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Abstract

Light curves of solar-like stars are known to show highly irregular variability. As a consequence, standard
frequency analysis methods often fail to detect the correct rotation period. Recently, Shapiro et al. showed that the
periods of such stars could still be measured by considering the Gradient of the Power Spectrum (GPS) instead of
the power spectrum itself. In this study, the GPS method is applied to model light curves of solar-like stars
covering all possible inclination angles and a large range of metallicities and observational noise levels. The model
parameters are chosen such that they resemble those of many stars in the Kepler field. We show that the GPS
method is able to detect the correct rotation period in ≈40% of all considered cases, which is more than 10 times
higher than the detection rate of standard techniques. Thus, we conclude that the GPS method is ideally suited to
measure periods of those Kepler stars lacking such a measurement so far. We also show that the GPS method is
significantly superior to autocorrelation methods when starspot lifetimes are shorter than a few rotation periods.
GPS begins to yield rotation periods that are too short when dominant spot lifetimes are shorter than one rotation
period. We conclude that new methods are generally needed to reliably detect rotation periods from sufficiently
aperiodic time series—these periods will otherwise remain undetected.

Unified Astronomy Thesaurus concepts: Stellar rotation (1629)

1. Introduction

Stellar rotation periods are usually measured by searching
for periodic patterns in long-term (photometric) time series
caused by magnetic features transiting the stellar disk several
times. The high-precision, long-term photometry of the Kepler
space telescope has proven to be an ideal data set for large
rotation period surveys (e.g., Reinhold et al. 2013; McQuillan
et al. 2014; Santos et al. 2019, etc.). In particular, these surveys
have shown that rotation periods of stars with regular light-
curve patterns can reliably be detected by standard frequency
analysis methods such as the Lomb–Scargle periodogram
(Reinhold et al. 2013; Reinhold & Gizon 2015), the
autocorrelation function (ACF) (McQuillan et al. 2014), or
wavelet power spectra (Santos et al. 2019, 2021).

These methods, however, reach their limits when applied to
stars around solar spectral types that show comparably small
and irregular variability. The Sun also shows an irregular light-
curve pattern, which is mostly caused by the relatively short
lifetimes of the sunspots (days to weeks; see Petrovay & van
Driel-Gesztelyi 1997) compared to the solar rotation period of
roughly 27 days. Similar behavior is seen for stars around solar
spectral type, which often show highly irregular light curves.
As a consequence, rotation periods could only be detected for
16% of the G-type dwarfs in the Kepler field (see Tables 1 and
2 in McQuillan et al. 2014). Basri et al. (2022) showed that the
stars they were unable to find reliable periods for are the ones
whose starspot lifetimes are shorter than a couple of rotation
periods.

Recently, Reinhold et al. (2021) tested the performance of
the ACF on simulated light curves with solar variability
patterns. These authors showed that the ACF is not well suited
for period detection in such aperiodic stars because the method
(by design) searches for a repeating variability pattern.
Reinhold et al. (2021) further showed that the period detection
rate is as low as ≈3% when setting similar constraints on the
autocorrelation peak heights as used in McQuillan et al. (2014).
Thus, measuring periodic signals in a non- or hardly periodic

time series is challenging and requires novel techniques.
Recently, Shapiro et al. (2020) showed that the periods of such
stars could still be measured by considering the Gradient of the
(global wavelet) Power Spectrum (GPS) instead of the power
spectrum itself. This so-called GPS method is able to detect the
correct rotation period in an aperiodic time series. In particular,
it was shown that the GPS method is able to determine the
correct rotation period of the Sun (Amazo-Gómez et al. 2020b).
Furthermore, the GPS method has been successfully applied to
Kepler stars with previously determined rotation periods
(Amazo-Gómez et al. 2020a).
In contrast to classical period analysis methods (such as the

Lomb–Scargle periodogram, ACFs, or power spectra), the GPS
method does not require a repeatable pattern in the time series.
Instead, the GPS method is mostly sensitive to the shape and in
particular the width of the light-curve profile of individual
starspot transits averaged over time (see Section 3.4).
Consequently, the GPS method even works in cases when
the magnetic features live shorter than the stellar rotation period
such that no recurring transits of the same magnetic features are
needed. These characteristics make it a powerful tool for
measuring periods in aperiodic time series.
Here, we test the GPS method on simulated light curves with

irregular variability and show that it reaches a detection rate of
≈40%, which is more than 10 times higher than the detection
rates obtained by classical methods (such as ACFs). In a
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forthcoming publication, we will apply this method to all
Kepler stars with near-solar effective temperatures with the
goal of measuring periods for the large sample of stars lacking
this information so far.

2. Data and Methods

2.1. The Model Light Curves

In this study, we primarily apply the GPS method to
simulated light curves with solar-like variability. The light
curves rely on models of solar brightness variability, SATIRE
(Spectral And Total Irradiance REconstruction, Fligge et al.
2000; Krivova et al. 2003; Solanki et al. 2013). These models
build on the solar paradigm to simulate light curves with solar
effective temperature, rotation period, and activity level and
have recently been extended to modeling stars observed at
different inclination angles (Nèmec et al. 2020a, 2020b) and
metallicities (Witzke et al. 2020; Reinhold et al. 2021).

The models considered here span 61 yr of solar data between
1948 March and 2009 May, i.e., the data almost cover six full
solar activity cycles with epochs of high and low activity. The
models were calculated for 10 inclination angles between pole-
on (i= 0°) and edge-on (i= 90°) views and 9 different
metallicities −0.4 � [Fe/H]� 0.4 dex (in steps of 0.1 dex).
In particular, the rotation period of all model light curves is
equal to the solar one, which roughly equals 27 days as seen
from Earth.

To be comparable to Kepler observations later on, we chose
a Monte Carlo approach to account for a wide range of possible
stellar parameters such as inclination angles, metallicities, and
noise levels. Following the strategy described in Reinhold et al.
(2021), the input model parameters inclination and metallicity
are chosen such that they resemble the distribution in the
Kepler field. From these distributions, we chose a random
combination of inclination and metallicity and pick the model
closest to the chosen values. From this model, we randomly
pick a 4 yr segment from the whole 61 yr time series and
remove the long-term variability of the activity cycle (see
Reinhold et al. 2021 for details). The GPS method is then
applied to these Keplerized light curves as described in the
following.

Since the light curves are noise free, we add white noise with
zero mean and standard deviation σ to the data. The noise level
σ is determined by the apparent magnitude of the observed star.
We adopt the distribution of apparent magnitudes (Kp) of solar-
like stars in the Kepler field and compute different noise
realizations following the procedure described in Reinhold
et al. (2020). In total, we have considered 5000 samples each
for the noise-free and noisy light curves. For more details, we
refer the reader to Reinhold et al. (2021), who used the exact
same light curves as we do.

In the following, the GPS method will primarily be applied
to the physics-based SATIRE model light curves. In order to
directly test the effect of starspot lifetimes on the efficacy of the
GPS and autocorrelation methods, we also utilized some of the
models described in Basri & Shah (2020) (see Section 3.4).
These do not necessarily mimic stars similar to the Sun but
instead were computed to include the general behavior of light
curves of Kepler stars whose periods have been determined.
The models do not simulate physical flux emergence processes,
instead sampling light curves produced by many randomized
manifestations of starspots whose general parameters are

specified and varied. In particular, a set of models was
employed with an average of six spots (all with the same
maximum size) present at a time, distributed randomly over the
stellar sphere, and viewed at an inclination of 60°. Starspot
lifetimes for these noise-free model sets were set at values of
0.25, 0.5, 1, 2, 3, and 4 rotation periods. Each model set
contains 1000 different instances of random spot placements
and birth dates, and each run has 50 rotations. To better
illustrate the effect of different spot lifetimes, we refrain from
adding noise to these models.

2.2. The GPS Method

Figure 1 shows an example from our set of (noisy) model
light curves (top panel). Individual spot transits are clearly
visible but without any obvious periodicity. This observation is
confirmed by the global wavelet3 power spectrum of the light
curve (middle panel). The power spectrum increases toward
longer periods but does not show a distinct peak. Instead, it
shows a plateau shape at the model rotation period of 27 days.
Thus, the rotation period would not have been detected by this
method.
Instead of searching for peaks of the power spectrum, we

compute the GPS, which is shown in the lower panel of
Figure 1. The maximum of the GPS corresponds to the position
of the inflection point (IP), i.e., the point where the curvature of
the high-frequency tail of the power spectrum changes its sign.
In this example, the highest peak is found at the inflection point
period PIP≈ 5.41 days. Shapiro et al. (2020) showed that this
period can be used to infer the correct rotation period by the
simple equation

( )a=P P , 1rot IP

where α is a calibration factor. We will see below how α

depends on the model parameters and what the best choice of α
might be for real observations where physical parameters
cannot be controlled. For the model in Figure 1, we find that
α= 5.41/27= 0.20 is the best choice. The main idea behind
the GPS method is that the high-frequency tail of the power
spectrum is much less affected by the evolution of magnetic
features than the power spectrum peak associated with the
rotation period (see Figure 3 in Shapiro et al. 2020). We note
that the inflection point itself does not have a physical meaning,
as stated in Shapiro et al. (2020). However, we ascribe a sort of
physical meaning to the inflection point, which can be
associated with the typical dip duration in the light curves
caused by active regions crossing the visible disk (see
Section 3.4).
For some models, the GPS shows more than one peak, i.e.,

more than one inflection point. From visual inspection, we
found that this mostly occurs in cases where the light curve
shows some quiet and some active segment. Such models
usually return two peaks in the gradient, with one period much
smaller and the other peak much larger than the “correct”
inflection period. Thus, we discard all cases where more than
one GPS peak was found. This criterion removes ≈25% of the
noise-free cases but only ≈10% of the noisy models. The
reason why the noisy models less often show two peaks is that
the noise partly washes out the impact of small spot transits that
have very short lifetimes (often less than one day).

3 Here, we use a sixth-order Paul wavelet (e.g., Torrence & Compo 1998).

2

The Astrophysical Journal Letters, 938:L1 (7pp), 2022 October 10 Reinhold et al.



Consequently, more power of the GPS peak can be associated
with the profiles of the remaining larger spots.

3. Results

3.1. The Calibration Factor α

To eventually determine the rotation period, we need to
know the calibration factor α. According to Equation (1), this
factor equals the measured inflection period divided by the
model rotation period of 27 days. Following our Monte Carlo
approach, we draw random samples of model light curves and
measure the inflection point periods. Figure 2 shows the
distribution of α for the noise-free (blue) and the noisy (red)
models. The noise-free distribution has a roughly Gaussian
shape with a mean of 〈α〉= 0.165 and standard deviation
σα= 0.032. The distribution for the noisy models is only
approximately Gaussian with a mean of 〈α〉= 0.217 and
standard deviation σα= 0.047. Generally, one can see that the
noise shifts the distribution to higher α values. We will see
below (see Figure 4) that the noise-dominated models are
mostly responsible for the long tail toward larger α values (i.e.,
longer inflection periods). We like to emphasize that the
specific value of α is independent of the model rotation period.
In the following, we show how α depends on different model
parameters and what value of α should be used for real
observations (see Section 3.3).

3.2. Dependence on Model Parameters

In Figure 3, we can study the dependence of α on the model
parameters in more detail. The upper and middle panels show
the noise-free models to study the effects of inclination and
metallicity independently of the noise, whereas the lower panel
shows the α dependence on apparent magnitude (i.e., the effect
of noise in the light curves). In all panels, the dashed blue line
shows 〈α〉, and the red dots with error bars indicate the mean
and standard deviation in the chosen bins.
The upper panel shows the dependence of α on inclination

for all different metallicities drawn from the input distribution.
One can see that α does not show much dependence on
inclination down to i= 40°. Below that angle, the contribution
of faculae to the overall variability increases while the spot
contribution shrinks (e.g., Knaack et al. 2001). The faculae are
well visible near the limb and leave a more sinusoidal
variability pattern in the light curves than the spots, leading
to greater α values eventually. The same is true for high-
latitude spots, which are seen much longer than spots at lower
latitudes. This interplay eventually leads to a bimodal
distribution of α for inclinations below i= 30°.
The middle panel shows that α does not depend on

metallicity. As shown in Witzke et al. (2020) and Reinhold
et al. (2021), a change in metallicity mostly affects the facular
contrasts, whereas the spot contrasts are almost unchanged.
This result is consistent with the observation that the GPS
method is most sensitive to the spot transit profiles.

Figure 1. Upper panel: Keplerized model light curve (including noise) with an inclination of i = 70° and solar metallicity [Fe/H] = 0.0 dex. Individual spot transits
are visible but there is no obvious periodicity. Middle panel: global wavelet power spectrum. The vertical blue line indicates the model rotation period of 27 days. The
power spectrum does not show any peak at this period. Lower panel: GPS. The highest peak indicates the period at the inflection point PIP = 5.41 days. This period
can be used to infer the rotation period.
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The strongest dependence of α is found for observational
noise such that α strongly increases toward fainter stars. Since
the majority (more than 70%) of the (solar-like) stars in the
Kepler field (and thus in our models) are fainter than 14th
magnitude, the noise is the dominant uncertainty for α.

In addition to the model parameters, α shows some
dependence on the phase of the activity cycle. Figure 4 shows

the 61 yr of the undetrended model time series for the solar
case, i.e., i= 90° and [Fe/H] = 0 (gray). Since we draw 4 yr
time series from the whole observing period, the inflection
periods are computed for different epochs of the solar cycle.
During activity maximum, the (rotational) variability is
dominated by spots, whereas faculae are the predominant type
of activity during its minima. Thus, the measured α values

Figure 3. Dependence of α on inclination (first panel), metallicity (second panel), and Kepler magnitude Kp (third panel) for 5000 samples. The dashed blue line
indicates the median α of all models, and the red dots and error bars indicate the mean and standard deviation of α in the considered bins. We note that the upper and
middle panels show the noise-free models, whereas the lower panel shows the results for the noisy model light curves.

Figure 2. Distribution of the measured inflection point period divided by the model rotation period of 27 days (i.e., α) for the noise-free (blue) and the noisy (red)
models for 5000 random samples. Adding noise to the light curves shifts the inflection point toward longer periods (i.e., larger values of α).
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should depend on the phase of the cycle. This is shown by the
blue (noise-free) and red (noisy) lines, which depict the yearly
averages of α for all model realizations. To show both the light
curve and the α values on top of each other, the mean of the α
distribution has been subtracted.

The red curve clearly peaks during activity minima. During
these epochs, the noise dominates the light curve, which causes the
very large α values. During activity maxima, α lies mostly slightly
below the average (except for the last cycle). The α distribution of
the noise-free models also changes during the modeled period.
However, this dependence is not completely clear.

3.3. Detection Rate

We define the detection rate of a correct period detection as
the number of periods in the interval between 24 and 30 days
divided by the number of samples with a single inflection point.
The question remains what value of α would be best for
measuring the rotation periods, especially later in real data. One
choice would be to simply use the mean or median value for all
stars. For the noisy sample, we chose the median 〈α〉= 0.209
because the α distribution is not fully Gaussian. Another option
would be to use a magnitude-corrected value of α. However,
the functional dependence of α on Kepler magnitude is not
entirely clear (see the bottom panel in Figure 3). First, we tried
the simplest dependence, namely linear. We also tested the
robustness of the resulting period distribution and considered
an exponential fit, as the true dependence is not known.
Eventually, we found that the resulting rotation period
distributions are both very similar. For the fixed value
α= 0.209, we find a detection rate of 39.7%± 0.6%. For the
linear and exponential corrected α values instead, we find
slightly higher detection rates of 41.0%± 0.6% and
41.2%± 0.6%, respectively.

Given the fact that the same set of light curves has been
analyzed in Reinhold et al. (2021), this result can directly be
compared to the detection rates of ACFs. We find that the GPS
method clearly outperforms the ACFs, which yield very low

detection rates from 17% for a local peak height (LPH)
threshold of LPH> 0.1 down to 1% for stricter criteria as
LPH> 0.4.

3.4. Effects of Spot Evolution

We now directly examine the effect of starspot lifetime on the
efficacy of the two methods for finding rotation periods. In our
primary physical models, spots have a distribution of sizes and
lifetimes (and smaller spots have shorter lives, in agreement with
sunspot observations; Solanki 2003). In contrast to this, the
models of Basri & Shah (2020) have spots with a single well-
defined lifetime. Spot areas grow linearly to a fixed maximum
size over half the lifetime then decay symmetrically in these
latter models. We remind the reader that these models have
lifetimes in units of the rotation period, so the rotation period
itself can be set to any arbitrary number and the inferred period
will scale accordingly. Here the period was arbitrarily set to 10
days simply for display purposes. For each of the lifetimes
tested, we applied both period-finding methods to each of the
1000 light curves produced. The histograms of the derived
periods for all cases are displayed in Figure 5. The top panel
shows that for the GPS method, models where the spot lifetime
was longer than one rotation did very well in finding the correct
period. With α= 0.183 the mean period found for these models
is 9.99 days with a 1σ dispersion of less than 10% (see Table 1).
The model with a spot lifetime of one rotation produced a mean
period of 8.7 days at the same α. This value of α has been
postselected to match the model period of 10 days for those
models with lifetimes greater than two rotations. We emphasize
that this value is well within the 1σ range determined from the
noise-free SATIRE models (see Section 3.1).
Interestingly, the GPS-derived period (using the same α) for

a spot lifetime of 0.5 rotations is a little under two-thirds of the
actual rotation period, and for a lifetime of 0.25, it is about one-
third of the true period. This demonstrates explicitly that the
GPS result is sensitive to the typical duration of a dip in the
light curve. As a consequence, α does not depend on

Figure 4. Dependence of α on the activity cycle. The gray data show the underlying model light curve (with 90° inclination and solar metallicity) from which we
picked 4 yr segments, computed the power spectrum, its gradient, and finally the inflection point period (i.e., α). The blue (noise-free) and red (noisy) curves show the
yearly averages of α − 〈α〉 for 5000 randomly drawn samples. We subtracted the mean value 〈α〉 here to show the overlay with the activity cycle.
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the rotation period of the model light curve. When rotation is
the cause of the typical dip duration (spot evolution occurs on
the rotational timescale or longer), GPS delivers the actual
rotation period. But when spot evolution is the primary driver

of the duration of the typical dip, GPS responds to that more
than to rotationally driven features. Also of interest is the fact
that the GPS dispersion is twice as small (percentage-wise) for
the shortest lifetime than for the other cases. This may be
because the interaction between rotation and spot evolution is
weakest in this case; spot evolution completely dominates. This
is most relevant for slowly rotating stars, which are more likely
to have spot lifetimes that are smaller fractions of their rotation
period. The implication is that some of the GPS-derived
periods for such stars could be shorter than the real periods.
This analysis suggests that for spot lifetimes of two periods and
fewer, previous analyses (mostly using Kepler data) may not
have determined the correct periods.
The results for the autocorrelation method are quite different.

Although the mean derived period is nearly correct for the
shortest spot lifetime, that is entirely coincidental given the
nearly 40% 1σ dispersion of the individual periods (which range
between 1 and 20 days). One can place no confidence in any
individual result under such circumstances. The mean derived
periods for lifetimes of a half and unit rotation periods are
around twice what they should be, with similarly large errors
making them equally unusable. At a spot lifetime of twice the
rotation period, the results for just under half of the light curves
begin to converge back to the correct period but the majority of
derived periods remain much too high and dispersed. It appears
that some of the light curves for lifetime two are periodic enough
for autocorrelation to detect it while more are not quite there, just
due to random variations in the spot patterns. We were unable to
identify specific metrics that distinguish the two groups (the light
curves look very similar). The autocorrelation method finally
converges on just under the correct result when the spot lifetimes
are three or more rotation periods, and the dispersion in the
derived periods becomes very tight (significantly tighter than for
GPS). It can also be noted that the Basri & Shah (2020) models
that have lifetimes longer than two rotations produce light curves
that are much like those that McQuillan et al. (2014) were
successful with. That this is true is clear from the strong success
of the autocorrelation method on them, and the GPS method
indeed found the same period.

4. Summary and Conclusions

Solar variability is known to be highly irregular on rotational
timescales. In this study, we employed physics-based models of
stellar brightness variations as these would be seen by the
Kepler telescope for stars with different inclination angles,
metallicities, and noise levels. Previously, Reinhold et al.
(2021) used the same models to show that measuring accurate
rotation periods in such highly irregular light curves is a
difficult task by itself, and standard frequency analysis
techniques such as ACFs often fail to detect the correct period.
In this study, we took advantage of the GPS method (Shapiro

et al. 2020) and demonstrated that it is a powerful tool for
detecting rotation periods in such highly irregular light curves.
In particular, the detection rate of ≈40% is much higher than
the ≈3% of the ACF method using common peak height
thresholds such as LPH> 0.3 (see Reinhold et al. 2021). We
further showed that the GPS method is largely insensitive to
different inclinations and metallicities but visibly reacts to
noise, pushing the calibration factor α toward larger values.
In summary, the distribution of α is broad which is only partly

caused by noise but also stems from the presence of the various
manifestations of magnetic activity, i.e., the interplay of dark

Figure 5. Dependence of the derived rotation periods on starspot lifetimes.
Upper panel: histograms of derived rotation periods for a model set with
different lifetimes utilizing the GPS method. Lower panel: the same but with
periods derived using the autocorrelation method. The vertical dashed line in
both panels indicates the model rotation period.

Table 1
Results for Lifetime Models

Lifetime P-GPS σ-GPS %σ-GPS P-ACH σ-ACH %σ-ACH

0.25 3.35 0.16 4.8 9.84 3.89 39.5
0.5 6.12 0.55 9.0 18.3 6.08 33.2
1.0 8.73 0.84 9.6 25.5 7.25 28.4
2.0 9.91 0.85 8.6 19.9 10.42 52.4
3.0 10.08 0.81 8.0 9.72 1.51 15.5
4.0 9.99 0.78 7.8 9.81 0.19 1.9

Note. P-GPS is the mean rotation period for each of the 1000 trial sets using
α = 0.183. P-ACH is the mean period found with the autocorrelation method.
All models were generated with an arbitrarily chosen rotation period of
10 days.
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spots and bright faculae (see Figure 4). Owing to the relatively
large spread of the calibration factor α, the derived rotation
periods are accompanied by errors on the order of ≈20%.

Another direct comparison of the GPS and ACF methods
showed that the ACF only works in cases where the spot
lifetimes are significantly longer than the rotation periods (two
or more times). By contrast, the GPS method yields proper
rotation periods for spot lifetimes longer than one rotation
period with moderate relative uncertainties. For more periodic
light curves, i.e., likely those with long spot lifetimes, both
methods converge and yield consistent results, with ACF
periods becoming increasingly accurate with increasing spot
lifetime (relative to the rotation period). Therefore, whereas for
periodic or quasi-periodic light curves ACF may be the method
of choice (giving somewhat lower errors for the most periodic
ones), the GPS method is clearly superior to the ACF method
for finding periods in aperiodic light curves.

All these attributes make the GPS method a promising tool
for determining rotation periods of those Kepler stars lacking
such a measurement so far. This task will be addressed in a
forthcoming publication. In particular, we will apply the GPS
method to all Kepler stars with near-solar effective tempera-
tures. This effort will generate the largest sample of solar-like
stars available so far. It will serve as a test bed for various
solar–stellar comparison studies.
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