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Abstract 
 

In this paper a comparative study of multiplier is done for speed.  The concept used in the proposed 
algorithm is the combination of “Urdhva Tiryagbhyam” algorithm and Booth encoding for performing 
multiplication. The “Urdhva Tiryagbhyam” algorithm is an ancient Indian Vedic mathematics, which is 
used for multiplication to improve the speed and area [1].  The multipliers based on the concept of Booth 
encoding are compact and have significantly a higher speed when compared to their non encoded 
counterparts [2]. 
The approached architecture for a multiplier uses Booth encoder, Vedic Multiplier, along with parallel 
adders. The coding for the proposed multiplier is carried out using the hardware descriptive language 
namely VHDL. Subsequently the code is simulated and synthesized using Xilinx ISE 10.1 software. This 
multiplier is implemented on Spartan 3 FPGA devices XC3S50- 5pq208. The performance metrics for 
comparing the Booth encoded multiplier and the Vedic multiplier is the speed of operation and the device 
utilization summary, when both the algorithms are implemented on FPGA. It has been observed that the 
proposed design has speed improvements as compared to the other multipliers. 
 

Short Research Article 
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1 Introduction 
 
Many digital signals processing operation requires several multiplication and for the same, we need very fast 
multiplier for a wide range of requirements for hardware and speed [3]. Vedic mathematics was rediscovered 
in the early twentieth century from ancient Indian sculptures (Vedas).The Multiplier Architecture is based on 
the Vertical and Crosswise algorithm of ancient Indian Vedic Mathematics. Vedic mathematics simplifies 
and optimizes the conventional mathematical algorithm [4].  
 
For serial multiplication, Booth encoding based multipliers was proposed. In this method, the partial 
products are generated by choosing a pair of digits along with the most significant digit from the preceding 
pair. The multiplier is encoded using radix-2 or radix-4 Booth algorithm [5]. The advantage of Booth 
encoding is that it generates only half of the partial products in comparison to the other multipliers. However 
the benefit comes from speed hardware trade off. 
 
We have developed a new architecture using “Urdhva Tiryakbhyam” Sutra and Booth encoding. The final 
parallel adders implemented in the proposed architecture reduce propagation delay significantly. It is   
believed that   our architecture may set new path for future research. 
 
An organization of this paper is as: section 2 describes the Vedic multiplier using “Urdhva Tiryagbhyam” 
sutra. Section 3 describes the multiplier using Booth Encoding algorithm. Section 4 shows proposed 
architecture using carry save adders for 4 bit multipliers. Section 5 describes results, comparison with the 
Booth encoded multiplier and Vedic multiplier. Conclusion and references are given in section 6 and 7 
respectively. 
 

2 Vedic Multiplier Using ‘Urdhva Tiryagbhyam’ Sutra 
 
The “Urdhva Tiryagbhyam” Sutra [1] is a general multiplication formula applicable to all cases 
multiplication. “Urdhva” and “Tiryagbhyam” words are derived from Sanskrit literature. “Urdhva” means 
“Vertically” and “Tiryagbhyam‟ means crosswise. 
 

 
 

Fig. 1. Line Diagram for multiplication of two 4-bit numbers 
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To illustrate the multiplication algorithm for binary let us consider a multiplication of two binary numbers 
a3a2a1a0 and b3b2b1b0. The parallelism in generation of partial products and their summation is explained 
in Fig. 1. 
 

3 Booth Encoding 
 
In array multipliers, the computation of the partial products is based on considering one bit of the multiplier 
at a time. An n-bit by n-bit array multiplier requires ‘n’ half adders and   ‘n (n-2)’ full adders. Hence it can 
be observed that the number of adders have increased quadratically with an increase in the size of the 
multiplier.  
 
Booth encoding method was proposed to expedite the serial multiplication. In this method, the Partial 
products are generated by considering a pair of digits along with the most significant digit from the 
preceding pair.   The multiplier represented as (X) is decoded into distinct select lines and driven across the 
row, where partial products are generated. These select lines control Booth selectors that choose the 
appropriate multiple of Y for each partial product. In case of negative numbers, the negative partial products 
are sign extended in order to be summed precisely. The Booth encoded multipliers are compact and faster 
compared to the other popular multipliers [2]. 
 
X is the multiplicand and Y is the multiplier.  Every Addition/Subtraction/NOP is followed by right shift by 
2 bits. 
 

Table 1. Radix-4 booth encoding 
 
Multiplier (Y) Encoding Action to be taken 
000 0 NOP 
001 +1 Add X 
010 +1 Add X 
011 +2 Add X twice 
100 -2 Add  2s complement of X two times 
101 -1 Add 1s complement of X 
110 -1 Add 1s complement of X 
111   0 NOP 

 
The motivation for this work was obtained by making a survey of fast multipliers that could be used in 
encryption algorithms. In the survey, many authors have compared the Booth Multiplier with the Vedic 
Multiplier. It has been observed from the Survey that the delay of Vedic multiplier was 20% reduced in 
comparison to the Booth Encoded Multiplier.  
 
Also in an NXN Vedic multiplier, ‘n’ bits of the multiplier are considered for generating the partial product. 
But since, Parallelism is involved in the generation of the partial products. Vedic multiplier is found to have 
a lower delay [6].  
 
Whereas in an NXN Booth encoded multiplier, only ‘n/2’ bits of the multiplier are considered for generating 
the partial product. But the partial products are generated serially.  
 
In the proposed algorithm, the multiplier is encoded using Booth encoding, in order to reduce the number of 
multiplier bits to ‘n/2’. In addition to this, Parallelism is also involved in the generation of the partial 
products. Hence the benefits of the Vedic multiplier and that of the Booth encoder are combined together in 
order to further reduce the delay.  
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4 Proposed Architecture 
 
Fig. 2 shows the proposed architecture for multiplication of N bit binary number using Booth encoding and 
Vedic mathematics. 
 
In the proposed architecture the N bit multiplier is encoded  into  a  N/2  bit  multiplier  using  radix  4  
Booth encoding. To illustrate with an example, let us consider 4 bit multiplication: 
 

 
Fig. 2. Proposed Architecture 

 
The multiplicand X is represented as X3 X2 X1 X0 and the multiplier Y is represented Y3 Y2 Y1 Y0. By 
applying the Booth encoding technique, the multiplier Y gets encoded as YN1 and YN0. With the new 
encoded multiplier all the partial products are computed parallelly using the Vedic multiplier. After the 
application of “Urdhva Tiryakbhyam” Sutra and Booth encoding the partial products obtained are: 
 
P0 = X0 YN0 
P1 = X1 YN0 
P2 = X2 YN0 + X0 YN1 
P3 = X3 YN0 + X1 YN1 
P4 = X2 YN1 
P5 = X3 YN1 
 
The encoding of the partial products after the application of both the algorithms is discussed in Table 2. 
 

Table 2. Encoded values 
 

Partial Products (P5 to P0) Encoded Values (PE) 
0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
-4 1100 
-3 1101 
-2 1110 
-1 1111 

 
The encoded values for each of the partial products  
P5 to P0 are PE5 PE4 PE3 PE2 PE1 PE0. 
 
Figs. 3 and 4 shows the final product obtained after the encoded values are shifted and fed to the Parallel 
adder. 
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Fig. 3. Parallel addition of encoded values 
 

From Fig. 3, it is shown that PE0, PE2 and PE4 are sign extended by one bit. Where as PE1, PE3 and PE5 
are left shifted by one bit position before applying to the 5 bit parallel adder. 
 
Fig. 4 shows the final product obtained from the 8bit parallel adder. The 8bit parallel adder takes 3 bit sign 
extension of Sum0 along with twice left shifted and 1 bit sign extension of Sum1.The second stage parallel 
adder gets its input from the first stage sum and also four times left shifted Sum2. 
 

 
Fig. 4. Addition for final product 

 
This proposed architecture reduces the delay considerably compared to both Booth encoding algorithm [7] 
and Vedic Mathematics algorithm [8]. The carries generated by the individual parallel adders are not passed 
on to the next stage of adders. 
 
To illustrate with an example: Let the first operand, the multiplicand be X=x3x2x1x0=(0101)2=(5)10; The 
second operand, the multiplier be chosen as Y=y3y2y1y0=(1010)2=(-6)10;  
 
According to the proposed algorithms, the multiplier is encoded using Booth encoder as Yn0 and Yn1. Yn0 
and Yn1 are 3-bits in size.  
 
Yn0=y1, y0, 0 i.e zero is the least significant bit.  
 
Yn1=y3, y2, y1. 
 
According to the illustration Yn0= (100)2. Yn0 is encoded as (-2) according to Table 1. Similarly, Yn1= 
(101)2. Yn1 is encoded as (-1) according to Table 1.  
 
The encoded multiplier (Yn1, Yn0) and the multiplicand (X3, X2, X1, X0) are used to compute the partial 
products parallelly using the concept of Vedic multiplication.  
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P0 = X0 YN0=1*(-2)=(-2)=(1110)2 
P1 = X1 YN0=0*(-2)=0=(0000)2 
P2 = X2 YN0 + X0 YN1=(1*-2)+(1*(-1))=(-2)+(-1)=(1101)2 
P3 = X3 YN0 + X1 YN1=0*(-2)+0*(-1)=0=(0000)2 
P4 = X2 YN1=1*(-1)=(1111)2 
P5 = X3 YN1=0*(-1)=(0)=(0000)2 

 
From Fig. 3, it is shown that PE0, PE2 and PE4 are sign extended by one bit. Whereas PE1, PE3 and PE5 are 
left shifted by one bit position before applying to the 5 bit parallel adder. 
 
Sum0= Sign extended value of PE0+ Left shifted value of PE1= (11110)2+(00000)2=(11110)2 
Sum1= Sign extended value of PE2+ Left shifted value of PE3= (11101)2+(00000)2=(11101)2 
Sum2= Sign extended value of PE4+ Left shifted value of PE3= (11111)2+(00000)2=(11111)2 

 
From Fig.  4, the 8bit parallel adder takes 3 bit sign extension of Sum0 along with twice left shifted and 1 bit 
sign extension of Sum1.The second stage parallel adder gets its input from the first stage sum and also four 
times left shifted Sum2. 
 
Final Product is obtained in two stages: Stage a result + Stage b result  
 
Stage a result: 3 bit sign extension of Sum0 along with twice left shifted and 1 bit sign extension of Sum1 
 
i.e.  (11111110)2+ (11110100)2= (11110010)2 

 
Stage b result: Stage a result + four times left shifted value of Sum2. 
 
i.e. (11110010)2+ (11110000)2=(11100010)2=(-30)10 

 
Since, the most significant bit is 1; the final product is in the 2’s complement form.  
 
This yields the final product to be (00011110)2= (30)10 
 

5 Results and Discussion 
 
Table 3 shows comparison of the proposed architecture with Vedic Mathematics Multiplier [8] and Booth 
Encoding Multiplier [7]. 
 

Table 3. Synthesis report 
 

Device 
Spartan2 
XC3S50: 
5pq208 

4 X 4 
Multiplier Using Vedic 
Mathematics 

4 X 4 
Multiplier Using Booth 
Encoding 

4 X 4 
Multiplier Using 
proposed Architecture 

Delay 17.754 ns 22.209 ns 13.3 ns 
Number of Slices 18/768 27/768 38/768 
Number of LUTs 33/1536 33/1536 69/1536 
Levels of Logic 9 14 7 

 
The proposed architecture for a N X N multiplier for a value of N = 4 is found to have a delay of 13.3 ns, 
with 8.168 ns for the logic and 5.132 ns for routing. The speed is optimized compared to Vedic Mathematics 
multiplier [8], which has 10.134ns for logic and 7.632 ns for routing and  Booth Encoding Multiplier [7], 
which has 12.313 ns for logic and 9.896ns for routing, giving a delay reduction of 25% and 40 % 
respectively. 



5.1 Simulation result 
 
The N x N multiplier, for N= 4, 8 is designed in VHDL
possible input combination by writing test bench.
 

Fig. 5. Simulation result for 4 bit proposed multiplier

Fig. 5 shows 4 different values of the operands X and Y.
 
The first being X= (0101)2= (5)10, Y=(1010)
YN0=-2 and YN1=-1. The six partial products generated parallelly are PE0, PE1, PE2, PE3, PE4 and PE5. 
The final product is (-30)10. 
 
The second set of operands are X= (0111)
The operand Y is encoded as 2 and -1. The partial products are generated using the Vedic multiplier. 
 
The Proposed algorithm is extended to perform multiplication on 8
shown in Fig. 6.  
 
Fig. 6  shows  the  ModelSim  results  for  8  bit  proposed  multiplier  for  X  =  (11111111)
01111111)2=(127)10,  yielding a product of 32385 to base 10. The multiplier Y is encoded as 2, 0, 0,
Booth encoding. The Partial products from PE0 to PE15 (PE14 and PE15 are missing in the figure, due to 
lack of clarity) are obtained using Vedic multiplier.  
 
In another example X= (01111111)2= (127)
and 6 each PEn is an encoded value. The proposed architecture assumes X to be an unsigned number and Y 
to be a signed number. 
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The N x N multiplier, for N= 4, 8 is designed in VHDL  and  its  functionality  is  being  verified  for  all  the 
possible input combination by writing test bench. 

 
5. Simulation result for 4 bit proposed multiplier 

 
5 shows 4 different values of the operands X and Y. 

, Y=(1010)2=(-6)10. The operand Y is encoded according to Table 1 as 
1. The six partial products generated parallelly are PE0, PE1, PE2, PE3, PE4 and PE5. 

The second set of operands are X= (0111)2= (7)10, Y= (0111)2= (7)10. This generates the final product as 49. 
1. The partial products are generated using the Vedic multiplier. 

The Proposed algorithm is extended to perform multiplication on 8-bit operands. The Simulation results are 

6  shows  the  ModelSim  results  for  8  bit  proposed  multiplier  for  X  =  (11111111)2=(255)
,  yielding a product of 32385 to base 10. The multiplier Y is encoded as 2, 0, 0,

Booth encoding. The Partial products from PE0 to PE15 (PE14 and PE15 are missing in the figure, due to 
lack of clarity) are obtained using Vedic multiplier.   

= (127)10, and Y=(11111111)2=(-1)10 the product is  (-127)
and 6 each PEn is an encoded value. The proposed architecture assumes X to be an unsigned number and Y 
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and  its  functionality  is  being  verified  for  all  the 

 

. The operand Y is encoded according to Table 1 as 
1. The six partial products generated parallelly are PE0, PE1, PE2, PE3, PE4 and PE5. 

. This generates the final product as 49. 
1. The partial products are generated using the Vedic multiplier.  

tion results are 

=(255)10,  Y  =( 
,  yielding a product of 32385 to base 10. The multiplier Y is encoded as 2, 0, 0,-1 using 

Booth encoding. The Partial products from PE0 to PE15 (PE14 and PE15 are missing in the figure, due to 

127)10.  In Figs. 5 
and 6 each PEn is an encoded value. The proposed architecture assumes X to be an unsigned number and Y 
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Fig. 6. Simulation Result for Proposed 8-bit multiplier 
 

6 Conclusions 
 
The proposed multiplier architecture which combines the benefits of Booth encoding and the benefits of 
Vedic multiplier shows speed improvements over multiplier architecture presented in Vedic mathematics [8] 
and Booth Encoding [7] individually. The N x N multiplier using the proposed architecture has resulted in 
delay reduction of 25% compared to Vedic Mathematics and 40% reduction in delay compared to Booth 
Encoded multiplier. It can be well suited for multiplication of numbers with more than 16 bit size. 
 
This work can be further extended for area optimization and also usage of carry save adders can further 
reduce the delay. 
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