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Abstract

The objective of this paper is to investigate and give sufficient conditions that we guarantees globally
asymptotically stable periodic solutions, of non-linear differential Equations with Delay of the form (1.1).
The Razumikhin’s technique was improve upon to enhance better result’s hence equation (1.2), was studied
along side with equation (1.1). Equation (1.2) is an integro-differential equations with delay kernel. Since
the coefficients of (1.2) are periodic, it is re-written as equation (3.1), where a ,b, and ¢ > 0, and ©- periodic
continuious function on R. G > 0, is a normalized kernel from equation (1.2), which enable us to defined
equation (3.1) as a fixed point. Since the defined operator B, for equation (3.1) are not empty, claiml -1V
enable us to used the fixed point theorem to investigate and established our defined properties. See,
(Theorem 3.1, Lemma 3.1 and Theorem 3.2) and the Liapunov’s direct (second) method to prove our main
results. See, (Theorem3.3, 3.4, and 3.5) which established the objective of this study.

Keywords: Periodic solutions; non-linear differential equations with delay, globally asymptotically stable;
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1 Introduction

The problem of stability and Boundedness of solutions has been the subject of many investigations. Many
Research papers and books have been devoted to the study of stability of periodic solutions with delay of
non-linear differential equations. Among others see the Literature; [1], established the necessary and
sufficient conditions for the periodicity and stability results for solutions of a certain third order non-linear
differential equations. And on the other hand, [2] considered conditions that guarantees periodic solutions
for differential equations with state — dependent and positive feedback. [3], considered a system of delay
differential equations together with a Liapunov function to established conditions that guarantees asymptotic
stability when the delay is unbounded. [4], use the frequency —domain technique to established conditions
for the existence of globally exponentially stable, bounded, periodic and almost periodic for some certain
fifth order non-linear differential equations. [5], studied an Oscillating system to established properties that
guarantees asymptotic Behaviors of the system. [6,7] derived necessary conditions for stability of motion of
Regulated system with delay. [8] gives sufficient conditions that guarantees global boundedness for a delay
differential equations. [9], established sufficient conditions that guarantee the properties of stability of a
certain differential equations. [10] established conditions that guarantees stability of a system with delay,
using Liapunov direct method. [11,12], studied an integro-differential equations and fourth order delay
differential equations, to established properties of solutions that are periodic and delay in nature. [13,14],
gives sufficient and necessary conditions that guarantees stability, boundedness and existence of periodic
solutions of some third and fourth order nonlinear delay differential equations, and stability of periodic
motion of a system with state dependent.

In this paper we study global asymptotic stability of periodic solutions with delay of the equations of the
form [1.1] and [1.2], and use the Liapunov’s second method and the fixed point Theorem to established
necessary and sufficient conditions that guarantees globally asymptotically stability of periodic solutions
with delay of a certain non-linear differential equations. My approach in this study has an advantage over [6]
and the results obtained in this study generalize the results in [3] in the case when the delay was unbounded.

In this paper, we consider a single —species model with a general periodic delay.

2 = x(®)]a(t) - b(E)x(t) + c(O)x(t — ()] [1.1]
and
% =7rx [1 — %f; G(t— s)x(s)ds]. [1.2]

Where a(t)> 0, b(t) >0, c(t) =0 and the delay 7(t = 0), are all continously differentiable in their
respective argument. w-periodic function on [—oo, ) if this model is considered as a population model
which size is small, growth is proportional to the size and when the population size is not so small, the
positive feedback is a(t) + c(t) x(t — 7(t)) . While the negative feedback is b(t) x(t) fixed point theorem
and Razuminkin technique will be use to prove the main results which guarantee the existence conditions for
globally asymptotically stable periodic solutions of nonlinear differential equations with delay of the
equation [1.1], and equation [1.2)]. And [1.2], is an integro-differential equations, where g(t) is called the
delay kernel, is a weighting factor which indicates how much emphasis should be given to the size of the
population at earlier times to determine the present effect on resource availability. The normalized delay
kernel of (1.2) is given by

fooo G(u)du = 1if G(u) is the Dirac function o(r — t), where ffw a(t —s)f(s)ds = f(x).

and equation (1.2) reduces to

dx _ 1 1 rt ds| = " x(t — r)
T rx(t) [ — ELU(t —r—s5)x(s) s] =1rx(t) [ - T]
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Consider the stability of the equilibrium X* = K for equation (1.2) and we let X = X — K. then [1.2] can be
written as % = —Tf; G(t — s)x(s)ds + rx(t) f_tw G(t —s)x(s)ds.

The linearized equation about x = k is given by

%= —Tf;G(t—s)x(s)ds [1.3]
and the characteristic equation takes the form of 1 + r fooo G(s)e™ds=0 [1.4]

If all eigen-value of the characteristic equation (1.4) have negative real part, then the solution of [1.3] that is
the equilibrium X*=K of [1.2] is asymptotically stable.

Suppose that V(’l)(t,x)s—w4([x(t)]) of x=0 [1.5]

The prototype For V is the Krasovskii functional V(t,x) = x7(¢) Ax(t) + f:_r(t) xTOBx(S) s . Where A
and B are n X n matrices. If we express the second term of V as Z (t, X (-)). We notice that (%) 27 (t,x) =

xT(¢)Bx(t) —xT(t —r(t)) Bx(t —r(t)) (1 - r'(t)) so that if B and r' are bounded then Z is Lichitz in t
for any bounded function X.

If the system X (t) = G(t, xt) [1.6] Where G is continuous G: (0 )X C,, = R™, and G takes bounded sets
into bounded sets. Equation (1.6) is uniformly asymptotically stable.

2 Notations and Definitions

The initial value in equation (1.2) is

x(0) =®(0) =20, —0<0<0 [2.1]
Where @(6) is continuous on (—o, ). an equilibrium X* of [1.2] is called stable if given any € > 0 there
exist a & = §(€) > 0 such that |@(t) — X*| < o for t e(—o0, 0) implies that any solution x(t) of [1.2] and

[2.1] exist and satisfies |x(t) — x*| < € for all t= 0. If in addition there exists a constant § > 0 such that
[@(t) —x*| < 8 on (—x,0] implies | i m,, x(t) = x* then x* is called asymptotically stable

2.1 Stability

Definition 1:

The origin is said to be stable in the sense of Lyapunov or simply stable if for every real number € > 0 and
initial time ¢, > 0 there exists a real number § > 0 depending on € and in general on t such that for all initial
conditions satisfying the inequality ||x,|| < & the motion satisfies ||x(t)|| < efor all t> t,.

Definition 2:

Asymptotic stability; The origin is said to be asymptotically stable if it is stable and every motion starting
sufficiently close to the origin converges to the origin as t tends to infinity. i.e. 1 i gp,..||x(t)|| = 0

Definition 3:

Globally asymptotically stable: the origin is said to be globally asymptotically stable in the large if in every
motion starting at any point in the state space, returns to the origin at t tends to infinity.
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Definition 4: The equilibrium state x = 0 is called exponentially stable if there exist three positive number
8- n, ¢ such that [lx()]| < n)|x(t-)||e~¢¢to) hold for every perturbed motion with ||x(t-)|| < 8-

3 Preliminary Notes

If the coefficients of equation [1.2] are periodic, it can be re-written in the form of
Z_’; = x(t) [a(t) —b®O)x(®) = c(®) [*_G(t - s)x(s)dx] (3.1

Where a > 0, b > 0, ¢ = 0 are w-periodic continuous functions on R and G = 0 is a normalized kernel. let
(w (R, R)) denote the branch space of all w-periodic continuous ‘functions endowed with the usual

supremum norm ||x|| = sup|x(e)| for a € c, define the average of a as (a) = % fom a(s)ds and a bounded

funtion f is defined by (G X F)(t) = f_too G(t — s)f(s)ds note that the w-periodic solution of (3.1) is a fixed
point of the operator B:T' - ¢,, define by (Bx)(t) = u(t), t €R,

Where I'={x € c,:{a —c(G *x) > 0 }since (a)> 0,x(t) = 0 belongs to I'. That is T is not empty. Define
Uo(t)=(Bo)(t)

Calm L If x; and x, belongto I' with x; < x, then Bx, < Bx;

In fact. Let o< i(t) = a(t) — c(t)(G * xi)(t)and Ui(t) = (Bxi)(t)fort €
R(i = 1,2). Then «; (t) =, (t). Since ; (t) = G;(t)/Ui(t) + b(t)ui(t),

we have  o;= (bui) because ui(t)(i =1,2) are periodic. Thus, we deduce
({buy) = (buy)and for some to € R U,(ty) < U,(ty)

Setting v(t) = U, (t) — U,(t), we have

V(©) = (< i) = b (uy (8) + u, (1)) v(t),

Which implies that V(t) = 0for all t > to. by the Periodicity of V(t), we have Bx, < Bx;.
Claim IL. If V and ¢ belong to C,, then (c(G * v)) = (V(G * ¢))

In fact, if we define G(t) = 0 for t < 0, we have

(+)w
(c(G*v)) = Z f c(t) f,‘f‘, YOG - s)v(s)ds dt

=
= jzz:wfo c(t) fo G(t—s—jwv(ts)dsdt

=2 OW v(t) f_(jl.;vj)w G(t — s)c(s)ds dt
=V (G xv)).

Claim III. Let z be a bounded continuous function on R. Then

llmnEG*z)(t) >11m(t) llrrSup(G*Z)(t) < llnﬁup 0}

t—> oo t>o0 t-o o
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We only prove the first inequality. Let [ = lti_r)ﬂoil%(t). Choose €> 0 and pick tc, such that z(t) > t—€ for
any t > tc. If t > tc; we have (G *z)(t) = f_t; G(t —s)z(s)ds + f:c G(t—s)z(s)ds. =
¢

tc
I nfz(t) f G(t—s)ds+ (l—€) | G(t—s)ds
—00 t

c

limnf _
Hence F o oo (G*z)(t) = l—¢,

Which implies the first inequality.
Claim IV. Let U € T and let V(t) > 0 be the solution of (3.1). Then

g_éogn'nf (v(t) - u(t)) > 0 implies tl_gooninf ((Bw)()—v(t)>0
}_}wm:up (v(t) - u(t)) < 0 implies g_zoom:up Bw) —v) <0
We prove the first statement. Let w(t) = (Bu)(t)t € R.
Then @ (t) is a solution of w(t) = a(t)w(t) — b(t)w(t)? — c(t)w(t)(G * u)(t)
WhileV(t) = a(t)v(t) — b(H)v(t)? — c()v(t) (G = v)(t).
Define Z(t) = (a(t)— b()w(t) — c(t)(G = u))z(t) + c(t)v(t) (G*(v-u) ()
= (@@®)/w®) - b v () Z (@) + c(®)v(t) (G* (v-u)) (t)

Let [ = liminft — co(v(t) — u(t). Because of claim III, there exist ato € R, such that Z(t) >
(w(®)/w(t) —b@®)v(t)z(t) + (O)Ilc(®)v(t)/2 forall t > t,, thatis

Z(©) > Z(to)exp [, B(s)ds} +3 J,. B(6) d6 c(s)v(s)ds.

where B = w(t)/w(t) — b(t)v(t). Because w(t)/w(t) is periodic and its average is zero, b(t)v(t) is
positive and bounded, we can see that [ ; B(sx)ds > k — tk,. Where k; — k, > 0 are constants.

Thus z(t) > k; f; exp(s — t)k)ds = (ks/k) (1 — exp((to — t)ky)),
Where k3 > 01 sasui tablcenstanfThenl i minft - ooz(t) = K;/K which implies the first statement.

Below Theorems we a give sufficient conditions to the proof of the main Results.

Theorem 3.0 Let 0 € G, f(0) = 0 and assume a Lyapunov function v: G — R exists, for which VW (x) <
0(V x t G). Then the solution x(t) = 0 of equation (1.1) is stable in the sense of Lyapunov.

Theorem 3.1 Suppose (a) > 0.if b(t) > (G * ¢)(t) (3.2), for and t € (0,w), then equation (3.1) has a
unique positive w — periodic solution x*(t) which is globally asymptotically stable with respect to all the
solutions of equation (3.1) under initial condition x(6), 8 € (—,0),d(0) > 0.

Lemma 3.1 Let the function g: [« —h, 8] = R be continuous for some h > 0,x < B < o0, and g*" (t) <0
for all values t € (, B) for which g(s) < g(t)(Vs€E [ox —h,t)). Then g(t) < Max ¢ € (o< —h, x)g(s)(c<
<tCp.

Theorem 3.2 If fooo G(s)ds < %,
then x* = K of [1.2)] is asymptotically stable
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Theorem 3.3. Assume the Liapunov function V:G — R exists with x,y,€ G,V (Y) < V(x) imply (grad
V(x), f(x,¥)) < 0 Then the solution x(t) = 0 of equation (1.1) is stable.

Theorem 3.4; Assume, in addition to the conditions of theorem 3.3, that for any sufficiently small p > 0,
there exist ¢ > p such that, if V(x) = P,V(Y) < g, then (gradV (x), f(x,y)) <0

Then the solution x(t) = 0 of equation (1.1) is asymptotically stable.

Theorem 3.5; Let V and Z: (0, ) X C,, = (0, ) be continuous and let V be totally lipschitz in the second
argument. Suppose that Z(t2,®) —Z(t,0) < K(t, — t;) for some K > 0, all t;andt, satisfying 0 < t; <
t; <o, and all @ € Cp, if W(IO0)) +Z(¢t,0) <V(t,0) < w,(I10(0)) + Z(t,0),Z(t, ®) < w, (191D,
and v* 4 (t, x,) < —w,(|x(¢)]), then x = 0 is uniformly asymptotically stable of (1.6).

4 The Proofs of the main Results

Proof of Theorem 3.1

Since uy(t)/uo(t) = a(t) — b(t)uy(t), the periodicity of uy(t) and claim II imply that (a) = (buy) >
(c(G *ugy)]- As uy > 0, we have Bu, < u,. therefore, for any V € Cw satisfying 0 <V < u,, we have
Buy < BV < ug. Hence, the set I, = {V € Cw: 0 < V < u,}Cr is invariant under B. moreover,

Bu, < BV < uy = Buy < B*V < B2, = B3, < B3V < B2,
And by induction

B2n+ly, < B2n*ly < BNy BAntly < B2NF2) < B2ty p=0,1,2 ...

BZn+2

Since 0 < B2 = Bu,, by claim I, we know that { U, } is increasing and {B?"u,} is decreasing. Define

Un(t) = (B™uo)(t) = (BUn — 1)(t).
Then
u (t) = rll_i)ogﬂzml(t)andUJf(t) = rll_imgd/n(t)

Exist with 0 < u™(t) < u*(t). If we can show that u~(t) = u*(t) =
u*(t), it is easy to see that u*(t) is the unique fixed point of B. by the definition, we have,
Un(t)(a(t) — c(®)(G * Un — 1)(t)Un (t) — b(t)(un)?

By the Monotonicity and uniform boundedness of {Un}. We have the L? — convergence of both U,,,,and
U, and their derivatives.

Taking the limits, we have

w () = (a(t) - C(O)(G *u)(Ou™(t) - b(Du~()?
wt(6) = (a(®) — COG *uHOu* () — b(Ou* (6)?

Dividing them by u~ (t)and u* (t) respectively, we have

{(a—c(G*u*)—bu~)={a—c(G+u")— bu*) followed by the fact that Inu" and Inu~ are periodic. Let
V() = U* (t) — U — (t). Then we have {C(G*V)} = (bV). Now by claim II we have {C(G*V)} = {
V{G*C)}.

Hence, {V(b — G*C)} =0, which implies that V = 0 by the assumption (3.2).
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Therefore, U* (t) is a unique periodic solution of the equation (3.1)

To prove the global stability, first, we show that any solution v(t) of equation (3.1) satisfies | i mnf
v(t) > 0.Infact, we have

t >

V() <a(t) v(t) — b (t) v (t)?

li

and ﬁmoo sup(v(t) — (Bu) (1)) <0

t
Choose € > 0 sothatu(t)=Uo(t)+¢& € I' . By claim IV we have

limnf

ST - By W)z e
Since (Bu)(t) is strictly positive and periodic, we have lim inft = cov(t) > 0. Thus by claim III, lim inft — oo
(Uolt) — V(1)) > 0 and by induction, lt‘ M () - B Uo) (6 > 0, tl Im g o) — (B2Uo)(t) <.0

-

Given € > 0, choose n such that U" (t) - € < (B 'uo0) (t) < (B*Uo)(t) < U* (t) + €. Since (B>~ 'uo)(t) <
v(t) < (B*"uo) (t) for large t, it follows that the sequence {B'u) tends to u* uniformly as j — co. This complete
the proof. If a, b and c are real positive constants, then condition (3.1) becomes b > c.

Corollary 4.1. If b > ¢ and g satisfies the above assumptions, then the positive equilibrium x* = a/(b + ¢) of
equation (3.1) (with constant coefficient) is globally stable with respect to positive solutions of (3.1).

Proof of Theorem 3.2

Proof. Since the roots of (1.4) coincide with the zeros of the functiong (X)) =X +r f:o G (s) c ™% ds,

applying the argument principle to g(» ) along the contourT' = T' (a, € ) that constitutes the
boundary of the region

{N/e<Rex<a,-a<lm<a,0<e€a}.
Since the zeros of g (X) are isolated, me may choose a and €. So that no zeros of g (X) lie on I'. The
argument principle now states that the number of zeros of g () contained in the region bounded by I is
equal to the number of times g (X\) wraps T around the origin as X traverses I'. (A zero of g (X\) of
multiplicity m is counted m times). Thus, it suffices to show for all smalle > 0 and all large a >, that g
(™) does not on circle 0 as X traverses I' (a, €).
Along the segment of T’ given by X =a+iv,-a<pu<a,
We have

glativi=a+iv+r fooo G(s)e™ @wds g
Since a > 0, it follow that

| [7G(s)e= @ ds. < |[7G(s) ds=1

Because a > r, we may conclude that every real value assumed by g (X) along this segment must be positive.
Along the segment of

['given by X = u + ia, C< a, we have

g(u+ia)=pu+ia+r fooo G(s)e™ W+vls (g,
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A similar argument show g (X) to assume no real value along this path. In fact, lim g(u + ia) is always
negative here. Similarly, one can show that the lim g(u-ia) is negative along 0. The segment X =pu -ia, C <
1 < a. By continuity g (A) must assume at least one positive real value (and no negative values) as A travels
clock wise from € + ia to € - ia along 7.

Finally, consider the path traced out as X = € + iv increase from € - ia to € + ia. under the assumption, 1m
g(€e +1v) is seen to increase monotonically with v. in fact,

d
— 1mg (e + iv)

I i (w+r LwG(s)e_“ Sin (vs)ds)

dv
=1 +rf0°° sG(s)e™® Cos (vs)ds
> 1-r1["sG(s) ds
> 0.

It follows immediately that g(X) assumes precisely one real value along this last segment of I'. Since no zero
of g(x) lies on 7, that real value is non-zero. Assuming it to be negative, g(x) would have wrapped I' once
about the origin, predicting exactly one zerox vo of g(») inside the region bounded by T.

Since « and G are real, the zeros of g(x) occur in complex conjugate pairs, forcing X o to be real.

This, however, is a contradiction since the positivity of o shows g(x) to have no real positive zeros. Thus,
the real assumed by g(x) along this last segment must be positive.

Therefore, g(>) does not encircle the origin.
This completes the proof.
Proof of Theorem 3.3

For this proof, let set g(t) = v(x(t)), where x(.) is any solution of equation (1.1) with initial function @
sufficiently close to zero, and apply lemma 3.1. We see that even a stronger statement for such solutions
holds: v(x(t)) Max [t, — h,t,]V(@). However in general, the monotonixcity of the function t —
V(x(t))does not hold true, unlike the situation arising from value conditions of Theorem 3.0. Thus the
function v turns out not to be a guiding function in the restricted sense, but a “barrier” function.

It should be noted that the function t — g(t), defined in the proof of Theorem 3.3, is smooth for t > «: = to.
Lemma 3.1 follows easily under this additional assumption from the following particular case of A. Sard’s
theorem: a set of stationary values of a smooth function of a single argument has that everywhere dense
complement.

Proof of Theorem 3.4

Indeed, if the solution t — x(t) of equation (1.1) is modulo sufficiently small and does not tend to zero as
t —» oo, then we denote P: =limit t — oo V(x(t)), and apply the additional condition of Theorem 3.3
which leads to the contradiction.

In particular, we obtain for n = 1, taking v (x) = x? that the condition /b/ < - a is sufficient for the gbolally
asymptotic stability of equation (1.1).

Remark: If the function v is defined on the whole R" in theorem 3.4, and v(x) — o as /x/— oo and p > 0 can
be arbitrary, then the solution of equation (1.1) tends to zero as t — oo for arbitrary initial function.

Proof of Theorem 3.5

We first show uniform stability. Let &€ > 0 be given.
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We will find & > 0 such that (t, =0, ||@]] < o, andt > t))

Imply 1 x (t, @ )) <&. There exists § > o such that W, (¢) + W, (6) < W(¢). Thus, if ||@]] < & and x (t) =x
(t, @), then W (1x () 1) < V(t, x;) < V(to, @) < w; (1 B(0) + w, (||@]] ) < W (¢) sothat | x(¢) | < eift >
to, yielding uniform stability.

To complete the proof we must find > 0 such that for any € > 0 there exists T for which (t, > 0, ||@]|<n,
and t >ty + T) imply |x (t,@) | < €. Pick the § of uniform stability when € = M. Select a n = §. Now, let € >
0 be given and let to > 0, ||@]| <7, and let x (t) = x (t, D).

For the given € > 0, find the § of uniform stability as in the above proof. By that proof we see that on each
interval of length h either /x(t) / > & for some t in the interval, or / x(t) < € for all subsequent t. thus, let to >
0 be arbitrary and suppose there is a sequence (t,) withto < t; <tg+h<t, <tg+2h<t;<...<ty+(n—1)h
< t,<t, +nh... with/x (t;}) /> §. We will show that not exceed a fixed integer. As in Theorem 3.0 without
proof, we use the right Lipchitz condition on 2 to find k > 0 and P > 0 with P <h and / x(t) / >, K if ti— P <t
<t,. We select only the t; with even indices so that the intervals over which we now integrate do not overlap.
For t > t,,, we have V (t, x) <V (to, @) —

t2i

W, (k)dt < W;(m)+ W,(n) — nP W, (k). Choose N

imp t2i-p
>[Wy(m) + W, ()] / P W, (k) and select T = 2Nh. This yields uniform asymptotic stability of equation
[1.6],which guarantees the globally asymptotically stability of equations [1.1]. This complete the proof.

Remark 4.1, Obviously, the authors in [2-10] considered existence of periodic soluations with delay of non
linear differential equations of various order. Author in [3] considered a system of differential equations
with delay and use Liapunov’s function to established asymptotic stability where the delay was unbounded
.Hence, the results obtained in [2-10] are not the same in this paper which implies that the results of this
paper are essentially new. Theorem 3.1, lemma 3.1, Theorem 3.2 and the inequality 1-1V established the
conditions for equation (1.2) to be globally asymptotically stability of periodic solutions with delay. And
theorem 3.3, 3.4 and 3.5 with L ipunov’s second method, prove properties that satisfied globally
asymptotically stability of non-linear differential equation.

5 Conclusion

In this paper we study global asymptotic stability of periodic solutions with delay of the equations of the
form [1.1] and [1.2], and use the Liapunov’s second method and the fixed point Theorem to established
necessary and sufficient conditions that guarantees globally asymptotically stability of periodic solutions
with delay of a certain non-linear differential equations. My approach in this study has an advantage over [6]
and the results obtained in this study generalize the results in [3] in the case when the delay was unbounded.
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