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ABSTRACT 

Background: Binary as well as polytomous logistic mo- 
dels are widely used for estimating odds ratios when 
the exposure of prime interest assumes unordered 
multiple levels under matched pairs case-control de- 
sign. In our previous studies, we have shown that the 
use of a polytomous logistic model for estimating cu-
mulative odds ratios when the outcome (response) va- 
riable is ordinal (in addition to being polytomous) un- 
der matched pairs case-control design. The cumula- 
tive odds ratios were estimated based on separate fit- 
ting of the model at each of the cutpoint level as com- 
pared to less than equal to that level. In this paper we 
propose an alternative method of estimating the cu- 
mulative odds ratios and reanalyze the Los Angeles 
Endometrial Cancer data in the context of dose levels 
of conjugated oestrogen exposure and development of 
endometrial cancer under the matched pair case-con- 
trol design. Methods: In the present study, the cumu- 
lative logit model is fitted using a single multinomial 
logit model for the data. For this, the full maximum 
likelihood estimation procedure is adopted. A test for 
equality of the cumulative odds ratios across the ex- 
posure levels is proposed. Results: The analysis re- 
vealed that there is a strong evidence of risk for deve- 
loping endometrial cancer due to oestrogen exposure 
above each of the three dose level as compared to less 
than equal to that level. The estimated values at the 
three cutpoint levels were found to be 6.17, 3.60 and 
5.16 respectively. Conclusions: The odds of develop- 
ing endometrial cancer are very high for the users of 
any amount of oestrogen, even if it is the least dose, as 
compared to the non-users.  
 
Keywords: Logistic Model; Matched Pairs Case-Control 
Design; Odds Ratio; Ordinal Response; Regression 
Analysis 

1. INTRODUCTION 

In clinical and epidemiological studies, often we carry 
out matched-pairs case-control design for establishing re- 
lationship between an exposure variable and a health out- 
come. Usually, the measure of association is the odds ra- 
tio (OR) [1-3]. The logistic regression model [4] has been 
widely used in the estimation of ORs in matched pair 
case-control retrospective designs when the response va- 
riable is binary [5-8].Holford et al. [7] proposed a coding 
method and estimated ORs for nominal and ordinal out- 
come categories using a binary logistic model with con- 
ditional likelihood procedure. Ganguly and Naik-Nim- 
balkar [9] proposed a method for estimating ORs model- 
ing the retrospective probabilities, when the outcome of 
prime interest has more than two unordered levels using 
polytomous logistic model under a pair-wise matched 
case control design. In that analysis the responses in each 
group were compared with responses in a control group. 

While analyzing polytomous response data, sometimes 
we encounter a situation in which the risk factor of in- 
terest has more than two levels with a natural ordering. 
Such ordinal response variables usually occur either in 
the form of “group continuous” or “assessed ordered”. 
Group continuous responses arose when outcome cate- 
gories represent contiguous intervals on a continuous 
scale. For example, consider the data set in Table 1 for 
59 matched pairs, extracted from Los Angeles endo- 
metrial cancer study, as given in Breslow and Day [10]. 
While carrying out the analysis they considered the fol- 
lowing four ordered levels of estrogen exposure catego- 
ries: 1) none; 2) 0.1 - 0.229 mg; 3) 0.3 - 0.625 mg; and 4) 
0.626 +mg. ORs corresponding to the three dose levels 
versus no exposure were estimated [10]. 

In Table 1, the oestrogen exposure may be considered 
as “tolerance” of the individual and which may be as- 
sumed to have a continuous distribution in the population. 
These tolerances themselves are not directly observable 

OPEN ACCESS 

mailto:ganguly@squ.edu.om
mailto:drss.ganguly@gmail.com


S. S. Ganguly / Open Journal of Epidemiology 3 (2013) 153-159 154 

Table 1. Average doses of conjugated oestrogen used by cases 
and matched controls: Los Angeles endometrial cancer study. 
(Source: Breslow and Day, 1980). 

Average dose for control (mg) 
Average dose 
for case (mg) 

0 0.1 - 0.299 0.3 - 0.625 0.626+ 

0 6 2 3 1 

0.1 - 0.299 9 4 2 1 

0.3 - 0.625 9 2 3 1 

0.626+ 12 1 2 1 

 
but decreasing tolerance manifest through an increase in 
the chances of developing endometrial cancer. Moreover, 
the categories so formed are contiguous intervals on the 
continuous scale. Assessed ordered response variable 
arise from a qualitative assessment for example, while 
establishing relationship between tonsillar size, which is 
classified into three ordered categories: not enlarged, 
enlarged and greatly enlarged, and whether a child is a 
carrier of the virus streptococcus pyogenes as mentioned 
by Andorson [11]. In order to carry out the analysis in 
the above situations, it is necessary to assign scores to 
the levels of the ordinal variables. In the case of group 
continuous variable, the scores are equally spaced where- 
as for the assessed ordered situation the distance between 
the two scores may not be equal. However, the present 
communication is restricted to the grouped continuous si- 
tuation only. 

McCullagh [12] and Agresti [13,14] have suggested 
that when the levels of the risk variable have some or- 
dered structure it is sensible to estimate the ORs in a way 
that takes into consideration the existence of an underly- 
ing continuous and unobservable random (latent) vari- 
able. This can be done by grouping the categories that 
are contiguous on the ordinal scale. Several regression 
models for the analysis of ordered categorical data have 
been proposed recently [12-15]. However, despite the 
growing number of models appropriate to ordinal data, 
little work has been reported in the filed of matched de- 
signs. 

In this paper, we describe an alternative method for 
estimating the ORs, when the response variable is ordi- 
nal in nature using cumulative logits and continuation- 
ratio logits as suggested in Agresti [13,14] under a pair 

wise matched case-control design. The approach is based 
on fitting the full logit model as described in Aitken et al. 
[16]. We also present an asymptotic distributional result 
for testing the trend of cumulative OR as the tolerance of 
the dose levels decreases over the categories. 

2. METHODS 

2.1. The Models 

The model building strategies for ordinal logistic regres- 
sion model under pair-wise matched case-control design 
has been elaborated in our previous papers [17,18], how- 
ever, for the convenience of the readers we describe, in 
brief, the procedure as follows. 

Suppose that the ordinal exposure variable F is a re- 
sponse variable forming k ordered categories and D re- 
presents a dichotomous disease condition of an individ- 
ual, with value 1 if the individual is a case otherwise it is 
zero. Also when D = 1, F is represented by F1 and for D 
= 0, F is represented by F0.  Let  be 
the number of observed case-control pairs in the (i,j) the 
cell corresponding to exposure level of case and expo- 
sure level of control, the results of the matched pair case- 
control investigation, with k ordered exposure catego- 
ries, may be represented as shown in Table 2. 

 , 1, ,ijn i j k 

The case-control observation in Table 2 can be col- 
lapsed into (k  1) table of order 2 × 2.  

Hence, at the  the k 
ordered response categories might be represented by a 
table of the form as given below. 

 - cutpoint 1,2, , 1 ,th k   

 

  Control (F0 ) 

        

Case (F1)    a  b  

    c  d  

 

1 1 1 1

where and .
k k

ij ij
i j i j

b n c
     

  n  
 

 
 

  

In this situation, the conditional probability that the 
case responds in a category above  and the control re- 
sponds in category  or below, given that the pair is 
discordant and either the case or the control responds in a 
category above  is given by 





 

 
   

       
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 
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                  (1) 
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Table 2. Representation of data from a matched pair study with 
k ordered exposure levels. 

Exposure level for case 
(F1) 

Exposure level for control (F0)  
1  2···  ···k 

1 n11 n12… …n1k 1n 

2 n21 n22… …n2k 2n 

...  

  1n 2n … n …   kn

...  

k nk1 nk2… …nkk kn 

 
We define Pr F D     to be the cumulative 

probability that an individual is classified above expo- 
sure level  under the disease condition D. Then the 

 cumulative logit [12-14] is given by 


th

log , 1, , 1.
1

k



 





             (2) 

A model for cumulative logit (2) is an ordinary logit 
model for a binary response in which categories 1 to  
form a single category, and categories  to k form 
second category. 


1

The cumulative probabilities may be modeled [12,14, 
15] directly using the cumulative logit link function (2) 
and may be represented by 

logit .D                 (3) 

Both   and    in (3) are unknown 
parameters. Here 

 1, , 1k   
  is the intercept or cutpoint para- 

meter and must satisfy 1 2 1 andk       

-th
p

 

 ex- 
plains the additional exposure for an individual being 
classified above the  level. Using relations (1) and 
(3), the conditional probability  is written as 

 
exp

, 1 1.
1 exp

p k



   







           (4) 

The probability  dose not depends on p 



. From (4) 
we can estimate the “cumulative” log OR for developing 
the disease for an individual with exposure level more 
than  relative to one less than or equal to . This is 
given by 

,

log , 1 1.
1

p
k

p
   







           (5) 

If we consider that the response categories are of in- 
terest in themselves, then one can combine the adjacent 
categories for estimating cumulative ORs. In such a 
situation the “continuation-ratio” logit link function may 
be used [13,14], which is given by 

1log , 1, , 1,
1

k


  






             (6) 

where  1 Pr 1F D      , the response probability 
of an individual with disease status D, being classified in 
the  1 th  category  1, , 1 .k    

Applying a similar technique, as in the case of cumu- 
lative logit link function (2), “continuation-ratio” logit 
link function (6) may be represented by 

1log .
1

D


 

   




 


            (7) 

In this situation    has a similar interpretation as in 
the case of   in model (3) and   explains the addi- 
tional exposure for an individual being classified at the 
 1 th
th

 level as compared to less than or equal to the 
 level. 

2.2. Fitting the Full Logit Model 

The cumulative logit model (3) may be fitted using a 
single multinomial logit model for the data given in Ta- 
ble 1. For this, the full maximum likelihood estimation 
procedure as given in Aitkin et al. (p. 240) [16] is adop- 
ted. Considering the cumulative probability  

 Pr ,F D     the category exposure probabilities 
can be represented as 

    Pr Pr 1 Pr F D F D F       D    (8) 

The category probabilities (8) under the cumulative lo- 
git model (3) is given by 

 
1 1

1 1

e e
Pr D ,

1 e 1 e

D D

D
F

   

   

 

 

 

  
 

   

   


D       (9) 

1, , , where 1 and 0.o kk       

Let ij  be the probability that for a given case-con- 
trol pair the case is classified in the i-th level and the 
control in the j-th level, then the cell probabilities 

 1 2,ij Pr F i F j     is written as 

   1 2Pr Pr , 1 .ij F i F j i j k           (10) 

The full likelihood for the data shown in Table 1 is 
derived using the multinomial distribution as given be- 
low. 

The probability that in a sample of N case-control 
pairs, we observe nij pairs, corresponding to the (i,j)-th 
cell, is  1ij i j k     which is, 

 
1 1

1 1

!
Pr ; , 1, , ,

!

ij
k k

n
ij ijk k

i j
ij

i j

N
n i j k

n


 

 

  


     (11) 

with 
1 1 1 1

1 and .
k k k k

ij ij
i j i j

n N
   

    

Note that there are    1k k 1    distinct probabili- 
ties in our case. The estimation and the testing proce- 
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dures based on the above model are described in brief in 
Appendix. 

The estimated values of cumulative ORs  
are obtained using the estimators  The 
estimates are written as 

 1, 2,3i i 
 1, 2,3 .ˆˆ ,i i i 

 ˆ ˆexp , 1, 2,3i i i             (12) 

The asymptotic variances of the estimated cumulative 
ORs are obtained by the use of the delta methods [19] 
and are given by 

     2ˆ ˆ ˆ ˆ , 1,2,i i i i     3    

.

    (13) 

2.3. Testing of Odds Ratios 

In order to examine whether the cumulative ORs (12), 
based on the full likelihood, procedure are essentially the 
same, we test the null hypothesis Ho: , 1, 2,3i i     

Denoting  Tˆ ˆ ˆ ˆ, ,    1 2 3 , then using the properties 
of ML estimators it can be shown that ̂  has an as- 
ymptotic multivariate normal distribution with  

i i ˆE    and with covariance matrix  ˆ .V   Based 
on the estimated  1 ˆˆ ,i   ,  ˆ ˆV   is obtained. The test 
of the null hypothesis Ho: i  is 
equivalent to a test of the liner hypothesis of the form Ho: 

 1, , 1i k    

0C  , where C is a known full rank contrast matrix of 
order  and is given by   2k k   1

1 1 0 0

1 0 1 0

1 0 0 1

C

 
  
 
 

 




    


 

The null hypothesis is tested using the Wald type test 
statistic [20], which is given by 

      
1T2 Tˆˆ ˆ .X C CV C C 


         (14) 

Under Ho, X2 is asymptotically distributed as chi- 
square with degrees of freedom equal to the number of 
rows of C. If X2 is found significant, individual differ- 
ences i iˆ ˆ    may be considered to be present indi- 
cating the existence of differences of cumulative ORs 
across the cutpoints. 

2.4. Numerical Example 

The analytical procedure described above for estimating 
cumulative and continuation-ratio ORs, for matched pair 
data with ordered multiple level response categories, is 
now illustrated by reanalysis of the data set on endo- 
metrial cancer given in Table 1. For this data, the mar- 
ginal totals may be summarized as shown in Table 3. 

Based on relation (17), the estimated asymptotic co- 

variance matrix  ˆ ˆ   is obtained as: 

 
0.18 0.11 0.09

ˆ ˆ 0.11 0.18 0.14

0.09 0.14 0.36

 
 
   
  

 

The maximum likelihood estimates of the parameters 

i̂  and î  (i = 1,2,3) with their standard errors, under 
the cumulative logit model (3) based on full likelihood 
method is presented in Table 4. 

In order to test the validity of considering the i-th cut- 
point in the estimation of ORs, the null hypothesis 

0, 1,2,3i i    is tested using large sample Wald chi- 

square test. The “test-statistic” is found to be significant 
for  1,2,3i i  .  This shows that, at each cutpoint, there 

is a strong evidence of risk for developing endometrial 
cancer due to the higher oestrogen exposure. 

Since at each of the three categories, the evidence of 
risk for developing endometrial cancer is found to be pre- 
sent under the cumulative logit model (3), therefore, bas- 
ed on the estimated values of  cumulative 

ORs are estimated as shown in Table 5. 

 1,2i i  ,3

In order to test the equality of cumulative ORs across 
the categories, that is 1 2 3    , the null hypothesis 
Ho: i , 1, 2,3i    is tested using the asymptotic chi- 
square test (14). The resulting test statistic is found to be 
3.70 with 2 degrees of freedom, showing no significant 
differences between the three cumulative ORs. It may be 
noted that testing this null hypothesis is equivalent to 
testing for the McCullagh’s proportional odds model [12]. 
 
Table 3. The marginal sums of Table 1 at the i-th exposure le- 
vel (i = 1,2,3,4). 

Exposure level i ni. n.i 

1 12 36 

2 16 9 

3 15 10 

4 16 4 

 
Table 4. The parameters estimated for the data in Table 1 under 
full likelihood. 

Parameter Estimate Standard error 

1  −0.45 0.27 

2  −1.17 0.31 

3  −2.62 0.52 

1  1.82 0.43 

2  1.28 0.43 

3  1.64 0.60 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



S. S. Ganguly / Open Journal of Epidemiology 3 (2013) 153-159 157

Table 5. Estimation of cumulative ORs at the i-th cutpoint (i = 
1,2,3). 

Cumulative odds ratio Estimate Standard error 

1  6.17 2.65 

2  3.60 1.55 

3  5.16 3.10 

 
Hence, from the above analysis it is observed that al- 

though there is a strong evidence of risk for developing 
endometrial cancer due to the oestrogen exposure above 
each of the three dose levels as compared to less than or 
equal to that level, however, their differences are found 
to be statistically not significant. From this, it may be 
concluded that the odds of developing endometrial can- 
cer is very high for the users of any amount of oestrogen, 
even if it is the least dose, as compared to the non-users. 

3. DISCUSSION 

In recent years, a considerable literature has been accu- 
mulated concerning the use of polytomous logistic model 
for estimating odds ratios, in the development of the dis- 
ease, in case of a matched case-control design, when 
multiple case-control groups are considered in the analy- 
sis [20-23]. Ganguly and Nik-Nimbalkar [9] suggested 
the use of polytomous logistic model for estimating ORs, 
modeling the retrospective probabilities, when the expo- 
sure of prime interest has more than two unordered cate- 
gories, using polytomous logistic model under 1-1 ma- 
tched case-control design. 

Ganguly and Naik-Nimbalkar [17], and further Gan- 
guly [18] extended the concept of cumulative ORs and 
Continuation-ratio ORs, as suggested in Agresti [13] for 
ordinal response, to a situation where pairwise matched 
case-control design is carried out. The method primarily 
relied on fitting the cumulative logit and continuation- 
ratio logit, separately at each cutpoint. In the methods, 
while constructing the models, the cumulative logit link 
function at the ith cutpoint (i = 1,2,3) involved the nui- 
sance parameters θi(i = 1,2,3). However, the θ’s get 
eliminated through the conditionality argument involved 
in the procedure. Hence, separate fitting of binary logit 
model provided the estimated values of odds ratios at 
each cutpoint. The estimated values at the three cutpoints 
found by Ganguly and Naik-Nimbalkar [17] were 5.00 ± 
2.24, 3.43 ± 1.46 and 5.00 ± 1.46 respectively. Interest- 
ingly, these values are very close to the results found in 
the present study. 

Breslow and Day [10] have estimated ORs attached to 
each of the three dose levels of conjugated oestrogen, 
using the no-dose level as base line. The estimated values 
of the ORs were 4.59, 3.55 and 8.33 respectively. These 
ORs measure the risk attached to each of the category 

relative to the no-dose category. Incidentally, the result 
found by Ganguly and Nik-Nimbalkar [17] and in the 
present study substantiates those of Breslow and Day 
[10]. However, it may be emphasized that the cumulative 
ORs investigate the behavior of ORs when the subjects 
have used dose intake more than a particular level as 
compared to less than or equal to that level. This helps in 
identifying the dose intake level, which could be re- 
garded as a cutoff point up to which the dose intake may 
be considered safe. 

4. CONCLUSION 

In this paper we have presented a method for performing 
analysis of matched epidemiologic data with an ordered 
categorical risk factor which explicitly takes account of 
the ordering by fitting a single multinomial logit model 
and reanalyzed the Los Angels Endometrial Cancer data 
given in Breslow and Day [10]. The remarkable feature 
of the method is that although we estimate the cumula- 
tive ORs in the presence of the nuisance parameters but 
the resulting values found to be very close to that ob- 
tained by Ganguly and Nik-Nimbalkar [17] where sepa- 
rate logit models were fitted at each gradation between 
categories. 
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APPENDIX 

In this appendix we derive the log likelihood function 
for the multinomial logit model and derive the covari- 
ance matrix. 

The log-likelihood function for k = 4 is obtained using 
the relation (9) and (10) in (11) which is proportional to 
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The log-likelihood function (15) has  2 1k    
free parameters, which are i  i =1,2,3 and i , i = 1,2 
3 respectively. 

The likelihood equations are obtained by partial de-
rivatives of  ,    with respect to i s  and 
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in (16) 
The maximum likelihood estimators, ˆi , î  (i = 

1,2,3) are obtained by setting these likelihood equations 
equal to zero and solving for i  and i  respectively. 
The solutions may be obtained by iterative procedures 
such as Newton-Raphson method.  

The asymptotic variances of the maximum likely- 
hood estimators ˆi  and î  (i = 1,2,3) are obtained 
with the use of second partial derivatives of  ,  . 
The matrix formed by the negative of the expected 
values of the second partial derivatives gives the in- 
formation matrix, which may be expressed as the par- 
titioned matrix. 
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At convergence  1 ˆˆ ,i    provides an estimate of 
the precision and covariance structure of the estimated 
coefficients. The estimated standard errors are given by 
the square roots of the diagonal elements of the matrix 

 1 ˆˆ , .i    
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