
Asian Journal of Probability and Statistics

Volume 26, Issue 8, Page 89-106, 2024; Article no.AJPAS.117820

ISSN: 2582-0230

Discrete Erlang Mixed Distributions and
their Properties

Beatrice M. Gathongo a∗

a
Department of Mathematics, University of Nairobi, Kenya.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/ajpas/2024/v26i8639

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and

additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc
are available here: https://www.sdiarticle5.com/review-history/117820

Received: 14/05/2024

Accepted: 18/07/2024

Original Research Article Published: 26/07/2024

Abstract

The proposed research is on discrete Erlang mixtures. Properties of the mixed distributions analyzed
include raw and central moments, which have been derived in terms of moments of the mixing distributions.
Cumulants obtained from the cumulant generating functions were also used in deriving the moments. The
posterior distribution and posterior moments are also among properties presented. Bayesian, moments
and maximum likelihood methods have been applied in parameter estimation. Additionally, the
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mixture distributions have been fitted to two data sets to test their goodness of fit. Some methods and
special functions used in the study are the exponential series, logarithmic series, geometric series, modified
Bessel function of the first kind, and the Touchard polynomials. The discrete mixing distributions used are
the geometric, Poisson and logarithmic.

Keywords: Discrete Erlang mixtures; moments; cumulant; cumulant generating function; posterior distribution;
Poisson; geometric; logarithmic.

1 Introduction

The Elang distribution is used in modeling the waiting time for an event in a Poisson process. It reduces to
the exponential distribution when the shape parameter is equal to one. Its relation to both the Poisson and
exponential distributions has contributed to its vast applications.

Mixed distributions are obtained by combining two or more distributions. They have a wider applicability
compared to the basic distributions. They are used to model data that the basic distributions may fail to, and
therefore are integral in situations that the basic distributions fail to address. They are devised by modifying the
basic distributions using mixing weights to form finite mixtures, and by varying their shape parameters to form
discrete mixtures and their rate/scale parameters to create continuous mixtures. Mixed Erlang distributions
have been studied extensively over time. Zakerzadeh and Dolati [1], Shanker and Mishra [2], Merovci [3], Rashid
et al. [4], Abouammoh et al. [5], Ghitany et al. [6], and Nadarajah et al. [7] are among people who derived finite
Erlang mixtures, while McNolty [8], Jordanova and Stehĺik [9], Jordanova et al. [10], and Kang [11] worked on
continuous Erlang mixtures.

The focus of this work is on discrete Erlang mixed distributions, which are obtained by mixing the Erlang
distribution with discrete mixing distributions. Tijms [12] showed that the Erlang mixture can be used in the
approximation of any non-negative continuous distribution. Landriault et al. [13] evinced that the order statistics
of independent mixed Erlang random variables belong to the same distribution class of Erlang mixtures. Cossette
et al. [14] used mixtures of the Erlang distribution in moment based approximation. They conducted numerical
experiments on the mixed Erlang approximation method, where the model was seen to provide an overall good
fit. Woo [15] demonstrated that a large number of distributions are of the discrete mixed Erlang type. They
showed that the Laplace transform of the Erlang mixture can be expressed in terms of the probability generating
function of the mixing distribution. They also discussed special cases of the Erlang mixture, which include the
exponential distribution, the Erlang distribution and the non-central chi-square distribution. Willmot and Woo
[16] derived distributional properties of a class of multivariate mixed Erlang distributions with different scale
parameters. Cossette et al. [17] presented the equilibrium function, among other properties, of the mixed Erlang
distribution.

The outline of the paper is as follows: The mathematical formulation of the mixed Erlang distribution and its
properties have been defined in section 2, and particular cases of the mixed distributions have been obtained in
sections 3, 4 and 5 using the geometric, Poisson and logarithmic mixing distributions respectively. An application
of the mixed distributions has been demonstrated in section 6 and section 7 contains the conclusion in brief.

2 The Discrete Mixed Erlang Distribution and Its Properties

• The probability density function (pdf) of the conditional (Erlang) distribution is

f(t|n) =
λn

Γn
e−λttn−1, t > 0;λ > 0, n = 1, 2, 3, .. (2.1)
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and its distribution function (CDF) is given by

F (t|n) = 1− e−λt
n−1∑
x=0

(λt)x

x!
=
γ(n, λt)

Γ(n)
(2.2)

where n is the shape parameter and λ is the rate parameter.

• The mixed Erlang distribution is thus given by;

f(t) =

∞∑
n=1

λn

Γn
e−λttn−1Pn = λe−λt

∞∑
n=1

(λt)n−1

(n− 1)!
Pn

= λe−λtE

(
(λt)n−1

(n− 1)!

)
(2.3)

where Pn is a discrete mixing distribution.

• The rth raw moment of the Erlang mixture is defined using conditional expectation as;

E(T r) = EE(T r|n) = E

∫ ∞
0

trf(t|n)dt

= E

∫ ∞
0

tr
λn

Γn
e−λttn−1dt = E

(
λn

Γn

∫ ∞
0

tn+r−1e−λtdt

)
= E

(
λn

Γn

Γ(n+ r)

λn+r

)
=

1

λr
E

(
Γ(n+ r)

Γn

)
(2.4)

Raw and central moments of the mixed Erlang distribution in terms of moments of the mixing distribution
are therefore given by;

• Raw moments

E(T ) =
1

λ
E(n) (2.5)

E(T 2) =
1

λ2
E

(
Γ(n+ 2)

Γn

)
=

1

λ2
E[n(n+ 1)] =

1

λ2
[E(n2) + E(n)] (2.6)

E(T 3) =
1

λ3
E

(
Γ(n+ 3)

Γn

)
=

1

λ3
E[n(n+ 1)(n+ 2)] =

1

λ3
[E(n3) + 3E(n2) + 2E(n)] (2.7)

E(T 4) =
1

λ4
E

(
Γ(n+ 4)

Γn

)
=

1

λ4
E[n(n+ 1)(n+ 2)(n+ 3)]

=
1

λ4
[E(n4) + 6E(n3) + 11E(n2) + 6E(n)] (2.8)

• Central moments

i. Variance

µ2 = E [T − E(T )]2 = E(T 2)− [E(T )]2

=
1

λ2
[E(n2) + E(n)]− 1

λ2
[E(n)]2 =

1

λ2

{
E(n2) + E(n)− [E(n)]2

}
=

1

λ2
{V ar(n) + E(n)} (2.9)
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ii. Third moment

µ3 = E [T − E(T )]3 = E(T 3)− 3E(T 2)E(T ) + 2[E(T )]3

=
1

λ3
[E(n3) + 3E(n2) + 2E(n)]− 3

λ3
[E(n2) + E(n)]E(n) +

2

λ3
[E(n)]3

=
1

λ3

{
E(n3) + 3E(n2) + 2E(n)− 3E(n2)E(n)− 3[E(n)]2 + 2[E(n)]3

}
=

1

λ3

{
E[n− E(n)]3 + 3V ar(n) + 2E(n)

}
(2.10)

iii. Fourth moment

µ4 = E [T − E(T )]4 = E(T 4)− 4E(T 3)E(T ) + 6E(T 2)[E(T )]2 − 3[E(T )]4

=
1

λ4
[E(n4) + 6E(n3) + 11E(n2) + 6E(n)]− 4

λ4
[E(n3) + 3E(n2)+

2E(n)]E(n) +
6

λ4
[E(n2) + E(n)][E(n)]2 − 3

λ4
[E(n)]4

=
1

λ4
{E(n4) + 6E(n3) + 11E(n2) + 6E(n)− 4E(n3)E(n)− 12E(n2)E(n)−

8[E(n)]2 + 6E(n2)[E(n)]2 + 6[E(n)]3 − 3[E(n)]4}

=
1

λ4
{E[n− E(n)]4 + 6E[n− E(n)]3 + 6V ar(n)E(n) + 11V ar(n) + 3[E(n)]2 + 6E(n)}

=
1

λ4
{E[n− E(n)]4 + 6E[n− E(n)]3 + V ar(n)[6E(n) + 11] + 3[E(n)]2 + 6E(n)} (2.11)

• The moment generating function of the Erlang mixture is given by

Mt(s) = E(ets) = EE(ets|n) = E

∫ ∞
0

etsf(t|n)dt

= E

∫ ∞
0

ets
λn

Γn
e−λttn−1dt = E

(
λn

Γn

∫ ∞
0

tn−1e−(λ−s)tdt

)
= E

(
λn

Γn

Γn

(λ− s)n

)
= E

(
λ

λ− s

)n
(2.12)

and hence the cumulant generating function is

Kt(s) = logMt(s) = logE

(
λ

λ− s

)n
(2.13)

The rth cumulant of the mixed distribution, Kr(t), is the rth derivative of the cumulant generating
function at s = 0, and the first, second and third cumulants are the expected value, second and third
central moments respectively.
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K
′
t(s) =

E
[

nλn

(λ−s)n+1

]
E
(

λ
λ−s

)n and K1(t) = K
′
t(0) =

1

λ
E(n) (2.14)

K
′′
t (s) =

E
(

λ
λ−s

)n
E
[
n(n+1)λn

(λ−s)n+2

]
−
{
E
[

nλn

(λ−s)n+1

]}2

[
E
(

λ
λ−s

)n]2 and

K2(t) = K
′′
t (0) =

1

λ2

{
E(n2) + E(n)− [E(n)]2

}
(2.15)

K
′′′
t (s) =

[
E
(

λ
λ−s

)n]{
E
(

λ
λ−s

)n
E
[
n(n+1)(n+2)λn

(λ−s)n+3

]
− E

[
nλn

(λ−s)n+1

]
E
[
n(n+1)λn

(λ−s)n+2

]}
−[

E
(

λ
λ−s

)n]2
2E
[

nλn

(λ−s)n+1

]{
E
(

λ
λ−s

)n
E
[
n(n+1)λn

(λ−s)n+2

]
−
[
E
(

nλn

(λ−s)n+1

)]2}
and

K3(t) = K
′′′
t (0) =

1

λ3

{
E(n3) + 3E(n2) + 2E(n)− 3E(n2)E(n)− 3[E(n)]2 + 2[E(n)]3

}
(2.16)

• The posterior distribution is given by

g(n|T ) =
f(t|n)Pn
f(t)

=
λn

Γn
e−λttn−1Pn

λe−λtE
(

(λt)n−1

(n−1)!

) =

(λt)n−1

(n−1)!
Pn

E
(

(λt)n−1

(n−1)!

) (2.17)

where f(t|n) is the likelihood function, which is the Erlang distribution, and Pn is the prior distribution.
The posterior rth moment is given by

E(nr|T ) =

∞∑
n=1

nrg(n|t) =

∑∞
n=1 n

r (λt)n−1

(n−1)!
Pn

E
(

(λt)n−1

(n−1)!

) =
E
(
nr(λt)n−1

(n−1)!

)
E
(

(λt)n−1

(n−1)!

) (2.18)

and the posterior mean is

E(n|T ) =
E
(
n(λt)n−1

(n−1)!

)
E
(

(λt)n−1

(n−1)!

) (2.19)

The posterior mean E(n|T ) is the Bayes estimator of the parameter n of the Erlang distribution, assuming
squared error loss function.

Remark: The mixed Erlang distribution and its properties have been expressed in terms of expectations
of the mixing distribution.

• Parameter estimation
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Method of moments estimation (MME)

In this method, sample moments are used to estimate distribution moments, where the rth raw moment
for the sample x of size n,

m′r =
1

n

n∑
i=1

xri , r = 1, 2, 3, ... (2.20)

is equated to the rth raw moment of the probability distribution f(x; θ), θ ∈ Ω,

µ′r = E(Xr), r = 1, 2, 3, ... (2.21)

to solve for the estimators of the parameters.

Maximum likelihood estimation (MLE)

The first derivatives of the log-likelihood functions of the mixed distributions, with respect to respective
parameters, are obtained and equated to zero and the resulting equations solved simultaneously to obtain
another equation, which is solved using the Newton-Raphson method to obtain the numerical estimates
of the parameters.

3 Erlang-Geometric Distribution and Its Properties

The geometric mixing distribution is;

Pn = p(1− p)n−1, n = 1, 2, 3, ...; 0 < p < 1 (3.1)

and, E

(
(λt)n−1

(n− 1)!

)
=

∞∑
n=1

(λt)n−1

(n− 1)!
p(1− p)n−1 = p

∞∑
n=1

[λt(1− p)]n−1

(n− 1)!
= peλt(1−p) (3.2)

and, E

(
nr

(λt)n−1

(n− 1)!

)
= p

∞∑
n=1

nr
[λt(1− p)]n−1

(n− 1)!
=

p

λt(1− p)

∞∑
n=1

nr+1 [λt(1− p)]n

n!

=
p

λt(1− p)e
λt(1−p)Tr+1[λt(1− p)] (3.3)

where Tr(x) = e−x
∑∞
k=0

krxk

k!
=
∑r
k=0 S(r, k)xk is the Touchard polynomials and S(r, k) =

∑k
j=0

(−1)k−jjr

(k−j)!j! is
the Stirling number of the second kind.

a) The Erlang-geometric distribution is thus;

f(t) = λpe−λpt, t = 0, 1, 2, ...; 0 < p < 1, λ > 0 (3.4)

The distribution function is given by

F (t) = λp

t∑
x=0

e−λpx = λp

[
1− e−λp(t+1)

1− e−λp

]
(3.5)
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and the quantile function is

Q(t) = F−1(t) =
1

λp
ln

[
1− t

λp
(1− e−λp)

]
− 1 (3.6)

b) The moment generating function of the mixed distribution is;

Mt(s) =

∞∑
n=1

(
λ

λ− s

)n
p(1− p)n−1 =

pλ

λ− s

∞∑
n=1

[
λ(1− p)
λ− s

]n−1

=
pλ

λ− s
1

1− λ(1−p)
λ−s

=
pλ

pλ− s (3.7)

and the cumulant generating function is thus;

Mt(s) = log

(
pλ

pλ− s

)
= log(pλ)− log(pλ− s) (3.8)

c) The raw moments of the geometric distribution are;

E(n) =
1

p
(3.9)

E(n2) =
2(1− p)
p2

+
1

p
(3.10)

E(n3) =
6(1− p)2

p3
+

6(1− p)
p2

+
1

p
(3.11)

E(n4) =
24(1− p)3

p4
+

36(1− p)2

p3
+

14(1− p)
p2

+
1

p
(3.12)

and the central moments are therefore;

V ar(n) =
2(1− p)
p2

+
1

p
− 1

p2
=

1− p
p2

(3.13)

E[n− E(n)]3 =
6(1− p)2

p3
+

6(1− p)
p2

+
1

p
− 3(2− p)

p3
+

2

p3
=

2− 3p+ p2

p3
(3.14)

E[n− E(n)]4 =
24(1− p)3

p4
+

36(1− p)2

p3
+

14(1− p)
p2

+
1

p
− 4

p4
(6− 12p+ 6p2 + 6p− 6p2 + p2)+

6

p4
(2− p)− 3

p4
=

9− 18p+ 10p2 − p3

p4
(3.15)

d) Hence, the moments and cumulants of the Erlang-geometric distribution are given by;

E(T ) = K1(t) =
1

λp
(3.16)

V ar(T ) = K2(t) =
1

λ2

{
1− p
p2

+
1

p

}
=

1

(pλ)2
(3.17)

µ3 = K3(t) =
1

λ3

{
2− 3p+ p2

p3
+

3(1− p)
p2

+
2

p

}
=

2

(pλ)3
(3.18)

µ4 =
1

λ4

{
9− 18p+ 10p2 − p3

p4
+

6(2− 3p+ p2)

p3
+

1− p
p2

[
6

p
+ 11

]
+

3

p2
+

6

p

}
=

9

(pλ)4
(3.19)
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e) The posterior distribution of the mixed distribution is,

g(n|T ) =

(λt)n−1

(n−1)!
p(1− p)n−1

peλt(1−p)
=
e−λt(1−p)[λt(1− p)]n−1

(n− 1)!
(3.20)

which is Poisson∼ [λt(1− p)].

The posterior rth moment is,

E(nr|T ) =

p
λt(1−p)e

λt(1−p)Tr+1[λt(1− p)]
peλt(1−p)

=
Tr+1[λt(1− p)]
λt(1− p) (3.21)

The posterior mean is hence given by,

E(n|T ) =
T2[λt(1− p)]
λt(1− p) = λt(1− p) + 1 (3.22)

f) Parameter estimation

Method of moments

The method of moments estimator(MME) of the parameter p of the geometric distribution is

1

p
= n̄ =⇒ p̂ =

1

n̄
(3.23)

and those of the parameters of the Erlang-geometric distribution are

1

λp
= t̄ and

2

(λp)2
=

∑n
i=1 t

2
i

n
=⇒ λ̂ =

1

p̂t̄
and p̂ =

1

λ̂t̄
(3.24)

The equation 1
λp
− t̄ = 0 can be solved using the Newton-Raphson method to obtain the numerical

estimates of p̂ and λ̂.

Maximum likelihood estimation

The likelihood function of the Erlang-geometric distribution is given by

L(p, λ) =

n∏
i=1

λpe−λpti = (λp)ne−λp
∑n
i=1 ti (3.25)

and the log-likelihood function is thus

 L = lnL(p, λ) = nln(λp)− λp
n∑
i=1

ti (3.26)

The first derivatives with respect to respective parameters are obtained as illustrated below.

δ L

δp
=
n

p
− λ

n∑
i=1

ti = 0 (3.27)

δ L

δλ
=
n

λ
− p

n∑
i=1

ti = 0 (3.28)

=⇒ p̂ =
n

λ̂
∑n
i=1 ti

=
1

λ̂t̄
and λ̂ =

n

p̂
∑n
i=1 ti

=
1

p̂t̄
=⇒ p̂λ̂ =

1

t̄
(3.29)

Equations (3.27)-(3.28) are equated to zero and solved simultaneously to further obtain the equation
p̂λ̂ − 1

t̄
= 0, which is solved using the Newton-Raphson method to estimate the parameters p and λ

numerically.
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4 Erlang-Poisson Distribution and Its Properties

The Poisson mixing distribution is;

Pn =
e−ppn

n!
, n = 0, 1, 2, ...; 0 < p < 1 (4.1)

and, E

(
(λt)n−1

(n− 1)!

)
=

∞∑
n=1

(λt)n−1

(n− 1)!

e−ppn

n!
= pe−p

∞∑
n=1

(λpt)n−1

n!(n− 1)!

(−1)n−1

(−1)n−1

= pe−p
∞∑
n=1

(−1)n−1 (−λpt)
2(n−1)

2

n!(n− 1)!
=

pe−p

i
√
λpt

∞∑
n=1

(−1)n−1

(√
−λpt

)2n−1

n!(n− 1)!

=
pe−p

i
√
λpt

∞∑
n=1

(−1)n−1

(
2i
√
λpt

2

)2n−1

n!(n− 1)!
=

pe−p

i
√
λpt

τ̇1
(

2i
√
λpt
)

(4.2)

where τ̇ρ(x) =
∑∞
k=0

(−1)k

k!Γ(k+ρ+1)

(
x
2

)2k+ρ
is the modified Bessel function of the first kind.

a) The Erlang-Poisson mixture is thus;

f(t) =
λpe−(λt+p)

i
√
λpt

τ̇1(2i
√
λpt), t = 1, 2, 3, ...; 0 < p < 1, λ > 0 (4.3)

and the distribution function is

F (t) =
λpe−p√
−λp

t∑
x=1

e−λx√
x

∞∑
k=0

(−1)k

k!Γ(k + 2)
(−λpx)k+ 1

2 = e−p
√
λp

∞∑
k=0

(λp)k+ 1
2

k!Γ(k + 2)

t∑
x=1

e−λxxk

= e−p
√
λp

∞∑
k=0

(λp)k+ 1
2

k!Γ(k + 2)

(
e−z

d

de−z

)k
1− e−z(t+1)

1− e−z (4.4)

b) The moment generating function of the mixture is;

Mt(s) =

∞∑
n=0

(
λ

λ− s

)n
e−ppn

n!
= e−p

∞∑
n=0

(
λp

λ− s

)n
1

n!

= e−p(1− λ
λ−s ) = e

ps
λ−s (4.5)

and the cumulant generating function is therefore;

Kt(s) = ln
(
e
ps
λ−s

)
=

ps

λ− s (4.6)

c) The raw moments of the Poisson distribution are;

E(n) = p (4.7)

E(n2) = p2 + p = p(p+ 1) (4.8)

E(n3) = p3 + 3p2 + p = p(p2 + 3p+ 1) (4.9)

E(n4) = p4 + 6p3 + 7p2 + p = p(p3 + 6p2 + 7p+ 1) (4.10)

and the central moments are hence given by;

V ar(n) = p2 + p− p2 = p (4.11)

E[n− E(n)]3 = p3 + 3p2 + p− 3p(p2 + p) + 2p3 = p (4.12)

E[n− E(n)]4 = p4 + 6p3 + 7p2 + p− 4p(p3 + 3p2 + p) + 6p2(p2 + p)− 3p4 = 3p2 + p (4.13)
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d) Moments and cumulants of the Erlang-Poisson distribution are thus;

E(T ) = K1(t) =
p

λ
(4.14)

V ar(T ) = K2(t) =
1

λ2
(p+ p) =

2p

λ2
(4.15)

µ3 = K3(t) =
1

λ3
(p+ 3p+ 2p) =

6p

λ3
(4.16)

µ4 =
1

λ4
[3p2 + p+ 6p+ p(6p+ 11) + 3p2 + 6p] =

12

λ4
(p2 + 2) (4.17)

e) The posterior distribution of the mixture distribution is

g(n|T ) =

(λt)n−1

(n−1)!
e−ppn

n!

pe−p

i
√
λpt

τ̇1
(
2i
√
λpt
) =

i
√
λpt(λpt)n−1

τ̇1
(
2i
√
λpt
)
n!(n− 1)!

(4.18)

The posterior rth moment is

E(nr|T ) =
i
√
λpt

τ̇1
(
2i
√
λpt
) ∞∑
n=1

nr
(λpt)n−1

n!(n− 1)!
(4.19)

and the posterior mean is

E(n|T ) =
i
√
λpt

τ̇1
(
2i
√
λpt
) ∞∑
n=1

(λpt)n−1

(n− 1)!(n− 1)!
= i
√
λpt

τ̇0(2i
√
λpt)

τ̇1(2i
√
λpt)

(4.20)

f) Parameter estimation

Method of moments

The respective method of moments estimators of the parameters of the Poisson and the Erlang-Poisson
distributions are given by

p̂ = n̄ (4.21)

p

λ
= t̄ and

p(2 + p)

λ2
=

∑n
i=1 t

2
i

n
=⇒ t̄(2 + λt̄)

λ
=

∑n
i=1 t

2
i

n

=⇒ λ̂ =
2nt̄∑n

i=1 t
2
i − nt̄2

and p̂ =
2nt̄2∑n

i=1 t
2
i − nt̄2

(4.22)

Maximum likelihood estimation

The likelihood function of the mixture is

L(p, λ) =

n∏
i=1

λpe−(λti+p)

√
−λpti

τ̇1(2
√
−λpti) =

(λp)n e−npe−λ
∑n
i=1 ti(√

−λp
)n∏n

i=1

√
ti

n∏
i=1

∞∑
k=0

(−1)k

k!Γ(k + 2)

(√
−λpti

)2k+1

(4.23)

and the log-likelihood function is given by

 L =lnL(p, λ) = nln (λp)− np− λ
n∑
i=1

ti − nln
(√
−λp

)
−

n∑
i=1

ln
√
ti+

n∑
i=1

ln
∞∑
k=0

(−1)k

k!Γ(k + 2)

(√
−λpti

)2k+1

(4.24)
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The derivatives of the log-likelihood function with respect to the parameters, p and λ are obtained as
below.

δ L

δp
=

n

2p
− n+ λ

n∑
i=1

∑∞
k=0

(−1)k+1(2k+1)ti
2k!Γ(k+2)

(√
−λpti

)2k−1∑∞
k=0

(−1)k

k!Γ(k+2)

(√
−λpti

)2k+1
= 0 (4.25)

δ L

δλ
=

n

2λ
−

n∑
i=1

ti + p

n∑
i=1

∑∞
k=0

(−1)k+1(2k+1)ti
2k!Γ(k+2)

(√
−λpti

)2k−1∑∞
k=0

(−1)k

k!Γ(k+2)

(√
−λpti

)2k+1
= 0 (4.26)

=⇒ p̂

λ̂
=

∑n
i=1 ti

n
= t̄ =⇒ p̂− λ̂t̄ = 0 (4.27)

The Newton-Raphson method is applied to the equation p̂ − λ̂t̄ = 0 to obtain numerical maximum
likelihood estimates of the parameters. The equation is obtained by equating equations (4.25)-(4.26) to
zero and solving them simultaneously.

5 Erlang-Logarithmic Distribution and Its Properties

The logarithmic mixing distribution is given by;

Pn =
pn

−nlog(1− p) , n = 1, 2, 3, ...; 0 < p < 1 (5.1)

and thus, E

(
(λt)n−1

(n− 1)!

)
=

∞∑
n=1

(λt)n−1

(n− 1)!

pn

−nlog(1− p) =
1

−λtlog(1− p)

∞∑
n=1

(λtp)n

n!

=
−(eλtp − 1)

λtlog(1− p) =
1− eλtp

λtlog(1− p) (5.2)

and, E

(
nr(λt)n−1

(n− 1)!

)
=

1

−λtlog(1− p)

∞∑
n=1

nr(λtp)n

n!
=

eλtpTr(λtp)

−λtlog(1− p) (5.3)

a) The Erlang-logarithmic distribution is therefore,

f(t) =
e−λt − e−λt(1−p)

tlog(1− p) , t = 1, 2, 3, ...;λ > 0, 0 < p < 1 (5.4)

with a distribution function,

F (t) =
1

log(1− p)

 t∑
x=1

(
e−λ

)x
x

−
t∑

x=1

(
e−λ(1−p)

)x
x


=

1

log(1− p)

[
log

(
1− e−λ(1−p)

1− e−λ

)
+B(e−λ(1−p); t+ 1, 0)−B(e−λ; t+ 1, 0)

]
(5.5)
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b) The moment generating function of the mixed distribution is;

Mt(s) =

∞∑
n=1

(
λ

λ− s

)n
pn

−nlog(1− p) =
1

−log(1− p)

∞∑
n=1

(
λp

λ− s

)n
1

n

=
log
[
1− λp

λ−s

]
log(1− p) =

log [λ(1− p)− s]− log(λ− s)
log(1− p) (5.6)

and hence the cumulant generating function is given by;

Kt(s) = log

(
log [λ(1− p)− s]− log(λ− s)

log(1− p)

)
= log {log [λ(1− p)− s]− log(λ− s)} − loglog(1− p)

(5.7)

c) The raw moments of the logarithmic distribution are;

E(n) =
−p

(1− p)log(1− p) (5.8)

E(n2) =
−p2

(1− p)2log(1− p) −
p

(1− p)log(1− p) =
−p

(1− p)2log(1− p) (5.9)

E(n3) =
−2p3

(1− p)3log(1− p) −
3p2

(1− p)2log(1− p) −
p

(1− p)log(1− p) =
−p(p+ 1)

(1− p)3log(1− p) (5.10)

E(n4) =
−6p4

(1− p)4log(1− p) −
12p3

(1− p)3log(1− p) −
7p2

(1− p)2log(1− p) −
p

(1− p)log(1− p)

=
−p(p2 + 4p+ 1)

(1− p)4log(1− p) (5.11)

and the central moments are;

V ar(n) =
−p

(1− p)2log(1− p) −
p2

(1− p)2[log(1− p)]2 =
−plog(1− p)− p2

(1− p)2[log(1− p)]2 (5.12)

E [n− E(n)]3 =
−p(p+ 1)

(1− p)3log(1− p) −
3p2

(1− p)3[log(1− p)]2 −
2p3

(1− p)3[log(1− p)]3

=
−p(p+ 1)[log(1− p)]2 − 3p2log(1− p)− 2p3

(1− p)3[log(1− p)]3 (5.13)

E [n− E(n)]4 =
−p(p2 + 4p+ 1)

(1− p)4log(1− p) −
4p2(p+ 1)

(1− p)4[log(1− p)]2 −
6p3

(1− p)4[log(1− p)]3−

3p4

(1− p)4[log(1− p)]4

=
−p(p2 + 4p+ 1)[log(1− p)]3 − 4p2(p+ 1)[log(1− p)]2 − 6p3log(1− p)− 3p4

(1− p)4[log(1− p)]4 (5.14)
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d) Moments and cumulants of the Erlang-logarithmic distribution are therefore;

E(T ) = K1(t) =
−p

λ(1− p)log(1− p) (5.15)

V ar(T ) = K2(t) =
1

λ2

{
−plog(1− p)− p2

(1− p)2[log(1− p)]2 −
p

(1− p)log(1− p)

}
=
−p[p+ (2− p)log(1− p)]
λ2(1− p)2[log(1− p)]2 (5.16)

µ3 = K3(t) =
1

λ3

{
−p(p+ 1)[log(1− p)]2 − 3p2log(1− p)− 2p3

(1− p)3[log(1− p)]3 − 3plog(1− p)− p2

(1− p)2[log(1− p)]2−

2p

(1− p)log(1− p) =
−2p3 − p2(4− p)log(1− p)− p(6− 6p+ 2p2)[log(1− p)]2

λ3(1− p)3[log(1− p)]3 (5.17)

µ4 =
1

λ4

{
−p(p2 + 4p+ 1)[log(1− p)]3 − 4p2(p+ 1)[log(1− p)]2 − 6p3log(1− p)− 3p4

(1− p)4[log(1− p)]4 −

6p(p+ 1)[log(1− p)]2 − 3p2log(1− p)− 2p3

(1− p)3[log(1− p)]3 − plog(1− p)− p2

(1− p)2[log(1− p)]2[
− 6p

(1− p)log(1− p) + 11

]
+

3p2

(1− p)2[log(1− p)]2 −
6p

(1− p)log(1− p)

=
−6p(6p2 − 6p− p3 + 2)[log(1− p)]3 − 8p(3p2 + 3p+ p3)[log(1− p)]2−

λ4(1− p)4[log(1− p)]4

6p(2p2 − p3)log(1− p)− 3p4

(5.18)

e) The posterior distribution of the Erlang mixture is the zero truncated Poisson (λtp) distribution,

g(n|T ) =

(λt)n−1

(n−1)!
pn

−nlog(1−p)
1−eλtp

λtlog(1−p)

=
(λtp)n

n!(eλtp − 1)
(5.19)

The posterior rth moment is

E(nr|T ) =

eλtpTr(λtp)
−λtlog(1−p)

1−eλtp
λtlog(1−p)

=
Tr(λtp)

1− e−λtp (5.20)

and the posterior mean is

E(n|T ) =
T1(λtp)

eλtp − 1
=

λtp

1− e−λtp =
(λtp)eλtp

eλtp − 1
(5.21)

f) Parameter estimation

Method of moments

The parameter p of the logarithmic distribution can be estimated, using method of moments, as

−p
(1− p)log(1− p) = n̄ =⇒ p̂

(1− p̂) + n̄log(1− p̂) = 0 (5.22)

The resulting equation can then be solved using the Newton-Raphson method, to estimate the parameter
numerically.

The Erlang-logarithmic distribution method of moments parameter estimators, p̂ and λ̂ are given by
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−p
λ(1− p)log(1− p) = t̄ and

−p(2− p)log(1− p)
λ2(1− p)2[log(1− p)]2 =

∑n
i=1 t

2
i

n
(5.23)

=⇒ n(2− p̂)log(1− p̂)t̄2 + p̂

n∑
i=1

t2i = 0 and λ̂ =
−p̂

t̄(1− p̂)log(1− p̂) (5.24)

The parameter p can be estimated numerically by solving the equation n(2− p̂)log(1− p̂)t̄2 + p̂
∑n
i=1 t

2
i = 0

using the Newton-Raphson method.

Maximum likelihood estimation

The likelihood function of the mixed distribution is

L(p, λ) =

n∏
i=1

e−λti − e−λti(1−p)

tilog(1− p) =

∏n
i=1

[
e−λti − e−λti(1−p)

]
nlog(1− p)

∏n
i=1 ti

(5.25)

The log-likelihood function is

 L = logL(p, λ) =

n∑
i=1

log
[
e−λti − e−λti(1−p)

]
− logn− loglog(1− p)−

n∑
i=1

logti (5.26)

The log-likelihood function is then differentiated with respect to the parameters, p and λ, resulting in
the below equations, which are equated to zero and solved simultaneously. The Newton-Raphson method
was applied in estimating the parameters numerically.

δ L

δp
=

n∑
i=1

−λtie−λti(1−p)

e−λti − e−λti(1−p)
+

1

(1− p)log(1− p) =

n∑
i=1

−λtie−λtip

1− e−λtip +
1

(1− p)log(1− p) (5.27)

δ L

δλ
=

n∑
i=1

−tie−λti + ti(1− p)e−λti(1−p)

e−λti − e−λti(1−p)
=

n∑
i=1

−ti
[
1− (1− p)e−λtip

]
1− e−λtip (5.28)

6 Application

This section provides an application of the constructed distributions to data to assess and compare their goodness
of fit. The -log-likelihood (-log(L)), chi-square (χ2) and kolmogorov-smirnov (k-s) statistics have been computed
to this effect. Two real data sets have been used. The first is on death times, in weeks, of 30 patients with
cancer of the tongue. The data has been applied by various authors such as Klein et al. [18], Eledum and
El-Alosey [19] and Eledum and El-Alosey [20]. The second data set is on remission times, in weeks, for 30
leukemia patients who are on a specific type of medication, and has been used by Eledum and El-Alosey [19],
Eledum and El-Alosey [20] and Lawless [21] among other authors.

The mixed distributions generally offer better fits compared to the mixing distributions, as seen in Tables 3 and
4, where the p-values are smaller and the -log(L), χ2 and k-s values are larger for mixing distributions compared
to the corresponding mixed distributions. Among the mixed distributions, the Erlang-Poisson is a better fit
compared to the Erlang-logarithmic mixture, but the Erlang-geometric distribution offers the best fit among the
three mixtures with the least values for the -log(L), χ2 and k-s and the highest p-value.
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Fig. 1. The pmfs for the geometric, Erlang-geometric, Poisson, Erlang-Poisson, logarithmic and
Erlang-logarithmic distributions using dataset 1

Table 1. Death times, in weeks, of patients with cancer of the tongue.

Dataset 1

1 1 1 4 5 10 13 13 16 16 24 26 27 28 30 30

32 41 51 65 67 70 72 73 77 91 93 96 100 104 157 167

Table 2. Remission times, in weeks, for some leukemia patients taking a specific type of therapy.

Dataset 2

1 1 2 4 4 6 6 6 7 8 9 9 10 12 13

14 18 19 24 26 29 31 42 45 50 57 60 71 85 91

103



Beatrice; Asian J. Prob. Stat., vol. 26, no. 8, pp. 89-106, 2024; Article no.AJPAS.117820

Table 3. Parameters estimates, -log(L), χ2, p-value and k-s test value for the mixing and mixed
distributions using the tongue cancer patients’ data set

Distribution Estimated parameters -log(L) χ2 p-value k-s

geometric p̂=0.02 - 157 4 0.5 0.09

Poisson p̂=50.03 - 689.73 →∞ 0 0.5

logarithmic p̂=0.0001 - →∞ →∞ 0 0.84

Erlang-geometric p̂=0.1 λ̂=0.2 157 4 0.5 0.09

Erlang-Poisson p̂=2.66 λ̂=0.053 160 8.29 0.14 0.164

Erlang-logarithmic p̂=0.0001 λ̂=0.046 172.18 39 0.0000002 0.28

Table 4. Parameters estimates, -log(L), χ2, p-value and k-s test value for the mixing and mixed
distributions using the leukemia patients’ data set

Distribution Estimated parameters -log(L) χ2 p-value k-s

geometric p̂=0.0395 - 126 3 0.8 0.10

Poisson p̂=25.33 - 412.6 4347625 0 0.48

logarithmic p̂=0.0001 - →∞ →∞ 0 0.83

Erlang-geometric p̂=0.1 λ̂=0.395 126 3 0.8 0.074

Erlang-Poisson p̂=2.005 λ̂=0.079 132.49 8.135 0.228 0.2

Erlang-logarithmic p̂=0.0001 λ̂=0.09 140.64 10.78 0.1 0.2

7 Conclusion

This research has studied discrete Erlang mixtures using the geometric, Poisson and logarithmic mixing
distributions. The posterior distribution of the Erlang-geometric distribution was demonstrated as the Poisson.
The Erlang-Poisson mixture and its posterior distribution were expressed in terms of the Modified Bessel
function of the first kind. The posterior distribution of the Erlang-logarithmic distribution was shown to be
the truncated Poisson distribution, and the posterior moments were expressed as Touchard polynomials. The
moments of the mixed distributions were expressed in terms of moments of the mixing distributions. Additionally,
the cumulant generating functions of the Erlang mixtures have been obtained from their moment generating
functions. Moments of the Erlang mixtures have also been obtained from their cumulant generating functions as
cumulants. Further, Bayesian method was applied in parameter estimation, where the posterior means are the
Bayes estimators of the conditional (Erlang) distribution’s parameter, assuming squared loss function. Method
of moments and maximum likelihood estimates for the mixed distributions were obtained, and the goodness of
fit test for the mixtures was performed by fitting them to two real data sets. The mixed distributions were seen
to have better fits compared to their corresponding mixing distributions, and the Erlang-geometric distribution
had the best fit among the three discrete Erlang mixtures.

Construction of discrete Erlang mixed distributions using more mixing distributions, and further applications
of the mixed distributions, are recommendations for further research.
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[10] Jordanova P, Dušek J. Stehlık M. Microergodicity effects on ebullition of methane modelled by
Mixed Poisson process with Pareto mixing variable. Chemometrics And Intelligent Laboratory Systems.
2013;128;124-134.

[11] Kang S. Extreme values of mixed Erlang random variables. Journal of The Korean Operations Research
And Management Science Society. 2003;28:145-153.

[12] Tijms H. Stochastic models: an algorithmic approach; 1994

[13] Landriault D, Moutanabbir K, Willmot G. A note on order statistics in the mixed Erlang case.Statistics
Probability Letters. 2015;106:13-18.

[14] Cossette H, Landriault D, Marceau E, Moutanabbir K. Moment-based approximation with mixed Erlang
distributions. Variance. 2016;10:161-182.

[15] Willmot G, Woo J. On the class of Erlang mixtures with risk theoretic applications. North American
Actuarial Journal. 2007;11:99-115.

[16] Willmot G, Woo J. On some properties of a class of multivariate Erlang mixtures with insurance
applications. Astin Bulletin: The Journal of The IAA. 2015;45:151-173.
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