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ABSTRACT 
 

Artificial neural network (ANN) has been widely researched and applied in chemical process, 
because of its parallel processing and excellent nonlinear mapping ability, with strong robustness 
and fault tolerance. By using artificial neural network to establish the model between the properties 
of mixture and its molecular structure, more accurate data can be predicted and obtained than 
those determined by experiment. This paper summarizes the development process of artificial 
neural network and analyzes the application of ANN in quantitative structure-property relationship 
model (QSPR). It is pointed out that QSPR model combined with artificial neural network can 
effectively predict the properties of compounds or mixtures, which can shorten the experimental 
testing process and is able to be widely used with less limitation. It has important significance in 
application of new biomass fuel, the analysis of the pollution, prediction of the risk of dangerous 
chemical properties and so on. In the future, there will be broader application space of ANN-QSPR 
model. 
 

 

Keywords: Artificial neural network; quantitative structure-property relationship; property estimation; 
RBF neural network; BP network. 

 

1. INTRODUCTION  
 

Quantitative structure-property relationship 
model is a property estimation method, the basic 

idea of which is that changes in molecular 
structure can reflect the changes in physical and 
chemical properties [1]. It is widely used in 
petroleum product development, ionic liquid 
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research, drug design, and toxicity analysis of 
mixed pollutants [2-6]. QSPR model is based on 
chemical structure rather than experimental data 
to extract chemical information and it can be 
established without other empirical parameters, 
which makes it have a wide range of application 
and good prediction ability. What’s more, the 
traditional study of QSPR focuses on the 
relationship between structure and properties of 
single component compounds, but in practice we 
often encounter the problem of dealing with 
multi-component mixtures. Compared with pure 
substance QSPR research, the properties of 
mixtures are determined by not only the structure 
of components in mixtures, but also the content 
of each component and the interaction between 
components, which has many influencing factors 
and more complex relationship [7].  
 
Artificial neural network (ANN), an important 
module in the field of artificial intelligence, 
provides powerful technical support for the 
research of QSPR model of both pure 
compounds and mixture, due to its significant 
advantage such as parallel processing, 
distributed storage and fault tolerance, self-
learning, self-organization and self-adaptation 
[8,9]. The QSPR model based on artificial neural 
network is simple to use and has high prediction 
accuracy. It has significant advantages compared 
with the traditional empirical model and the group 
contribution method. Traditional empirical model 
has complex process and complicated steps, 
which takes a great deal of manpower and 
resources. While, the group contribution method 
has the disadvantage that it cannot show the 
influence of the surrounding environment on 
molecules [1,10]. 
 
In this paper the development and the applied 
methods of artificial neural network is 
summarized, and the research progress of 
artificial neural network in quantitative structure-
property relationship model is reviewed. 
 

2. ARTIFICIAL NEURAL NETWORK AND 
THE OPERATING PRINCIPLE 

 
2.1 The Development History and 

Characteristics of Neural Network 
 
The establishment of artificial neural networks is 
based on the abstraction of human brain, 
imitating the structure and function of human 
brain to form different network according to 
different connection modes with strong 
information processing ability, which can be 

applied to deal with practical problems of multiple 
nodes and multiple output points [11].  
 

The research on Artificial Neural Network (ANN) 
began in the 1940s. In 1943, psychologist 
McCulloch and mathematical scientist Pitts [12], 
first proposed a simple Neural Networks model. 
The input and output are both binary numbers, 
and the input has fixed weights. Some logical 
relationships can be realized by using this simple 
network, which started the exploration of artificial 
neural network. In 1949, Hebb [13] first proposed 
a rule to adjust the connection weights of neural 
networks, which is usually called Hebb learning 
rule. The basic idea is that when two neurons are 
excited at the same time, their connection 
strength increases. In 1969, M. Minsky [14] 
pointed out that the function of simple linear 
perceptron is limited, and it cannot solve the 
classification problem of two kinds of linearly 
indivisible samples. To solve this problem, hidden 
layer nodes must be added. But for multi-layer 
networks, how to find an effective learning 
algorithm is still a difficult problem to solve, so it 
put neural network research at a low ebb 
throughout the 1970s. By 1982, physicist 
Hopfield [15,16] published two articles on neural 
networks which aroused great repercussions. He 
proposed a feedback interconnection network 
and defined an energy function as a function of 
the state and connection weights of neurons, 
which could be used to solve associative 
memory and optimization problems, providing 
theoretical guidance for the construction and 
learning of artificial neural network. In 1986, 
Werbos et al. [17] analyzed and optimized the 
multi-layer back propagation algorithm with 
nonlinear continuous transfer function, namely 
BP algorithm, and proposed an effective 
algorithm for weight adjustment for the first time. 
In 2006, Hinton et al. [18] pointed out that high-
dimensional data can be converted to low-
dimensional codes by training a multilayer neural 
network with a small central layer to reconstruct 
high-dimensional input vectors and proposed an 
effective way of initializing the weights that allows 
deep autoencoder networks to learn low-
dimensional codes, which brought the concept of 
“deep learning” to neural network researchers for 
the first time, which has been rapidly developed 
since then. 
 

With the development of computer hardware and 
neural network theory, ANN has been widely 
applied to many fields, such as process 
optimization and control [19-23], automatic 
control and forecasting of power systems [24,25], 
medicine [26,27], intelligent driving [28-30], fault 
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diagnosis [31-33], image recognition [34-36] 
signal Processing [37], exergy efficiency and so 
on. Artificial neural network provides a new 
method for the problems that are difficult to solve 
by traditional technologies, improves research 
efficiency, which is beneficial to the development 
of various fields. 
 
There are various neural network models using 
different algorithms: back propagation neural 
network (BP), radial basis function neural 
network (RBFNN), self-organizing feature 
mapping network (SOM), counter propagation 
neural network (CPNN) and wavelet neural 
network (WNN), etc [38-40]. Among them, 
RBFNN and BP network is more and more 
widely used in chemical progress because of 
their simple optimization process and strong 
nonlinear fitting ability. This paper will briefly 
introduce the operating principle of BP network 
and RBFNN, which are usually applied in 
establishing quantitative structure-property 
relationship model. 
 

2.2 BP Neural Network 
 
Error-back Propagation Network, abbreviated as 
BP neural network, is the most widely used 
neural network model in chemical research. BP 
network is a multi-layer forward network, which is 
divided into input layer, hidden layer and output 
layer. All layers are interconnected and there is 
no mutual connection between neurons in the 
same layer. The basic processing unit of BP 
network is nonlinear input-output relationship. Its 
structure is shown in Fig. 1. 
 

  、   represent the input signal and the output 

signal, i、j、k represent the number of layer,     

and     represent the weight of each layer. 

 
The standard BP neural network usually selects 
Sigmoid function as the activation function to 
simulate the characteristics of neurons. 
 

     
 

     
                                                      

 
The learning process of BP algorithm consists of 
forward propagation and back propagation. In the 
process of forward propagation, the information 
enters the network from the input layer, and then 
processed by the hidden layer and transmitted to 
the output layer to obtain the predicted value, 
which is compared with the target value. The 
state of neurons in each layer only affects the 

state of the next layer. If the desired output 
cannot be obtained in the output layer, it will turn 
to back propagation and return the error signal 
along the original connection path. By modifying 
the connection weight between neurons in each 
layer, the error signal will be minimized. 
 

2.3 RBF Neural Network 
 
Radial basis function neural network (RBFNN) is 
also a commonly used neural network model, 
which has the advantages of good approximation, 
simple optimization process and fast training 
speed. It has been widely used in QSPR 
research [41,42].  
 
Similar to BP network, RBFNN is also a forward 
layered neural network, and its structure can be 
described by a three-layer network, as shown in 
Fig. 1. The first layer is the input layer, which 
usually inputs the structural parameters of 
molecules, the second layer is the hidden layer, 
that is, the radial basis function layer, and the 
third layer is the output layer. The input layer only 
inputs information without other processing. The 
hidden layer is usually composed of a series of 
RBF functions, which usually include Gaussian 
function, spline function and quadratic function. 
The most commonly used RBF function is 
Gaussian function 
 

                   
    

                            

 
x is the input vector, j represents the number 

RBF function,       is the output of the RBF 

function,    is the center of the hidden layer node, 

and    is the radius of the RBF. 

 
The main difference between the two is that BP 
network takes the inner product of weight and 
input as the net input of the network, while RBF 
network takes the Euclidean distance between 
the input vector of training samples and the 
weight vector of hidden layer nodes as the net 
input. Theoretically, RBFNN can approximate 
any continuous nonlinear function like BP 
network. When BP network is used for function 
approximation, the weight is adjusted by gradient 
descent method. This method has some 
disadvantages, such as slow convergence speed 
and local minimum, so there are certain 
application limitations. RBFNN is superior to BP 
network in this respect. Its best approximation 
ability makes it have good application                     
value. 
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Fig. 1. The basic structure of artificial neural network 
 

3. ESTABLISHMENT OF QSPR MODEL 
WITH ARTIFICIAL NEURAL NETWORK 

 
The prediction of novel fuel properties is an 
important application field of ANN-QSPR model. 
It has been a research hotspot in the fuel field to 
use advanced chemical and biological 
technology to research new alternative fuels to 
replace the diesel and gasoline fuels which will 
be exhausted, while reducing production costs 
and improving process output.  
 
Kessler et al. [43] established an artificial neural 
network analyzing quantitative structure-property 
relationships model to predict the cetane number 
of furans and their derivatives in biofuels. Cetane 
number (CN) is one of the most important 
parameters for evaluating a fuel for use in a 
diesel engine, a measure of the fuel’s ignition 
quality. Ignition Quality Tester (IQT) is the 
traditional methods to determine CN. The 
measurement instrument is a four-stroke single 
cylinder indirect injection diesel engine that can 
change the compression ratio continuously. The 
cetane number was determined by comparing 
the ignition performance of the sample with the 
standard fuel. This is done by changing the 
compression ratio, or handwheel reading, of 
each sample under standard operating 
conditions and of two engines with standard fuels 
that include the sample in the middle and have 
cetane values that differ by no more than 5.5. 
The cetane number was then calculated by 
interpolation. But this determination method is 
complex with large raw material consumption 
and long determination period, the sheer number 
of potential fuel molecules makes testing 
prohibitive in terms of both cost and time.  
 
Kessler adopts BP network approach since it 
relatively more robust across multiple molecular 
classes/families due to its nonlinear architecture, 

which allows for a representation of very complex 
relationships between input and output vectors in 
prediction of CN. The cetane number data used 
for the core data set was obtained from sets 
found in the NREL Compendium of Experimental 
Cetane Number Data [44] and other sources 
[45,46]. It contains 284 compounds in total. By 
the analysis of compound structures using 
MarvinSketch (ChemAxon Ltd.) [47] and the NCI 
online calculator [48], 1667 QSPR molecular 
descriptors was obtained, which was reduced to 
15 to short the build-time of the artificial network 
networks and obtain better prediction accuracy in 
the following progress. The 15 QSPR molecular 
descriptors was selected to be the most 
influential descriptors in regards to CN prediction 
for this database using an iterative regression 
analysis technique, which is shown in                
Table 1. 
 

They build an artificial neural network prediction 
model based on trial and error experiment. The 
basic structure of this network includes the 15 
molecular descriptors as input data, two hidden 
layers of 32 neurons each, and a single output 
(CN). Two hidden layers, rather than one, are 
used in order to capture the highly nonlinear 
relationship between QSPR descriptors and CN. 
For network learning, the Levenberg-Marquardt 
backpropagation involving stochastic gradient 
descent was chosen as the learning method of 
this network. The optimization function used for 
the regression was the mean squared error 
function, where the network converges to the 
point of least error relative to the core data set as 
a whole. 
 

The database is divided into three parts for 
network learning, validation and testing, 
accounting for 65%, 25% and 10% respectively. 
ANN is trained according to the data set and 
adjusts network parameters according to the 
RMSE value between the predicted value and 
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Table 1. Glossary of descriptor terminology [43]  
 

Descriptor Definition 

Mor32e 3D MoRSE - Signal 32/Weighted by Sanderson electronegativity 
ESpm05u Spectral moment of order 2 from edge adjacency mat. 
CIC1 Complementary Information Content Index (neighborhood symmetry of 1-order) 
RDF035u Radial Distribution Function - 035/unweighted 
nROR Number of ethers 
nROH Number of hydroxyl groups 
L/Bw Length-to-breadth ratio by WHIM 
RDF090m Radial Distribution Function - 090/weighted by mass 
nHDon Number of donor atoms for H-bonds (N and O) 
RDF020p Radial Distribution Function - 020/weighted by polarizability 
nOHp Number of primary alcohols 
EEig08x Eigenvalue n. 8 from augmented edge adjacency mat. weighted by bond order 
O-059 Al-O-Al/Atom-centered fragments 
G3s 3rd component symmetry direction WHIM index/weighted by l-state 
GATS8m Geary autocorrelation of lag 8 weighted by mass 

 

 
 
Fig. 2. Model architecture including inputs, two hidden layers of 32 neurons, and an output [43] 
 

 
 

Fig. 3. Simulation diagram of the build set construction procedure [43] 
 
the experimental value,until there was no 
significant improvement in the performance of 
the validation proportion. Finally, five optimal 
ANN structures are selected. By averaging the 

predicted values of the five networks, the result is 
closer to the real CN, and the overall REMS 
decreases. The simulation diagram illustrating 
the construction of build sets is shown in Fig. 3. 



 
 
 
 

Mu and Sun; JERR, 22(5): 14-24, 2022; Article no.JERR.85625 
 
 

 
19 

 

Table 2. Summary of results for predicted CN 
 

Data Source Total compounds Furanic compounds 

Root mean square error Root mean square error Maximum absolute 
error 

Core Data 5.97CN 7.60CN 18.78CN 
Expanded Data 5.95CN 3.86CN 7.52CN 

 
The cetane values of seven furan compounds 
were predicted by the artificial neural network 
model, and compared with the data obtained 
from the experiment, the results show that the 
overall RMSE of the model based on the core 
data set was 7.60 CN units with the maximum 
absolute error was 18.78 CN, which is less than 
satisfactory. So, an expanded data set was 
created by adding experimental results for six of 
the seven furanic compounds to the core data, 
and the network is retrained using this expanded 
data set by the same way. The average absolute 
error between experimental and predicted cetane 
numbers for the furanic compounds improved to 
3.86 CN units, with a maximum absolute error of 
7.52 CN units. This represents an improvement 
of 49.21% when using the expanded data set 
over the core data set. This validates the 
hypothesis that a targeted expansion of the input 
data set can extend the applicability of the model 
to new molecular classes.   
 
After verification, the model was able to predict 
CN for other molecules, including furanic 
compounds, biomass-derived hydrocarbons, and 
fatty acid methyl esters within a 95% confidence 
interval for the biofuel species for which reliable 
published values could be found. It shows that 
QSPR model based on artificial neural network 
provides a convenient and reliable way to predict 
the novel fuel properties and determine the CN 
value of some compounds. Compared with direct 
measurement, the efficiency of finding new fuel 
with target cetane value is greatly improved, 
which provides a strong support for the research 
of biomass fuel.  
 
Qin et al. [49] established a quantitative 
structure-property relationship model of organic 
mixtures to predict the flash point of binary 
organic mixtures based on artificial neural 
network. Flash point (FP) refers to the lowest 
temperature at which the vapor pressure of a 
liquid corresponds to a combustible 
concentration, and is usually used to 
characterize the danger of a liquid's susceptibility 
to fire and explosion [50]. The flash point of 
flammable organic liquids has been studied 
widely. It is very easy to determine the flash point 

of a single component organic liquid, which can 
be find easily from literature or database. 
However, the actual work encountered more 
liquid organic mixtures. Empirical formula method 
is a relatively common prediction method. Bao et 
al. [51] predicted mixed solution flash point 
based on the saturated vapor pressure of pure 
components, Raoult's law and gas-liquid 
equilibrium theory. Using Le Chatelier equation 
and Antoine equation to derive flash points of 
binary mixture. Yang et al. [52] used Taylor 
polynomials to fit the empirical formulas of flash 
point and spontaneous combustion point of 
binary mixed liquid composed of alcohol, ketone, 
ether and ester under normal pressure. But most 
of the empirical formulas are used to determine 
binary mixtures, and the empirical parameters 
need to be determined according to different 
substances. Due to the complexity of mixtures, 
high cost of analytical methods, limitation of 
experience parameters, the empirical formula 
method cannot be widely used, the prediction of 
flash points in liquid organic mixtures is still a 
difficult task [53,54].  
 
In this study, flash point QSPR models of 288 
binary organic mixtures were established based 
on RBF neural network. Experimental flash point 
values of the studied samples were obtained 
from references [55]. An electro-topological state 
index (ETSI) [56,57], which has been widely 
used in QSPR research, is used as the 
descriptor of the mixture (the independent 
variable of the model). The descriptors of 
mixtures were established by weighted 
summation of 9 elements in the ETSI parameters 
of 18 compounds.  
 
The five ETSI parameters screened by stepwise 
regression were used as input variables to 
establish a new RBF neural network with a 
structure of 5-37-1, i.e., 5 input layer nodes, 37 
hidden layer nodes and 1 output layer node, FP 
variables. The 288 mixed samples were divided 
into two groups. The first group was composed of 
255 mixed samples for the training of neural 
networks, and the second group contained 73 
mixed samples as the test group. The prediction 
performance of the developed model is also 
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evaluated by k-fold cross validation [58]. In the 
design of RBF neural network, the center and 
width of basis function are selected first, and 
then the weight of connections between neurons 
is optimized. Random sampling and k-means 
method are commonly used to select the center 
of the basis function. Pseudo-inverse algorithms 
are used to form the weights of connections 
between neurons in the hidden layer and the 
output layer. The error function RMSRE is used 
to monitor and control this learning process.  
 
After the training of the RBF-ANN model, the 
network parameters with minimum RMSRE value 

are obtained. The flash points of 73 mixtures in 
group II were predicted using the established 
neural network model, and the predicted flash 
points were plotted against the experimental 
values, as shown in Fig. 4. The RMSRE of the 
FP prediction of the 73 mixtures was 1.86, with 
an average relative error of 1.44%. In the k-fold 
cross validation, the predicted RMSRE of flash 
point values of 215 mixtures in group I was 1.11, 
with an average relative error of 0.87%, which is 
also shown in the figure. The results show that 
applied RBF-ANN model with ETSI, stepwise 
regression are promising methods to establish 
QSPR of FP values for binary organic mixtures. 
 

 
 

Fig. 4. Plot of predicted versus experimental values of RBF-ANN 1[49] 
 

 
 

Fig. 5. Plots of the predicted versus observed for log KPUF-air by QSPR-ANN [59] 
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Zhu et al. [59] exploring QSPR models for 
predicting PUF-air partition coefficients of organic 
compounds with ANN approaches. In this study, 
6 descriptors were selected for QSPR model 
construction and through the back propagation-
learning algorithm, ANN-QSPR model was 
evaluated by the SPSS software. The models are 
confined to 6-3-1 structure, which considered the 
three hidden nodes (parameter size) and the 
learning rate of 0.01 (parameter). As shown in 
Fig. 5, the prominent character for developed 
ANN model showed satisfactory goodness-of-fit 
in the observed and predicted log KPUF-air, which 
demonstrate the ANN-QSPR model occupied 
preferable prediction performance and can be 
used as an efficient tool to predict log KPUF-air. 
 
Adriel et al. [60] used a combined ANN-QSPR 
methodology to model the mixing energy of 
solutions using COSMO molecular descriptors. A 
three-layered feedforward ANN was used in this 
work. The hyperbolic tangent was selected as 
the activation function for each neuron in the 
hidden layer. While, for the input layer, a linear 
activation function was set. The ANN-QSPR 
procedure was successfully applied for the 
prediction of model parameters based on 
deduced molecular descriptors. The estimations 
of mixing enthalpies are in good agreement with 

experimental data, showing RMSE�(26.27, 
32.9)/J·mol

-1
. Hassanzadeh et al. [61]. applied a 

combination of RBFN and GA to build a 
quantitative structure-property relationships 
model to predict the adsorption coefficients of 40 
small molecules on the surface of multi-walled 
carbon nanotubes. RBFN is used to construct 
QSPR model and GA is used to optimize the 
numerical values of RBFN centers. The accuracy 
and predictive ability of the model evaluated 
using internal and external procedures are 
satisfactory, providing a powerful tool in the 
research of the adsorption mechanism of organic 
compounds on carbon nanotubes. 

 

4. CONCLUSION AND 
RECOMMENDATION 

 
As a kind of nonlinear model, Artificial neural 
network has unique learning ability and 
automatic modeling function, and has extremely 
high solving ability for nonlinear problems. Its’ 
fitting effect is obviously better than that of 
previous multiple linear models. Quantitative 
structure-property study is currently one of the 
most active fields of application of artificial neural 
network. The combination of the artificial neural 
network model and the QSPR method, has 

important significance in the analysis of the 
biomass fuel, prediction of the risk of dangerous 
chemical properties (such as flash point, ignition 
point, etc.), the estimation of thermodynamic 
properties (such as heat generation and 
formation enthalpy, etc.) and the study and 
prevent of the harm of industrial poisons.  
 
In the process of application, researchers found 
that the directional expansion of the original data 
set of molecular physicochemical properties can 
make the neural network model better applied to 
the research target field. And the screening of 
molecular descriptors with higher correlation with 
the results by means of stepwise regression can 
make the convergence rate of neural network 
faster and improve the prediction accuracy. 
 
However, the "black box" problem of artificial 
neural network model and over fitting problem 
makes some obstacles in the application process. 
The improvement of these problems depends on 
developments in neuroanatomy and related 
mathematic and the accumulation of the 
application experience. At the same time, the 
quantitative description of mixtures has been a 
difficult problem in QSPR research for a long 
time. The current QSPR research still lacks 
effective descriptors to describe the chemical 
information of mixtures. It is also important to 
consider how to choose and obtain more 
accurate molecular descriptors and establish a 
more broadly applicable ANN-QSPR model of 
mixtures. 
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