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Abstract
Wepropose amethod for data-drivenmodelling of the temporal evolution of the plasma andneutral
characteristics at the edge of a tokamak using neural networks. Ourmethod proposes a novel fully
convolutional network to serve as function approximators inmodelling complex nonlinear
phenomenon observed in themulti-physics representations of high energy physics.More specifically,
we target the evolution of the temperatures, densities and parallel velocities of the electrons, ions and
neutral particles at the edge. The central challenge in this context is inmodelling together the different
physics principles encapsulated in the evolution of plasma and the neutrals.We demonstrate that the
inherent differences in nonlinear behaviour can be addressed by forking the network to process the
plasma and neutral information individually before integrating as a holistic system.Our approach
takes into account the spatial dependencies of the physics parameters across the gridwhile performing
the temporalmappings, ensuring that the underlying physics is factored in and not lost to the black-
box.Having used the conventional edge plasma-neutral solver code SOLPS to build the synthetic
dataset, ourmethod demonstrates a computational gain of over 5 orders ofmagnitude over it without
a considerable compromise on accuracy.

1. Introduction

Simulatingmagnetically confined fusion plasma in a tokamak is considered to be extremely challenging
particularly at the edge of the device. Both perpendicular and parallel velocities (with respect to themagnetic
field) are of significant importance in this region, also referred to as the scrape off layer (SOL). In addition to that,
the interactionwith themachine’s plasma facing components introduces a lot of impurities into the plasma.
Processes such as charge exchange and recombination contribute to the presence of neutral particles in the
plasma that play a significant role in the dynamics—much ofwhich is almost absent at the plasma core [1]. The
additional complexities of the physics in the SOL lead to large differences in characteristic timescales in
simulations of the plasma at the edge and the core [2].Modelling the entire plasmawithin the tokamak
(integrated tokamakmodeling [3]) thus becomes particularly challenging.We suggest a novel approach that
attempts to eradicate this problemby utilising the function approximation capabilities of neural networks to
model the evolution of both the plasma and neutral behaviour at the edge.

We have demonstrated the impact of our approach on the SOLPS (ScrapeOff Layer Plasma Simulator)
framework, a comprehensive code suite that aims to solve the edge plasma physics, as represented infigure 1 [4].
By utilising synthetic data generated by the SOLPS code, we have shown howourmodel is capable ofmapping
the evolution of both the edge plasma and the neutral parameters.Wemodel two interlinked physical systems
characterised by two different nonlinear behaviours with a computational gain of over 5 orders ofmagnitude
compared to the traditional numerical SOLPS approach.

OPEN ACCESS

RECEIVED

12 September 2019

REVISED

4November 2019

ACCEPTED FOR PUBLICATION

11November 2019

PUBLISHED

4 February 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2632-2153/ab5639
https://orcid.org/0000-0003-0904-3448
https://orcid.org/0000-0003-0904-3448
mailto:vignesh.gopakumar@ukaea.uk
mailto:vignesh.gopakumar@ukaea.uk
mailto:vignesh.gopakumar@ukaea.uk
mailto:debasmita.samaddar@ukaea.uk
mailto:debasmita.samaddar@ukaea.uk
mailto:debasmita.samaddar@ukaea.uk
https://doi.org/10.1088/2632-2153/ab5639
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ab5639&domain=pdf&date_stamp=2020-02-04
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ab5639&domain=pdf&date_stamp=2020-02-04
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


2. Concept

NeuralNetworks have been consistently proven to perform as ‘universal function approximators’ over the years,
performing exceptionally well inmodeling hefty nonlinear functions [5, 6]. The temporal evolution of plasma
and neutrals within a specified spatial grid is described through highly complex nonlinear transformations [7].
The charged species of the plasma and the neutrals aremodelled differently (as described in section 3). A time
instant of the plasma and neutral evolution is characterised by various physics profiles spread across the poloidal
cross-section. Each point in this grid represents the value of a physical parameter at that point in space. The
evolution of this parameter in each of the grid points across time is represented by a strong nonlinear function
that is dependent not only on itself but also on the nonlinearities of the physical parameters encapsulated in the
neighboring grid points. To capture the two different physicsmodels at the edge described as nonlinearities with
local relational dependencies, we have designed a fully convolutional neural networkwith forked inputs and
outputs.

In order to account for differing physics fromwhich the plasma and neutral grids emerge fromwe designed a
network to have bifurcated inputs and outputs as shown infigure 2. At the input, grids characterising the plasma
were fed into one branch, while those of the neutrals were fed into the other. Each branch is composed of the
same number of layers, performing convolutions and pooling activities on the input grids. The convoluted
plasma and neutral grids would be latermerged at the end of the branches and fed to the trunk of the network,
where the interlinked holistic system, the plasma alongwith its neutral interactionswill bemodelled. At the
output, the trunk, branches into two again, one for the plasma grids and the neutral grids. By having branched
inputs and outpus, the network becomes capable ofmodelling both the plasma and neutral behaviourwhile
allowing for information exchange between them.

3. SOLPS

The scrape off layer plasma simulator (SOLPS) is a state of the art code framework used tomodel the edge
transport and study the plasma surface interactions. The SOLPS-ITER versionwhich has been used in this
research, is the basis of design of the divertor in ITER, as well as in simulating detachment and studying the
plasma-wall interactions [8–10]. Edgemodeling in SOLPS is performed by two sub codes within the framework :
B2.5 and EIRENE [11].

Figure 1.Mapping the temporal evolution of electron density. The set of images on top depicts the evolution from the initial state to
the final state as solved by the SOLPS framework. Similarly the set in the bottom, represents the evolution characterised by our novel
FCN approach.
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Being amulti-fluid transport code, B2.5 solves the behaviour ofmulti-species plasma along a 2-dimensional
geometry. Itmodels the plasma evolution by numerically solving the Braginskii equations inmagnetically
aligned curvilinear coordinates [7, 12]. Conservation equations ofmass,momentum and energy are taken into
account within the code package [11].Modeling the plasma behaviour using B2.5 contributes consiserably
to thewall clock time as it is implemented as a serial codewithin the SOLPS framework [13]. EIRENE is a
3-dimensionalMonte Carlo transport code used to solve the evolution of neutrals by solving amulti-species set
of coupled Boltzmann equations utilising a Bayesianmethod [14].

As the plasma and neutral evolution aremodelled by solving two sets of equations encapsulating different
physics principles, both B2.5 and EIRENE are run in an independent yet sequentialmanner as shown infigure 3.
Between the two code packages information characterising the plasma and neutral state is exchanged after a
predetermined number of iterations within the simulation [15, 16].

3.1. Physics parameters
Within the SOLPS framework, we have identified 7 fundamental physics parameters characterising the plasma
and neutral state at any instant in time. The networkmodels the behaviour of plasma andneutrals bymapping
the evolution of these 7 parameters.

(i) Neutral density.

(ii) Ion density.

Figure 2. Structure designed tomodel the plasma andneutral evolution using fully convolutional neural networks.

Figure 3. Information regarding plasma (density, temperature and parallel velocity) andNeutral (density, parallel velocity) states
being exchanged between the code packageswithin the suite. The codes are run sequentially with a single EIRENE iteration followed
by 10 iterations of B2.5.
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(iii) Electron density.

(iv) Ion temperature.

(v) Electron temperature.

(vi) Neutral parallel velocity.

(vii) Ion parallel velocity.

Each parameter is represented by a profile in discretised grids across the poloidal cross section of the
tokamak focusing only on the edge regions as shown infigure 4.We have chosen 5 grids (ion density,
temperature, parallel velocity alongwith electron density and temperature) to characterise the plasma state
and 2 grids (neutral density and parallel velocity) to characterise the state of the neutrals.

3.2. Grid representation
The domain of interest within the SOLPS framework is the outer edges of the poloidal cross-section. For both
the neutrals and plasma, the physical domain space under observation is that shown infigure 4. The domain is
discretized into 3268 grid cells of varying size, whose compact image is shown infigure 4(a). Spatial coverage for
each cell is determined so as to ensure that the physics parameters are consistent within each cell [7]. The
meshgrid is composed of 4 parts as show infigure 4(b), with each part categorising the grid areas into different
operational domainswithin a tokamakwith lower single null geometry [7].

To performnumerical simulation andmodel the time evolution of the plasma and the neutrals, the
discretised grid shown in figure 4 ismapped onto quadrangular grids. TheDivGeo, CARRE, andTriageom
packages within the SOLPS frameworkwould rearrange the poloidalmeshgrid into a rectangularmeshgrid as
shown infigure 5 [7].

SOLPS rearranges the poloidalmeshgrid into a rectangular grid with 38 rows and 86 columns. The
transformation ensures that the local relations and dependencies within the poloidalmeshgrid are not lost by
maintaining the adjacency of the grid cells. These rectangular grids would be fashioned into inputs and outputs
for the FCNmodel. Each of the 7 parameters are represented by 38×86 grids as shown infigure 5.Out of the
7 grids, 5 characterises the plasma state and the remaining 2 defines the neutral state.

Figure 4.Discretisation of the poloidal space. In (b), Blue indicates the inner divertor, green the outer divertor, lighter shade of purple
shows the core and darker shade of purple represents the scrape off layer [7].
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3.3. Case setup
The SOLPS simulationswere performed for a case designed on an actual JET (Joint EuropeanTorus) experiment
under the shot number 89241 [17]. Our case assumes toroidal symmetry within the tokamak reducing our focus
only onto the poloidal cross-section. Our primary focuswas tomodel the edge plasma and neutral behaviour
when a steady state is slightly perturbed. Thus, the case was pre-run until it reaches the steady state regime. The
edge in this case was characterised by three entities: Deuterium ion, it’s neutral component and the electrons.
Toroidalmagnetic fieldwas set at 2.2 Tesla.With a q95 of 3.4 and plasma current of 2.0MA.A combination of
neutral beam injection (NBI), ion cyclotron resonance heating (ICRH) and ohmic heating (OH) contributed to
the total power provided to the plasma. The decision to restrict ourselves to the neighbourhood of the steady
state regimewas taken to ensure that the proof of concept can be built withminimal data, thus reducing the
simulations and hence the time needed to build the synthetic dataset. The simulation spacewas setup such that
the plasmawas already in theH-mode [18].

3.4.Data generation
In order to create an adequately diverse dataset, the predefined case (already in steady state)was run under
different physical conditions giving us data that is indicative of perturbations around the steady state.We tune
three parameters that have significant influence on the plasma and neutral profiles to create these perturbed
scenarios:

• Heating power—Pin (MW)

• Puffing rate—rate of change of plasma density (s−1)

• Pump intensity—percentage change of neutral density (%)

The heating powerPin entering the simulation grid is given by Pin=NBI+ICRH+OH−Radiation. So
Pin incorporates all the input heating power aswell as an estimated radiated power loss. The heating powerPin
for the simulation domain is defined as a boundary condition for the SOLPS code and is specified at the edge of
the grid lying in the plasma core.

The dataset was built from SOLPS in two phases. In Phase 1, the input grids that characterise the plasma and
neutral state at the initial point in time are built. Phase 2, the input grids obtained in Phase 1 are simulated
further to develop the output grids.

3.4.1. Phase 1
The predetermined case setup is simulated from t=0s to t=0.234 s up until the simulation arrives at steady
state. The simulation arrives at steady state with the parameters as indicated in table below:

-s

Heating power 4.080 MW

Puffing rate 10

Pump intensity 94%.

21 1

The steady state configurationwas treated as the input setting for further SOLPS simulations under different
combinations of our chosen parameters. The parameters were discretisedwithin a domain range and all possible

Figure 5.Rectangular grid which forms the computational space for the SOLPSmodelling.

5

Mach. Learn.: Sci. Technol. 1 (2020) 015006 VGopakumar andDSamaddar



combinations of those discretrised valueswere simulated. The discretisation of the parameter range is seen in the
table below:

Parameter Min. Max. Iteration Number of values

Heating power 3.0MW 8.5MW +0.5MW 12

Puffing rate 1017 s−1 1021 s−1 ×5.0 9

Pump intensity 48% 98% +5% 11

Total number of combinations=12×9×11=1188.

Each simulationwas run for 1000 iterationswith a time step ofΔt=10−6 s, progressing the simulation by 1
ms. The transport timescale associatedwith that of the plasma and the neutrals at the edge are about 1ms. Thus,
by progressing the simulation by that time factor ensures that we are able to create effective data points that
represent themulti-physics behaviourwhen perturbed away from the steady state as shown infigure 6.

3.4.2. Phase 2
The grids generated in Phase 1 are used as inputs to build the output grids. Each of the 1188 simulated cases were
run further, but this time under the same set of parameters. The heating power, puffing rate, and pump intensity
would befixed to the values described in the subsequent table and ran for a total of 2000 time iterations.With a
time step ofΔt=10−6 s, the output grids is 2ms ahead of the initial grids, with SOLPS accommodating the
changes introduced by the new values

-

Heating power 5.000 MW

Puffing rate 10 s

Pump intensity 94%

18 1

In Phase 1, the case having brought up to steady state at 0.234 s is perturbed by changing one ormore of the
three parametersmentioned in the paper and run for 0.1ms up to time 0.235 s. In Phase II, the perturbed cases
are all set with the same parameters and then run for 2ms up to 0.237 s. In both phase I and Phase 2, youmust
notice that the simulation time is below the confinement time of 0.1 s thereby not arriving at steady state but
creating data instances that reflect perturbations around steady state.

The output of Phase 1 simulations form the input and those of the Phase 2 simulations the output upon
whichwe build our FCNmodel. This provides uswith a labelled dataset uponwhichwe can perform input–
outputmapping.

Figure 6.Phases of data generation. In Phase 1, the setup is perturbed from steady state 1 (S1) and the edge characteristics are evolved
under the new conditions. In Phase 2, the perturbed states are pushed towards a new steady state (S2) under the same physical
conditions, but they are cut-off before reaching it. The output of Phase 1 simulations atT1 would form the initial/input grids and
output of Phase 2 simulations cut off at timeT2 would form thefinal/output grids.
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4.Network design and training

The networkwas designed to engage in a routine of dimensionality reduction, that can effectively capture the
interdependencies shown by the distributions of physical parameters in space [19]. Due to the spatial nature and
relationships of the grids we utilised convolutions to performdimensionality reduction. Convolutions can
effectively capture the general trends found across the gridwhile reducing the complexity of the data [20].We
observed that while performing dimensionality reductions on the grids it was paramount tomaintain the aspect
ratio of the grid (refer to supplementary section 12.1.2 online at stacks.iop.org/MLST/1/015006/mmedia and
references [25–29] therein).We had randomly sampled theweights and biases to from a uniformdistribution
between 0 and 1. To effectivelymodel the complex nonlinearities within the plasma andneutral behaviour it was
necessary to employ a network of sufficient depth [21]. It was observed that the performance of the networkwas
optimumat 20 hidden layers with nonlinear capabilities. However, wewere discouraged frombuilding
phenomenally deep networks as they displayed tendencies of strongly over-fitting to the training data, and gave
us poor generalisation (refer supplementary section 12.1.1).

Since the taskwas to perform imagemapping, we had to ensure that the dimensions of the outputsmatched
with those of the inputs.While we employed dimensionality reduction via convolutions in the initial stages of
the network, we had to employ a series of transposed convolutions deeper within the network to obtain the

Figure 7.Network structure exposing the internal configuration of the various layers.

Figure 8.Principal component analysis on the entire dataset, reducing and representing the dataset into two dimensions.
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required dimensionality. Thefigure 7 shows the internal layout of our network.We employ 13 convolutional
layers, 5 transposed convolutional layers, and 3 pooling layers to perform themodelling. Physical profiles are
heavily neighbourhood dependent, and employing convolutional layers over dense layers ensured that this local
connectivity could be captured. In total the network consisted of 2 289 639 trainable parameters.

The plasma input branch is fedwith 5 rectangular grids of dimension 38× 86, and the neutrals input consists
of 2 rectangular grids of the same dimensions. Forking the inputs and outputs has been found to pick up the
more salient features of the physics governing the different behaviours of plasma andneutrals. Themethod also
expresses higher accuracywhen compared to network designs with a single input with the plasma and neutral
grids entangled together throughout the network.

The inspiration for thenetworkdesignwas taken fromthe architetcureof the SOLPS code itself. As seen in
figure3,within the code suite, theplasma andneutral evolutions arenot solved simultaneously but rather sequentially.
By employing forked inputs andbifurcatedoutputs,we followa similar information structure as SOLPS,with the
plasmaandneutral behaviourmapped separetelywith information exchangebetween them.This architecture also
ensures that there arededicated layers topickup thenonlinear behaviours foundwithin theplasmaevolution and that
of theneutrals, introducingmore robustness to thenetwork inmodelling twodifferentnonlinear behaviours.

Figure 9.Density profiles across the computational grids. Figure 9(a) represents the electron density while figure 9(b) represents that
of the ions. SOLPS solutions are filled inwith blue and greenwhile those of the FCN is outlined in yellow, orange and red. The black
dotted lines indicate the domain distinction into physical portions of the tokamak as described in section 3.2.
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Wedesigned, built and tested the network using theKeras APIwhile employing tensorflow at the backend
[22]. Out of the 1188 data samples as described in section 3.4, we found 22 of the SOLPS simulations to be
corrupt, leaving uswith 1166 data samples to train and test themodel with. The grids characterising each
physical parameter were normalised between 0 and 1 by taking themaximumandminimumvalues for each
parameter across the entire dataset. The hyperparameter search showed us that the network performed
comfortably optimal with the Adadelta optimizer andwithmean squared error as the loss function. 20%of the
entire data samples were sampled randomly and taken to be the test set leaving the rest to be split up for the
training and validation. Trained over 100 iterationswith a batch size of 10 samples, we observed amean squared
error of 9.2× 10−05 across the test dataset.

5. Results

5.1. PCA
Tounderstand the adequate diversity within the dataset and its impact on the trained network, we employed a
principal component analysis across the entire dataset. By utilising a SVD approachwe reduced the

Figure 10.Temperature profiles across the computational grids. Figure 10(a) represents the electron temperaturewhile figure 10(b)
represents that of the ions. SOLPS solutions are filled inwith blue and greenwhile those of the FCN is outlined in yellow, orange and
red. The black dotted lines indicate the domain distinction into physical portions of the tokamak as described in section 3.2.

9

Mach. Learn.: Sci. Technol. 1 (2020) 015006 VGopakumar andDSamaddar



dimensionality of the dataset to two components. The principal components of the difference between the final
and initial states were taken to characterise the variationwithin the dataset. The analysis showed that the
majority of the dataset is clustered onto the bottom left quadrant as shown infigure 8. Both the test and train
datasets were randomly sampled across the datasetmaking it inclusive of the points taken from all the quadrants.
To demonstrate the ability of our FCN, the results we have shown are for a point sampled from the cluster in the
top right quadrant. For a detailed breakedownof the PCA, refer to the supplementary section 11.

5.2.Output comparison—qualitative
The effectiveness of our FCNapproach is best understood visually. To this end, we have over-imposed contour
maps of the neural network outputs on top of the actual outputs (obtained through SOLPS). The SOLPS outputs
are represented in blue and green filled contour plots while the FCN solutions are outlinedwith the contour lines
ranging fromyellow to red.

Glancing across from figures 9 to 12, it can be seen that there is a good correlation and fit between the SOLPS
solutions and the FCNoutput. There are some discrepancies especially seen in the figures 9(a), (b) and 11(a).

Figure 11.Parallel velocity distribution across the computational grids. Figure 11(a) represents distribution for the ionswhile
figure 11(b) represents that of the neutrals. SOLPS solutions arefilled inwith blue and greenwhile those of the FCN is outlined in
yellow, orange and red. The black dotted lines indicate the domain distinction into physical portions of the tokamak as described in
section 3.2.
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This is attributed to the larger variation of these parameters within the training dataset leading to the intentional
build up of under-fits to ensure generalisation.

5.3.Output comparison—quantitative
Thefigures 9–12 gives an overview of howwell the specified FCN structure canmodel evolution ofmulti-physics
models as laid out by SOLPS, but gives limited information on the quantitative performance of themodel. To
shed some light on that we have constructed the set of plots given under figures 13 and 14.

Figures 13(a) and (b) show the SOLPS solution of the electron density ecvolution placed alongside that of the
FCN solution for that parameter in a particular case. The values have been normalised to unity across the dataset
and the colorbars indicate themagnitudes within this normalisation scale for the utilised case. Figure 13(c)
represents the squared deviation of the FCN solution from that obtained using SOLPS.

Training stage of the FCNmodel involvedminimising themean squared error, the entity that highlights the
deviation of themodel’s output from that of the SOLPS output.However in order to bear inmind the bias-
variance tradeoff, we had chosen to optimise themodel until themean squared error was around 1× 10–4.
Allowing themodel to have an intuitive understanding of the physics at the same time not hamperingmuch of
it’s generalisation capabilities. Constricting themodel to this loss threshold provided themodel to operate with a
margin of error of±0.01.

The performance of themodel bearing inmind thismargin of error can be illustrated using line plots.
Figure 14 shows the variation of the neutral density, electron density and the electron temperature along the
radial axis on the outermideplane. From the graphs it can be seen that the FCNmodel is capable ofmodelling
the evolution of the plasma and neutral behaviourwithin the intendedmargin of error.

5.4. Time gain
SOLPS simulationswere implemented on theMarconi cluster. Each simulation of SOLPSwas run on 2× 18
cores of Intel Xeon E5-2697with each core clocking 2.3 GHz [23]. On theMarconi framework each cluster that
advanced the simulation by 2milliseconds took somewhere between 2 and 3 h (depending on the case). In
contrast, the FCN took 117min to train on aCPU arrangement of 16 cores of Intel Xeon E5-2640 v3 clocking
2.6 GHz, on a considerably less powerfulmachine. However, once trained the FCN could arrive at the solution
in under 0.033 s on the same framework. Thus, our novel FCN approach reduces the time required tomodel the
edge plasma and neutral evolution bymore than 5 orders ofmagnitudewhile not compromising vastly on the
accuracy of the output.

5.5. Limitations
Neural networks when employed for regression purposes, often comeswith an issue of determinacy,mainly due
to the nature of its approximateness. The higher the dimensionality of the output, the larger this issue grows.
This sense of indeterminacy is inducted into themodel to avoid over-fitting and producemodel robustness [24].
Thus, the issue of determinacy, being a function of the dimensionality of the output is depended on 3268 values

Figure 12.Density profiles of the neutrals across the computational grid. SOLPS solutions are filled inwith blue and greenwhile those
of the FCN is outlined in yellow, orange and red. The black dotted lines indicate the domain distinction into physical portions of the
tokamak as described in section 3.2.
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in this case. However, what we lose in precision for ourmodel ismade up by generalisation.Ourmodels shows

significant capability to approximate the solution and get us in the neighbourhood of the accurate output. The
other limitation our approach faces is that in order to build and employ ourmodel, we are still dependent on
data generated using the SOLPS framework. Our trainedmodel will only workwithin the confines of the case
defined in section 3.3.With amore diverse and comprehensive database, this approach could still be used to
build an approximate solver for the edge physics.While developing this approach, we could not ignore the irony
that to avoid the time lag that SOLPS brings forth by using our FCN,we had tofirst build the data by entering
into this time sink, that we are trying to avoid in the first place.

Figure 14.Variation of plasma and neutral parameters along the radial direction on the outermidplane. The FCNoutput is plotted
alongwith error bars set at±0.01, established in accordance with the optimisation strategy laid out for the network.

Figure 13. SOLPS output for that of electron density plotted alongside that produced by the FCN.Values have been normalised to
unity and colorbar representations depict the relativemagnitude associatedwith this case to the training database. Figure 13(c) gives a
quantitative analysis of themodel performance by depicting the squared deviation between the FCNand SOLPS outputs.
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6. Conclusion

Thiswork demonstrates a successful application of neural networks as function approximators inmodelling
complex nonlinear phenomena as seen in themulti-physics representations of high energy plasma physics.We
show that an optimized configuration of neural networks can efficientlymap the evolution of the entire plasma
and neutrals at the edge of a tokamak at all points across the simulation grid.Mapping at this scale, accounting
for the intricacies ofmultiple correlated dense nonlinear systems is performed for the first time to the best of our
knowledge.

7. Futurework

Currently themodel only performs evolution between twofixed instants of time.We areworking to buildmore
comprehensivemodels that can domore progressivemodelling across the time domain. The approximation
capabilities of our FCNbased approach can be utilised formore complexmulti-species plasmas. Itmay be used
in novel numericalmethods such as the Parareal Algorithm. The Parareal algorithm employs a time
parallelisation approach to better the SOLPS convergence time [15].We hope that our FCNapproach can solve
themajority of the evolutionwithin a fraction of the timewith a better prediction of the final result as compared
to traditionalmethods.
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