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ABSTRACT 
 

To analyze a harmonically Van der Pol oscillator, this work used a combination of graphs, time 
steps distribution, adaptive time steps Runge-Kutta, and fourth order algorithms. The goal is to 
examine the performance of third and fourth order Runge-Kutta algorithms in finding chaotic 
solutions for a harmonically excited Van der Pol oscillator. Fourth-order algorithms favor larger time 
steps and are thus faster to execute than third-order algorithms in all circumstances studied. The 
accuracy of the data acquired with third order is worth the longer overall computation time steps 
period reported 
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1. INTRODUCTION 
 
Numerical techniques, such as the finite element 
method, are used to discretise these 
mathematical equations that are usually 
represented by partial differential equations 
representing the governing physics taking place, 
and the behaviour of the materials that make up 
the electronic or photonic device [1]. There is a 
specific Numerical Method for each type of 
problem that can be solved. Taylor Series 
Method, Euler Method, Runge Kutta Methods, 
Shooting Method, Finite Difference Methods, and 
so on are some of the numerical methods. 
Runge–Kutta method is an effective and widely 
used method for solving the initial-value 
problems of differential equations. Runge–Kutta 
method can be used to construct high order 
accurate numerical method by functions' self 
without needing the high order derivatives of 
functions [2,3]. C.Runge and M.W. Kutta, two 
German mathematicians, invented the Runge-
Kutta procedures in the past. The Runge-Kutta 
method's nomenclature was developed from the 
combination of the two names [4]. The 
importance of Runge-Kutta algorithms in solving 
issues involving nonlinear dynamics cannot be 
overstated. Numerical solutions to nonlinear 
dynamic problems have been the subject of a lot 
of research. When looking into the dynamics of a 
continuous-time system defined by an ordinary 
differential equation, it's common to start by 
looking for trajectories. The dynamics of the most 
often used family of numerical integration 
algorithms were elucidated by Julyan et al. [5]. 
The authors' research revealed that Runge-Kutta 
integration should be used with caution when 
dealing with nonlinear systems. The connection 
between rigidity and chaos was explained in 
great detail. Because of their inefficiency, explicit 
Runge-Kutta algorithms should not be utilized for 
stiff situations, according to the conclusions of 
the study. Backward differentiation formulae 
methods or possibly implicit Runge Kutta 
procedures, according to the authors, are the 
best alternatives. The paper's conclusions 
revealed that dynamics is interested in periodic 
and chaotic behavior as well as issues with fixed 
point solutions. Bifurcation diagrams have been 
shown to be useful in the chaotic investigation of 
nonlinear electrical circuits [6]. The Runge-Kutta 
method was used to solve the required second 
order differential equations for ranges of suitable 
parameters. Bifurcation diagrams were created 
using the solutions found using this procedure. 
This work demonstrated how a bifurcation 
diagram may be used to investigate the 

dynamics of a nonlinear resonant circuit with a 
variety of control parameters. The research study 
used the Runge-Kutta fourth order method to 
provide numerical solutions for a system of 
second order robot arms. At various intervals, the 
precise solution of the system of equations 
defining the arm model of a robot was compared 
to the corresponding approximate solutions [7]. 
The results and comparisons revealed that the 
numerical integration algorithm's efficiency is 
determined by the absolute error between exact 
and approximate answers. As a result of this 
discovery, the STWS algorithm is an A-stable 
approach that is not depending on Taylor's series 
[8] explored the dynamics of a torsional system 
with harmonically variable drying friction torque. 
The example study involves nonlinear dynamics 
of a single degree of freedom torsional system 
with dry friction. The first model was a nonlinear 
system with a regularly varying normal load. After 
that, a multi-term harmonic balance method is 
reformulated (MHBM). The goal is to solve the 
nonlinear time-varying issue in the frequency 
domain directly. With a regularly fluctuating 
friction, the feasibility of MHBM is proved, and its 
accuracy is validated by numerical integration 
using the third order Runge-Kutta method. There 
has been developed a set of explicit third order 
new improved Runge-Kutta (NIRK) methods that 
only used two function evaluations per step [9]. 
The methodology suggested here has a lower 
computational cost than the standard third order 
Runge-Kutta method while keeping the same 
order of local accuracy due to a smaller number 
of function evaluations [10] conducted a critical 
study of Ruge-Kutta discontinuous Galerkin 
(RKDG) approaches for nonlinear convection-
dominated situations. The authors combined a 
Runge-Kutta time discretization that allows the 
method to be nonlinearly stable regardless of 
accuracy with a finite element space 
discretization by discontinuous approximations 
that incorporates the idea of numerical fluxes and 
slope limiters coined during the remarkable 
development of high resolution finite difference 
and finite volume schemes. RKDG methods are 
stable, high-order accurate, and highly 
parallelizable schemes that can easily handle 
intricate geometries and boundary conditions, 
according to this review. Its enormous 
applicability in Navier-Stokes equations and 
Hamilton-Jacobian equations were demonstrated 
in the review. This research has undoubtedly 
aided computational fluid dynamics. This method 
has mostly been used to investigate the 
dynamics of Van der Pol oscillators. The Van der 
Pol oscillator is made up of two simple coupled 
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ordinary differential equations that must be 
solved. For numerical solutions of Van der Pol 
oscillator dynamics, the Runge-Kutta method has 
been widely employed [6]. Used bifurcation 
diagrams to explore the dynamical behavior of a 
Van der Pol oscillator. In order to solve pertinent 
second order differential equations, the authors 
used the third order Runge-Kutta method. While 
the bifurcation diagrams revealed the dynamics 
of the Van der Pol oscillator, they also indicated 
that the dynamics are highly dependent on the 
beginning conditions [11]. Demonstrated how the 
Van der Pol equation may be used to estimate 
sawdust particle emission properties. The study 
explains how to model sawdust particle motion 
as a two-dimensional continuous time series 
transformation system. In order to solve Van der 
Pol's model equation for sawdust particles, the 
authors used the Runge-Kutta algorithm. The 
solution was based on the perspective of 
displacement and velocity. The authors' findings 
demonstrated the high-profile viability of 
simulating sawdust dynamics as band saw 
emissions. The conclusion drawn from this 
research is that the findings will undoubtedly 
increase our understanding of sawdust emission 
studies. Despite the fact that the Runge-Kutta 
technique is widely used as a numerical tool in 
nonlinear dynamics, there is no denying that a 
research gap exists. According to the available 
literature, studies comparing the performance of 
different Runge-Kutta orders (second, third, 
fourth, sixth, and so on) are very limited. This 
work compares the performance of third and 
fourth order Runge-Kutta algorithms as 
instruments for finding chaotic solutions in a 
harmonically excited Van der Pol oscillator. 
 

2. VAN DER POL OSCILLATOR 
 

The investigated normalized governing equation 
for the dynamic behavior of a harmonically 
excited Van der Pol system is given as: 
 

                                    1 
 

Where 
 

   is displacement 

   is velocity 
   is acceleration 

  is the damping coefficient 

   is the amplitude strength of harmonic 
excitation  
  is the excitation frequency 

  is time 

Emeruwa, Francis, Dowell, Narayanan et al. [12, 
13, 14 and 15] in their separate papers, 
postulated that a harmonically excited Van der 
Pol oscillator with a damping coefficient of 
0.0168, amplitude strength of 0.09, and 
excitation frequency of 1.0 exhibits chaotic 
behavior. Equation (1) was investigated using 
adaptive time steps Runge-Kutta algorithms 
across 150 excitations starting with a time step of 
   (                         ) in this paper. 
The stable answers from the latest fifty (50) 
excitation period computations were used to 
create the phase plot. 
 

3. SELECTION OF TIME STEP 
 
Using a constant step size to find solutions to 
ordinary differential equations in some dynamical 
systems that exhibit a sudden transition, 
according to Ekah et al. [16], could be a major 
constraint. The choice of adaptive time step size 
becomes unavoidable in such engineering 
situations (chaotic dynamics). Equations 2 and 3 
are the formulas for raising and lowering the time 
step      in this investigation, respectively. 
 

                                               2 
  

                                              3 
 
 Where 
 
    is the tolerance 

  is the error 
 
Equation 2 is deployed when the error is less 
than the tolerance (    ) while equation 3 is 
deployed when the error is greater than the 
tolerance (    ). 
 

4. DETAILS OF THE STUDIED 
SAMPLES' PARAMETERS 
 

Three separate samples were investigated using 
the information in Table 1 below and the 
governing equation (1). Displacement (     ), 
initial velocity (  ), and excitation frequency ( ) 
are all common factors in all circumstances. 
 

5. RESULTS 
 
The investigation of sample 1 parameters using 
the Runge-Kutta third and fourth order algorithms 
generates Fig. 1 as seen below. 
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Table 1. Parameters for investigated samples 
 

Samples Damping Coefficient ( ) Excitation Amplitude (  ) 

1 0.1680 0.21 
2 0.0168 0.09 
3 0.0168 0.21 

 

 
 

Fig. 1. Sample 1 time-step distribution 
 
From Fig. 1, the third order algorithms' time steps 
distribution range is shorter, whereas the fourth 
order algorithms' time steps distribution range is 
longer. Higher computational time steps are not 
tolerated as well by third order algorithms as they 
are by fourth order algorithms. The third and 
fourth order algorithms' distributions peaked at 
0.026 and 0.026 excitation periods, respectively. 
 
Similarly, the parameters of sample 2 gives rise 
to Fig. 2 as seen below. 

Fig. 1 is similar to Fig. 2 in shape, however the 
frequency intensities, on the other hand, are 
vastly different. The third and fourth order 
algorithms' distributions in Fig. 2                          
peaked at 0.025 and 0.048 excitation periods, 
respectively as against what was obtained in                           
Fig. 1. 
 
Like in the cases of Samples 1 and 2, , the 
parameters of sample 3 gives rise to Fig. 3 as 
seen below. 

 

 
 

Fig. 2. Sample 2 time-step distribution 
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Fig. 3. Sample 3 time-step distribution 
 
Fig. 3 can be compared to Figs. 1 and 2 in terms 
of quality. However, the frequency intensities 
differ, and the third and fourth order algorithms' 
distributions peaked at 0.011 and 0.043 periods, 
respectively, for the third and fourth order 
algorithms. 
 
Figs. 4, 5, 6, 7, 8 and 9 shows the phase graphs 
obtained using the Runge-Kutta third and fourth 
orders; they are only similar but not exact for 
sample 1 and sample 2. 
 
A deeper examination of the graph for Sample 2 
reveals that the third order algorithm's solutions 
are bounded to the negative side of the 

displacement, whereas the fourth order 
algorithm's solutions are bounded to the positive 
side of the displacement. Fig. 4 shows a graph 
that is remarkably similar to that of Dowell et al. 
[14].  
 
Furthermore, Tables 2 and 3 interpretations 
significantly support the third order algorithm's 
outcomes being more consistent and reliable 
than its fourth order version. Overall, a 
comparison of the graphs in conjunction with the 
time steps distribution suggests that the third 
order algorithm is more trustworthy than the 
fourth order at the cost of additional computation 
steps each period. 

 

 
 

Fig. 4. Velocity – displacement graph for third oder sample 1 
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Fig. 5. Velocity – displacement graph for fourth oder sample 1 
 

 
 

Fig. 6. Velocity – displacement graph for third oder sample 2 
 

 
 

Fig.  7. Velocity – displacement graph for fourth oder sample 2 
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Fig. 8. Velocity – displacement graph for third oder sample 3 
 

 
 

Fig. 9. Velocity – displacement graph for fourth oder sample 3 
 

Table 2. Corresponding graph parameters for third order algorithm 
 

Samples Constant Time Steps Variable Time Steps 
(Section 1) 

Variable Time Steps 
(Section 2) 

1 A A Nil 
2 D C Irregular C 
3 E E Irregular E 

 
Table 3. Corresponding graph parameters for fourth order algorithm 

 

Samples Constant Time Steps Variable Time Steps 
(Section 1) 

Variable Time Steps 
(Section 2) 

1 Nil B Roughly A 
2 Near B D C 
3 E F F 
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Table 4. Total number of variable steps for third order algorithm 
 

Samples Constant Time Steps Adaptive Time Steps 
(Section 1) 

Adaptive Time Steps 
(Section 2) 

1 50,000 1,598 1,588 
2 50,000 1,598 1,594 
3 50,000 3,667 3,704 

 
Table 5. Total number of variable steps for fourth order algorithm 

 

Samples Constant Time Steps Adaptive Time Steps 
(Section 1) 

Adaptive Time Steps 
(Section 2) 

1 50,000 785 764 
2 50,000 788 792 
3 50,000 962 959 

 
Where: A, B, C, D, E, F is equivalent to Figs. 4, 
5, 6, 7, 8 and 9.  
 

Tables 4 and 5 illustrates that when compared to 
constant time steps, adaptive third order can be 
twenty five (25) times faster to execute (as seen 
in Samples 1 and 2). Similarly, as compared to 
its corresponding time steps, adaptive fourth 
order can be fifty (50) times faster to perform (as 
seen in the three samples).  
 

Tables 4 and 5 also show that adaptive fourth 
order may be computed four times faster than its 
counterpart third order, as seen in Sample 3. 
However, the accuracy of computed findings may 
be questioned. The percentage of total steps 
taken by third and fourth order algorithms to find 
steady solutions is section independent. 
 

6. CONCLUSION 
 

The performance of two Runge-Kutta algorithms 
to find the chaotic stable solutions of a 
harmonically excited Van der Pol oscillator was 
visually demonstrated in this paper. The study 
found that the Runge-Kutta fourth order can be 
four times faster to execute than the comparable 
third order, but at the expense of the computed 
findings' dependability. 
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