orders. A special case, discussed in the next section will be a
critical ingredient in our fitting procedure.

Consider a PES given by abody-order expansion (1), and let us assume that we write E,, as a distance-based or
distance-angle potential, i.e. E,;({r;};) = V,(u,({r;})). Then we consider a regularisation functional of the form,

IGelB = [w@ILIVi@IP du, (13)

where Lis alinear differential operator, w an integration weight and integration is taken over the domain of
definition of V,, i.e. all admissible tuples u that can be written as u = u,,({r;}). The right-hand side can be
written in the form of a Tikhonov functional since V,, depends linearly on a subset of coefficients c.

To approximately evaluate this integral we choose integration points {u; }521 C R? thatare distributed
according to the measure w(u) du and replace the integral functional (13) with its discretised variant

]
Tl = %Z LV ()] (14)

j=1

A canonical choice for {u; }521 are low-descrepancy sequences; we simply use the classical Sobol sequence. This
is effective in low and moderate dimensions where Sobol sequences ‘fill space’ with few (O(1000) to O(100 000))
points [51]. In principle one could also use random number sequences instead.

In figure 4 we show how solid configurations are highly concentrated in the space of n-body clusters.
Amorphous configurations ‘fill space’ much better (liquid even more so), and can to a certain degree be seen asa
‘natural’ regulariser, however they still concentrate in parts of configuration space. By contrast, random or Sobol
sequences provide close to uniform distributions of datapoints at which to apply the regularisation, or
alternatively their concentration can be easily tuned by adjusting the upper and lower bounds or through
applying a distance transformation.

3.1.4. Laplace smoother

A wide variety of choices for the differential operator L in (14) are possible. In the present work we will only
consider the Laplace operator, L = yA = vV?,i.e. (14) becomes

]
JA = 772 | ALV, (u))] (15)

where v, is an adjustable regularisation parameter. Although it is in principle possible to implement second
derivatives of V,,, we have chosen instead to approximate AV, with a finite-difference,
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Figure 5. A one-sided cutoff function (11) for the two-body function V, and a two-sided cutoff function (16) for n-body functions V,,,
n > 3. Theillustrative parameters are 1/, = 2.3A, 1oy = 2.8A, 1oy = 5.0A.

d
ApViy(w) = 72> (Va(u + hey) — 2V (w) + Vy(u — hey)).

a=1

Regularising the least squares fit with the functional 2 promotes that the curvature AV, is moderate, which is a
gentle requirement of smoothness. By adjusting the parameter ,,, smoothness can be traded against accuracy
of fit.

3.1.5. Two-sided cutoffs and repulsive core
For distances well below the nearest-neighbour distance regularisation is particularly crucial as demonstrated in
[31]and in figure 3(c). While we could apply the Laplace regulariser in this region to control oscillations of the
polynomials and thus prevent ‘holes’ in the PES, this would inhibit the ability of the polynomials to produce an
accurate fitin regions of interest. Instead, we chose to (1) apply an inner cutofftoall V,,, n > 3; and (2) replace
the global two-body polynomial V, with a spline that guarantees repulsion at short interatomic distances. In
detail we apply these ideas as follows:

(a) Two-sided cutoff: Typically, the cutoff function f.,  appearing in (3) and (5) are positive on an interval [0,
Tewr) @and vanish on [r., 00). For example, we often use the spline defined in (11).

In order to prevent oscillation and blow-up of the n-body functions V,,, n > 3 we require that f.,, = Oon
both [0, 7/, Jand [r.y, o0). A specific choice that we used in our tests is

0, otherwise,

E=exp(A(r/fmm — 1) — 1, (16)

f (T) — {C(€2 - 1)23 rcut/ <71 < Tt
cut

where ,,,, is an estimate for the ground state nearest neighbour distance in the material under consideration, Ais
chosen such that the resulting f.,,; has its unique local maximum at r,,,, and Csuch that f_(r,,,) = 1. See figure 5
to visualise this construction. We emphasize, however, that there are many reasonable alternatives to
implement this.

(b) Repulsive two-body: We initially perform the regularised least-squares fit with a global polynomial
representation of V, as described in section 2. We then choose a spline point rs < r,,,, sufficiently small so that
modifying V,(r) for r < rs,ideally chosen small enough so that the RMSEs are not significantly affected. This
point must furthermore be chosen so that V5'(r5) < 0. We then define a new two-body potential

~ sz(r)’ rz 73,
Va(r) = {Vrep(r)) r <,

Vrep(") =ex + frle e,

where e, < V;(r5) is a tuning parameter that can be used to adjust the steepness of the potential, while v, S are
chosen such that V is continuous and continuously differentiable at r. The form of the repulsive potential V;,,
is arbitrary, and in applications where it is important to accurately describe interactions between atoms at very
close distances it should be chosen as or similar to the universal ZBL function [52]. The repulsive core
constructions for the regularised W and Si fits, described in detail in section 3.2, are visualised in figure 6.

In practice, the inner cutoff and splining mechanisms interact mildly with the regularised least squares
regression, and we did not find it particularly difficult to find suitable parameter choices.
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Figure 6. Spline two-body potentials with repulsive core; see section 3.1.5(b).

Table 4. RMSE accuracy on W training set, comparing SOAP-GAP [47] against regularised and unregularised aPIP.

Energy (meV) Forces (meV Afl) Virials (meV)

Config type GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg)

Unit cells 0.07 0.24 0.27 0.00 0.00 0.00 3.47 3.80 4.17
BulkMD 0.60 0.47 0.45 27.8 21.4 26.5
Vacancy 0.50 0.26 0.67 29.4 25.3 29.5
Dislocation 1.86 0.98 1.02 38.3 33.0 35.7
Surface 0.45 0.43 0.88 50.9 42.2 70.8
y-surface 1.66 2.92 4.09 69.0 99.4 118.0
7-8. vacancy 1.26 1.70 2.71 79.3 98.7 109.3

3.1.6. Sequential fits

A source of ill-conditioning in the least squares system (10) is due to the fact that any m-body function V,, can
nearly be represented as an n-body function V,, with n > m. Thus, a final mechanism that we employ is to fit
different n-body terms independently from one another. For example, we may first fit a two-body V5, followed
by the modification described in section 3.1.5(2). Then, in a separate step we fit V3, V;, and possibly Vs after
subtracting the values for V, from the observations vector. At present we perform this procedure in a purely
ad hoc fashion.

3.2. Accuracy of regularised aPIPs

In this section, we investigate the effect of our regularisation procedures on the fit accuracy for the W and Si
training sets described in section 2.5, as well as a small selection of material properties. While the Si fits will be
performed with a 5-body potential, for the W potential we restrict the body-order to four since this already
achieves satisfactory accuracy on the W training set.

The majority of hyperparameters for the Siand W fits are identical and can be summarized as follows: all
potentials are distance-angle potentials with the same distance transforms u;; as in the RMSE convergence tests.
For the unregularised aPIPs the cutoff function is (11) while for the regularised aPIPs we use the one-sided cutoff
(11) only for the two-body potential but a two-sided cutoff (16) forall Vj,, n > 2. The least squares functionals
are weighted differently from the RMSE convergence tests where we were targeting total RMSEs. For the
regularisation and extrapolation tests we chose the weights to aim for accuracy on subsets comparable to the
previously published SOAP-GAP models. The regularised fits employ the complete range of tools introduced in
section 3.1. The specific details of the aPIP potential parameters, fitting parameters and regularisation
parameters, and sequential fitting procedure, are given in the supplement.

The resulting unregularised and regularised potentials will, respectively, be denoted by aPIP (unreg) and
aPIP(reqg).

3.2.1. Results: tungsten

We compare the aPIP RMSE for energies, forces and virials per configuration type in the tungsten training set
against the original SOAP-GAP model published with the data set [47]. The results can be found in table 4. The
purpose of this test is to confirm that the regularisation only slightly reduces the RMSE accuracy per atom
compared to the unregularised aPIP(unreg).
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Figure 7. Tungsten bce energy versus volume comparing SOAP-GAP [47] against regularised and unregularised aPIP. The lower panel
shows the histogram of volumes in the data set.

Table 5. RMSE accuracy on Si training set, comparing SOAP-GAP [13] against regularised and unregularised aPIP.

Energy (meV) Forces (meV ;\71) Virials (meV)

Config type GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg) GAP aPIP(unreg) aPIP(reg)
dia 0.65 0.33 0.55 15.4 13.9 21.8 14.59 6.09 9.96
amorph 0.56 2.08 4.49 102.7 138.6 172.0 60.9 15.85 31.32
bt 0.72 0.27 0.45 17.2 18.2 31.2 26.47 12.94 22.15
vacancy 0.54 0.36 0.71 48.3 46.2 62.7 9.82 7.52 11.89
sp2 0.48 0.70 1.82 48.6 45.0 79.2

surfacel10 0.20 0.48 2.80 161.2 159.0 237.0

surfacelll 0.22 0.31 0.99 156.9 155.8 233.7

surface001 0.19 0.50 1.39 140.4 136.9 195.7

Apart from monitoring the RMSE we also benchmark the fitted potentials by comparing their predictions
for various material properties: energy—volume curves of the aPIP models as well as the SOAP-GAP model are
compared against DFT in figure 7. These results are shown to be in excellent agreement for all the fitted
potentials. A second test is to calculate the elastic constants B, C;;, C},, Cy4 for a bec tungsten structure. The aPIP
(unreg), aPIP(reg) and SOAP-GAP all achieve to predict the elastic constants within 1%.

3.2.2. Results: silicon
The RMSE accuracy per configuration type of unregularised aPIP(unreg) and regularised aPIP(reg) are
compared against the SOAP-GAP fit [13] in table 5. Again the regularised aPIP(reg) is shown to decrease in
RMSE accuracy compared to the unregularised aPIP(unreg), and by larger factors than in the case of tungsten.
The fitted potentials were again compared for a range of different material properties. The energy versus
volume curve for silicon is shown in figure 8 comparing the fitted potentials to the DFT reference, with excellent
agreement for each. The elastic constants were calculated as well as the surface and vacancy formation energies
and are presented in table 6. The unregularised aPIP(unreg) is shown to have larger errors on the elastic
constants compared to the aPIP(reg) and most notably failed the vacancy energy test. That is, during the
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Figure 8. Energy volume curve for diamond and 3-Sn silicon comparing the regularised and unregularised aPIPs, and SOAP-GAP
potentials against DFT. The lower panel shows the histogram of the volumes in the data set.

Table 6. Relative error on a range of different properties for Si, comparing the SOAP-GAP, aPIP and aPIP(reg)
potentials. The unregularised aPIP failed the vacancy test.

Elastic constants (GPa) Surface energy (J m %)
Model Point defect (eV)
B (O Cy, Cyy (100) (110) (111) vacancy
DFT 87.45 152.21 55.07 74.95 2.17 1.52 1.57 3.67
Relative error (%)
GAP <1 -3 3 -7 -1 -1 -3 -2
aPIP(unreg) 8 5 12 -1 —6 -2 -5 —
aPIP(reg) <1 3 -5 —4 -3 -3 —10 —4

relaxation of the vacancy using the aPIP(unreg) potential the optimiser failed to find alocal minimiser. Thisisa
manifestation of ‘holes’ in the fit which will be discussed in section 3.3. In comparison to SOAP-GAP the aPIP
(reg) performs well in calculating the elastic constants and vacancy formation energy. The aPIP(reg) performs
worse in the surface formation energies, most specifically the (111) direction, which we believe can only be
rectified by using even higher body order terms Implementing this efficiently is a focus of future work.

3.3.Holes
As afirst test of the ‘transferability’ of our regularised aPIP fits we determine whether the resulting potentials
have any ‘holes’ in the sense of [31]: regions of unphysically low potential energy values. The importance of
avoiding such behaviour is hard to overstate: in most molecular modelling applications, samples will be drawn
using the model distribution, and due to the exponential amplification of the Boltzmann distribution at low and
moderate temperature, holes can lead to catastrophic failure of models.

Having decomposed the total PES into low-dimensional components gives the option of searching for low-
energy configurations in these individual components V.. Specifically, we choose a minimal inner distance
1o < 1l i.e. below the inner cutoff. Then, for each n-body term V,, we compute an approximate minimum of
V, (11 ,..., 1) over all clusters (xy ,..., 1) with 7y < 17 < 1y, using Sobol sequences with a few million points. The
results are summarized in table 7. It is interesting to note that the ‘holes’ in the unregularised Si fit are less severe.
We speculate that this is due to the fact that the Si training set is much richer; see figure 9.
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Figure 9. Holes in the 3-body potential V; for the unregularised W aPIP fit. Two slices through the potential energy landscape are

Table 7. ‘Holes’ in the unregularised aPIP

(unreg) potentials.
infV,
n aPIP(unreg) aPIP(reg)
w 2 —273eV —0.08 eV
3 —192 359eV —0.06 eV
4 —4877 eV —0.18 eV
Si 2 —0.66 eV —0.08 eV
3 —2934eV —0.6 eV
4 —447 eV —0.11 eV

In the unregularised fit we visualise the location of holes by plotting slices through the V3 energy landscape in
figure 9. This shows in particular that holes appear both in regions of large angles and moderate angles near the
ground-state.

4. Generalisation

This section presents a series of tests to benchmark the generalisation performance of the aPIP and GAP models
against a DFT reference. These tests were designed to probe configurational space far from the training data
region and monitor each models’ performance. We use the term ‘generalisation’ (also often called
‘extrapolation’ or ‘transferability’) in aloose sense and simply take it to mean ‘evaluation far from the training
set’ which may technically also include interpolation—the distinction is tenuous in high dimension.

4.1. Tungsten

4.1.1. Interstitial

The tungsten aPIP(unreg) and aPIP(reg) models introduced in 3.2.1 were compared against the original SOAP-
GAP model [47] and a DFT reference for the self-interstitial defect. The DFT parameters were chosen to be
identical to those used in the original paper. These settings were: 600 eV cutoff energy, 0.03 A~! kpoint spacing
and 0.1 eV smearing width. The training set does not include interstitial data; see table 4. We formed the
interstitial defect by inserting an atom in a DFT relaxed 54 atom tungsten bcc cell at the octahedral site (%, 0,0) of
the primitive cell. The geometry was then relaxed using DFT. A linear path between the unrelaxed and relaxed
configurations was created and the DFT, SOAP-GAP and aPIP models were evaluated along this path and are
shown in figure 10.

This interstitial test probes small interatomic distances which are not contained in the training database and
can therefore be strictly seen as an extrapolation test. Due to the smoothness prior, the SOAP-GAP model
underestimates the energy difference along the interstitial path compared to the DFT reference. As expected, the
unregularised aPIP model heavily oscillates along this test path since it explores configurations it was not fitted
to. By contrast, the combination of integral regularisers, repulsive core and inner cut-offs result in a regularised
aPIP model that shows an excellent match to the DFT curve. The level of agreement is likely fortuitous, but we
expect that in general the correct repulsive nature of the potential is obtained due to having enforced this
property in the two body function V5.
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Figure 10. Linear path between unrelaxed and relaxed tungsten interstitial configuration. The unregularised aPIP fit explodes whereas
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Figure 11. Decohesion curve in silicon bulk diamond along the (100) direction. The bulk diamond structure corresponds to the left
end and the unrelaxed (100) surface is on the right.

4.2. Silicon

4.2.1. Surface decohesion
We setup abulk Sidiamond 10 x 1 x 1 supercell and increase the lattice vector length in the long direction

while keeping the atomic positions fixed which in turn creates two surfaces [13]. Both the initial bulk structure
and final surfaces are configurations that are well represented in the training set and fitted by the aPIP(unreg),
aPIP(reg) and SOAP-GAP models to within 3 meV accuracy; see table 5. The configurations along the path in
between are not contained in the database. Therefore this test can be seen as generalising in that it evaluates the
potential on a path between two accurately fitted configurations.

Figure 11 shows that the end points, bulk diamond and (100) surface, are accurately fitted. However, the
SOAP-GAP has alocal maximum around 2.5 A, unlike the DFT reference which shows a smooth and monotone
transition along this path, a characteristic which both the aPIP(unreg) and aPIP(reg) mimic more accurately

than SOAP-GAP.

4.2.2. Layer test
In this test we set up a bulk silicon diamond configuration and and gradually increase the interplanar spacing

between the (111) layers of silicon. The configurations along this path are arguably unphysical but should, as the
DFT model confirms, correspond to unstable high energy configurations. Past experience shows that poorly
fitted potentials can have unphysically low energies for such configurations. The aPIP and SOAP-GAP models
were evaluated on this path and are compared to the DFT reference in figure 12.
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Figure 12. The layer test along which bulk silicon is split in layers of silicene. The SOAP-GAP model predicts a high energy local
minima whereas the regularised aPIP model does not.

The SOAP-GAP model predicts a high energy local minimum along this path, which should be entirely
unstable as shown by the DFT reference. The presence of such false high energy local minima are detrimental for
applications such as random structure search [53] but also high temperature or high stress molecular dynamics.
The aPIP(unreg) model has a much more shallow high energy local minimum, but the aPIP(reg) model show no
minimum at all (while still not being quantitatively accurate in the unphysical region).

4.3. Titanium
Titanium is a difficult material to construct interatomic potentials for, due to its bonding chemistry being

intermediate between covalent and metallic and we therefore chose it for our final test system. Here we want to
explore how the different functional forms and regularisation strategies perform in the limit of very little data.
The motivation for this is partly that the large size of the published data sets in the previous sections in and of
itself acts like a regulariser, but also that in the future we wish to eliminate extensive sampling as a way to generate
data sets. Rather, we would like to develop potential fitting frameworks that are explicitly regularised to the
extent that a few judiciously chosen training configurations are sufficient to obtain good interatomic potentials.

We generated two very limited training sets, denoted by Set 1 and Set 2. To Set 1, we fit unregularised and
regularised aPIP potentials denoted, respectively, by aPIP;(unreg) and aPIP(reg), as well a SOAP-GAP potential
denoted GAP;. In addition we fit an unregularised aPIP potential, denoted aPIP, (unreg) to Set 2. The detailed
potential and fitting parameters are described in the supplementary information.

Set 1 This set contains primitve cell bcc and hep configurations, obtained by sampling the Boltzmann
distribution with a temperature parameter set to 100 K as the lattice vectors (and in case of bcc, the relative
positions of the two atoms) are varied. The obtained configurations were evaluated using CASTEP [48] with
k-point spacing set to 0.015 A~1,750 eV cutoff energy and 0.1 eV smearing width. In addition 3 x 3 x 3 bcc
and hcp supercells were added, and Phonopy [54] was used to generate the inequivalent finite displacements
(one for each structure) of a single atom by a magnitude of 0.001 A. These two configurations were
evaluated with a larger k-point spacing equal to 0.03 AL

Set 2 This set contains Set 1 as well as additional finite displacement configurations analogous to those in Set 1,
butnowwitha0.01 A displacement.

4.3.1. Cohesive energy
Figure 13 shows the energy versus volume curves for the titanium bcc and hep phases for the various potentials

all fitted to Set 1. The distribution of the atomistic volumes are on the lower panel and show that training data
covers only volumes in the range between 15 and 17 A3/atom. In this region both aPIP models as well as the
GAP model agree well with the DFT reference. For smaller and larger volumes the fitted potentials all deviate
from the DFT reference as expected due to the lack of data. However, the unregularised aPIP shows a steep drop
for small volumes and a second minimum for large volumes whereas the regularised aPIP and GAP mimic the
DEFT curve at least qualitatively, showing the benefits of regularisation.
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Figure 13. Energy versus volume plots for Titanium hcp and bece phase. The volume histogram below shows the distribution of the
training data.

4.3.2. Phonon spectrum

SOAP-GAP and aPIP models fitted to Set 1 and Set 2 were used to generate the phonon spectra for bcc and hep
titanium and are compared to the DFT reference in figure 14. Although aPIP,(unreg) and aPIP, (reg) were both
fitted to Set 1, aPIP;(unreg) failed catastrophically while aPIP; (reg) produces a highly accurate phonon
spectrum. The negative frequencies of the bcc phonon spectrum at the I" points demonstrates the instability of
the structureat 0 K.

Of course an alternative, but much less controllable way to improve the regularity of a potential is to simply
add more data to the training set. ML potentials in the literature, even if they are not explicitly regularised, can
avoid the unphysical behaviour seen in here because they are fitted to large data sets. To see this effect, consider
the potentials fitted to Set 2: aPIP,(unreg) phonon spectra are somewhat improved, but they remain highly
inaccurate quantitatively. We expect that much more training data would be required to accurately converge the
phonon spectrum of an unregularised potential. We suggest instead that regularisation and a single
displacement per crystal structure are enough to accurately reproduce phonon spectra.

4.3.3. Burgers’ path
The Burgers’ path is a pathway from the bec to hep crystal structure [55]. It consists of a shear deformation
applied to the bec structure followed by a shuffle of atomic layers resulting in a hep structure [56].

We evaluated the Set 1 fits on the Burgers’ path and the results are plotted against the DFT reference in
figure 15. The energy per atom along the Burgers’ path shows that the SOAP-GAP model overestimates the
barrier by 30 meV along the transition from bcc to hep. The aPIP models as well as the DFT reference do not
show such a barrier. The training database contains bee/hep configurations sampled at alow temperature
(T = 100 K) resulting in a database containing structures close to the relaxed bcc and hep configurations. As
expeced, figure 15 shows the aPIP and SOAP-GAP models both predict the energies for the hcp and bee crystals
accurately. However, the aPIP model manages to predict the energy along the middle part of the path more
accurately compared to the DFT reference.

To analyse this we use body order expansion to investigate the Burgers’ path test in a different way. By
plotting the 3-body distances ry5, 13, 123 of the primitive cell training database, Set 1, we can visualise the
clustering of data in the V5 space. Figure 16 shows the clustering of data around the relaxed bec/hep
configurations and shows the Burgers’ path connecting the two configurations as well. The training data was
sampled at alow temperature (T’ = 100 K) and we therefore see a limited exploration of data away from the
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hep

relaxed configurations. The Burgers’ path clearly explores configurations in this V3 space where there is little to
no data present, showing that even in this low dimension this test can be considered as a non-trivial

generalisation.

21



I0OP Publishing Mach. Learn.: Sci. Technol. 1(2020) 015004 Cvander Oord etal

e hep
4 @ hec
- Burgers’
e path
3.6
3.4
rog[A
3lA]
3
2.8
2.6
4
q
35
ri3(A]
Figure 16. Visualisation of the sparsity of the Ti training sets: each datapoint represents a 3-body cluster, described through
interatomic distances ry,, 113, 23, contained in the primitive cell configurations of Set 1. The Burgers’ path explores regions of 3-body
space far from the regions with datapoints, which demonstrates that the Burgers’ path test requires significant generalisation away
from the training set.

We believe that the lack of accuracy along the Burgers’ path of SOAP-GAP model is due to the lack of
training data in that region. It is a manifestation of high dimensional fits giving answers that are still regular, but
have uncontrolled errors when extrapolating away from the training database. The aPIP models perform
significantly better in this test because, as we propose, models fitted in low dimension (e.g. the dimensionality of
the body orders) will in general perform better in generalisation tests compared to high dimensional fits such as
SOAP-GAP models.

It will also be interesting to systematically explore the relative benefits and possible unification of
regularisation and active-learning style techniques that bring in new data in previously unexplored
regions [31,57].

5. Conclusion

The purpose of this paper was two-fold: firstly, we developed atomic PIPs (aPIPs), a generalisation of PIPs [40],
interatomic potentials constructed from permutation invariant polynomials for material systems by applying
the PIP construction to atomic body ordered expansions of the total energy and endowing them with usual
cutoff mechanisms. By fitting the polynomial coefficients to solid training sets (rather than clusters in vacuum)
we were able to obtain an accuracy comparable with the SOAP-GAP models for tungsten [47] and silicon [13]
(on a non-trivial subset of the full training set) using low body-orders, four or five, which are still at least an order
of magnitude faster to evaluate than SOAP-GAP.

Secondly, we studied the generalisation (extrapolation) properties of the aPIPs. We developed novel
regularisation mechanisms that exploit the low-dimensional structure of the body-ordered terms to ensure
correct qualitative behaviour of the potentials, such as smoothness, well away from the training set. We showed
that such a regularisation is crucial to achieve the extrapolation properties of the Gaussian process based SOAP-
GAP[13,47]. Indeed, our regularisation techniques are amenable to fine-tuning which enabled us to
significantly improve on the SOAP-GAP model in several tests. Thus, we have established that our framework
provides a novel ‘tool kit’ for fitting interatomic potentials for materials with high accuracy and excellent
transferability, across a wide range of bonding chemistries.

The silicon, tungsten and titanium datasets are openly available at http: //libatoms.org/Home/
DataRepository, the aPIP framework can be found at https://github.com/cortner/NBodyIPs.jl.
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