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ABSTRACT 
 

Aims: The study aimed at modeling the climate change projections for Ferozpur subcatchment of 
Jhelum sub-basin of Kashmir Valley using the SDSM model.  
Study Design: The study was carried out in three different time slices viz Baseline (1985-2015), 
Mid-century (2030-2059) and End-century (2070-2099). 
Place and Duration of Study: Division of Agricultural Engineering, SKUAST-K, Shalimar between 
August 2015 and July 2016. 
Methodology: Statistical downscaling model (SDSM) was applied in downscaling weather files 
(Tmax, Tmin and precipitation). The study includes the calibration of the SDSM model by using 
Observed daily climate data (Tmax, Tmin and precipitation) of thirty one years and large scale 
atmospheric variables encompassing National Centers for Environmental Prediction (NCEP) 
reanalysis data, the validation of the model, and the outputs of downscaled scenario A2 of the 
Global Climate Model (GCM) data of Hadley Centre Coupled Model, Version 3 (HadCM3) model 
for the future. Daily Climate (Tmax, Tmin and precipitation) scenarios were generated from 1961 to 
2099 under A2 defined by Intergovernmental Panel on Climate Change (IPCC).  
Results: The results showed that temperature and precipitation would increase by 0.29°C, 255.38 
mm (30.97%) in MC (Mid-century) (2030-2059); and 0.67oC and 233.28 mm (28.29%) during EC 
(End-century) (2070-2099), respectively. 
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Conclusion: The climate projections for 21
st
 century under A2 scenario indicated that both mean 

annual temperature and precipitation are showing an increasing trend. 
 

 
Keywords: Climate change; IPCC; Ferozpur subcatchment; SDSM. 
 

1. INTRODUCTION 
 
Water is indispensable for life, but its availability 
at a sustainable quality and quantity is 
threatened by many factors, of which climate 
plays a leading role. The Intergovernmental 
Panel on Climate Change (IPCC) defines climate 
as “the average weather in terms of the mean 
and its variability over a certain time span and a 
certain area” and a statistically significant 
variation of the mean state of the climate or of its 
variability lasting for decades or longer, is 
referred to as climate change. There is a growing 
evidence that global climate is changing. The 
Intergovernmental Panel on Climate Change 
(IPCC) estimates that the global mean surface 
temperature has increased 0.6 ± 0.2°C since 
1861, and predicts an increase of 2 to 4°C over 
the next 100 years. Global sea levels have risen 
between 10 and 25 cm since the late 19th 
century. As a direct consequence of warmer 
temperatures, the hydrologic cycle will undergo 
significant impact with accompanying changes in 
the rates of precipitation and evaporation. 
Predictions include higher incidences of severe 
weather events, a higher likelihood of flooding, 
and more droughts. The impact would be 
particularly severe in the tropical areas, which 
mainly consist of developing countries, including 
India. The warming trend for the last 30 years 
period is roughly three times that for the past 100 
years as a whole [1,2] and it is expected that 
global temperature will continue to rise between 
1.4 and 5.8°C by 2100 due to the emission of 
greenhouse gases [3]. 
 

Coupled atmosphere-ocean global climate 
models (GCMs) are used to estimate changes in 
climate. These physically-based numerical 
models simulate synoptic-scale climate and 
hydrological processes, and are forced with 
greenhouse gas and aerosol emission scenarios. 
A wide diversity of GCMs (CGCM2, CSIRO, 
BCC-CSM1,+ HadCM2, HadCM3 etc.) 
developed by leading climate centres are 
available for other researchers to evaluate 
potential impacts of climate change. To ensure 
that the predictive elements from a GCM are 
realistic, a statistical downscaling technique 
should be employed to bridge the local-scale and 
synoptic-scale processes. Statistical downscaling 

uses a correlation between predictands (site 
measured variables, such as observed 
temperature and precipitation) and predictors 
(region-scale variables, such as GCM variables). 
 
Climate models are the main tools available for 
developing projections of climate change in the 
future. Changing climate poses an 
unprecedented challenge for hydrology. The 
quantification of knowledge on occurrence, 
circulation and distribution of the waters of the 
earth becomes increasingly complex under 
climate projections because of uncertain effects 
due to anthropogenic emissions. According to 
the sixth Intergovernmental Panel on Climate 
Change (IPCC) Technical Paper on Climate 
Change and Water [4], changes in the large-
scale hydrological cycle have been related to an 
increase in the observed temperature over 
several decades. 
 
The advantage of computationally-demanding 
GCMs over simpler models is that GCMs can 
provide geographically distributed and physically 
consistent estimates of climate change. 
Recently, the study [5] gave details of obtaining 
the future climate data of Ludhiana in central 
Indian Punjab from three GCMs (Hadley Center 
Coupled Model Version 3 (HadCM3), Australia’s 
Commonwealth Scientific & Industrial Research 
Organization Mk2 (CSIRO-Mk2) and Second 
Version of Canadian Center for Climate Modeling 
and Analysis Coupled Global Climate Model 
(CCCMA-CGCM2). Jalota et al. (2011) used this 
data for predicting climate change and its impact 
on crop productivity of rice-wheat cropping 
system for the years 2020, 2050 and 2080. 
However, the performance of GCMs is usually 
poor at the scale of the grid cell, while the 
impacts of climate change are often of interest at 
grid scale or sub-grid scale, such as a 
hydrological catchment, a city or a farm [6]. 
 
Downscaling of the GCM data is often required 
for climate change impact studies. Downscaling 
approaches can for convenience be divided into 
two categories: dynamical downscaling, in which 
physical dynamics are solved explicitly and 
empirical (statistical) downscaling [7]. Statistical 
downscaling (SD) generally encompasses the 
derivation of local scale meteorological data from 



GCMs/RCMs with the help of statistical models 
fitted to present observations. These statistical 
models describe the relationship between large
scale atmospheric variables (predictors) and 
local or regional climate variables (predictands), 
which can be expressed as a stochastic a
deterministic function [8]. Predictor sets are 
typically derived from sea level pressure, 
geopotential height, wind fields, absolute or 
relative humidity, and temperature variables [9]. 
The fundamental concept of SD is that regional 
climates are largely a function of the large
atmospheric state [8]. Statistical downscaling 
model (SDSM) was used to downscale future 
climate change scenarios, which were obtained 
from the UK HadCM3 climate model. The 
downscaled climate was used as input to the 
WetSpa hydrological model for impact studies in 
the upper Scezibwa catchment, Uganda [10].
 
The IPCC has developed a number of socio
economic scenarios that describe future Green 
House Gases and sulphur emissions. These 
projections of future emissions are calle
SRES Scenarios (Special Report on Emissions 
Scenarios) and are based on a number of 
assumptions in driving forces [11]. The SRES 
team defined four narrative storylines describing 
different social, technological, economic, 
demographic and environmental developments, 
which are labeled A1, B1, A2 and B2. A2 and B2 
scenarios project CO2 concentrations of 
approximately 850 ppm and 600 ppm, 
respectively. Based on these scenarios, a 
number of general circulation models (GCMs) 
have been developed. 
 

Fig. 1. Location map of study area with contour interval
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of statistical models 
fitted to present observations. These statistical 
models describe the relationship between large-
scale atmospheric variables (predictors) and 
local or regional climate variables (predictands), 
which can be expressed as a stochastic and/or 
deterministic function [8]. Predictor sets are 
typically derived from sea level pressure, 
geopotential height, wind fields, absolute or 
relative humidity, and temperature variables [9]. 
The fundamental concept of SD is that regional 

ely a function of the large-scale 
atmospheric state [8]. Statistical downscaling 
model (SDSM) was used to downscale future 
climate change scenarios, which were obtained 
from the UK HadCM3 climate model. The 
downscaled climate was used as input to the 

a hydrological model for impact studies in 
the upper Scezibwa catchment, Uganda [10]. 

The IPCC has developed a number of socio-
economic scenarios that describe future Green 
House Gases and sulphur emissions. These 
projections of future emissions are called IPCC 
SRES Scenarios (Special Report on Emissions 
Scenarios) and are based on a number of 
assumptions in driving forces [11]. The SRES 
team defined four narrative storylines describing 
different social, technological, economic, 

al developments, 
which are labeled A1, B1, A2 and B2. A2 and B2 

concentrations of 
approximately 850 ppm and 600 ppm, 
respectively. Based on these scenarios, a 
number of general circulation models (GCMs) 

2. MATERIALS AND METHODS 
 
2.1 Site Location 
 
Ferozpur sub-catchment falls in western part of 
Kashmir Valley in Baramulla District. The study 
area is bounded between North latitude 
and 34

o
 07

′ 
and East longitude 74

39′ (Fig. 1). The sub-catchment is bounded by 
Gunder watershed from north and Sukhnag 
watershed from south and east. The 
geographical area of the sub-catchment is 58.4 
sq. kms. 
 

2.2 Climate 
 
The Climate of the Ferozpur sub
Temperate cum Mediterranean type. Average 
minimum and maximum temperature varies from 
6.77 to 19.59°C. The winter season starts from 
the middle of the November and severe winter 
conditions continues till the middle of 
February/March. The study area receives an 
average annual precipitation of about 825 mm in 
the form of rain and snow for about 60 days.
 

2.3 Observed and Future Climate Data
 
In many of the earlier studies [12,13] future 
climate was predicted in relation to the modeled 
climate data of baseline (1961-
considering the observed data. While present 
study is considering the observed/station data.
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Climate station data/observed historical data 
(predictands): Long-term observed daily Tmax, Tmin 
and precipitation data from Division of Agronomy, 
SKUAST-K, from (1985-2015) were collected 
and used for the generation of weather files in 
the Statistical Downscaling Model (SDSM) for the 
observed period of the study. 
 
Large-scale atmospheric variables (predictors): 
Statistical Downscaling Model (SDSM) version 
4.2.9 was used for climate modeling. Tmax, Tmin 
and precipitation was forecasted up to year 2099 
using GCM data. GCM data were downloaded 
from Canadian Climate Scenarios Network. 
National Centers for Environmental Prediction 
(NCEP_1961-2001) data set was used to 
calibrate and validate the model. Then for future 
Tmax, Tmin and precipitation predictions, Hadley 
Centre Coupled Model, Version 3 (HadCM3) 
data sets for A2 scenario (H3a2a_1961-2099) 
was used. 

 
Future forecasts of annual maximum daily Tmax, 

Tmin and precipitation and monthly averaged total 
precipitations was made under A2 scenario of 
IPCC. 

 
2.4 Statistical Downscaling Model (SDSM) 
 
SDSM deals with generation of synthetic series 
of daily weather data at a local site based on 
empirical relationships between local-scale 
predictands (daily temperature and precipitation) 
and large-scale predictors (atmospheric 
variables). SDSM predictors were obtained for 
the given area from courtesy of a data portal 
maintained by the Canadian Climate Impacts 
Scenarios Group. 

  
2.4.1 Development of SDSM model 

 
The observed daily maximum temperature, 
minimum temperature and precipitation data was 
then transformed & converted into .dat format to 
be recognized, accepted & executed in the 
SDSM software. Data used in any other format 
may either not be recognized or can lead to 
system errors due to inappropriate data or the 
production of non-sensible output. 
 
Before downscaling, a check was made to 
ensure the correct date ranges, type and integrity 
of all input data. Since, the model to be used 
here was a HadCM3 model having model years 
consisting of 360 days therefore, the default year 
length was set to 360 days in scenario 

generation. The “Standard Start Date” was set 
for 01/01/1961 and “The Standard End Date” for 
31/12/2099 while in case of Observed data 
(predictand) the default “Calendar (366)” allows 
29 days in February every fourth year (i.e., leap 
years) was set.  As, temperature consists of 
negative values, negative values were allowed 
by using the checkbox against “Allow Negative 
Values”. The “Event Threshold” was kept 0 for 
temperature but for precipitation was kept around 
0.3 mm/day to treat trace rain days as dry days. 

 
There are generally two steps in the training 
process: 
 

1. Downscaling climate data 
2. Statistical downscaling 

 
a. Predictand data quality control 
b. Screening downscaling predictors 
c. SDSM Model Calibration 
d. Scenario Generation 

 
2.4.2 Downscaling climate data 

 
Downscaling climate data was done by using 
Statistical Downscaling Model (SDSM 4.2.9). The 
HadCM3 was employed for A2 and B2 emission 
scenarios. A2 is medium-low emission scenario 
and B2 is Medium-High emission scenario. 

 
2.4.3 Statistical downscaling 

 
SDSM [14] is a decision support tool that 
facilitates the assessment of regional impacts of 
global warming by allowing the process of spatial 
scale reduction of data provided by large-scale 
GCMs. Statistical downscaling Model (SDSM 
4.2.9) developed by Wilby et al. (2008) was 
downloaded freely from http://www.sdsm.org.uk. 
It establishes statistical relationships between 
output from GCM at large-scale (i.e. predictors) 
and observed data from meteorological stations 
at local-scale (i.e. predictands) climate based on 
multiple linear regression techniques. The 
general procedure used to downscale from GCM 
output data is presented in the flowchart. Daily 
maximum and minimum temperature and 
precipitation are downscaled by using the 
following discrete processes. These are 
predictand data quality control; predictor 
variables selection; model calibration; weather 
generation and scenario generation using climate 
model predictors. The procedures applied in   the 
section below were adapted from the SDSM 
4.2.9 manual [15]. 
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2.4.4 Predictand data quality control 
 
Data collected from meteorological stations may 
not be 100% complete and/or accurate. In 
SDSM, quality control of time series data is very 
crucial step to handle missing or imperfect data. 
For all meteorological stations daily data quality 
was checked to manage missed, suspected 
values and outliers of the predictand before 
screening of the predictor variables. 
 
2.4.5 Screening downscaling predictors 
 
Screening predictors is central and the most 
challenging stage in statistical downscaling 
because it determines the character of the 
downscaled climate scenario. Its main purpose is 
to assist the user in the selection of appropriate 
downscaling predictor variables. The selection of 
predictors (Table 1) in SDSM is described as is 
an iterative process and partly based subjective 
judgment of the user’s. In this study, predictors 
with relatively high correlation and partial 
correlation value and P value less than 0.05 were 
selected [6]. The partial correlation is defined as 
“the correlation between two variables after 
removing the linear effect of the third or more 
other variables” [16]. 
 
The statistical test (i.e. t-test) used to calculate a 
p-value, which is used to accept or reject the 
hypotheses that the two sets of data (i.e. 

observed and simulated) could have similar or 
the same statistical properties. Significant 
differences between the simulated and observed 
climate data may be arise from the errors in the 
observed data, model smoothing of the observed 
data or random error. 
 
The higher correlation and partial correlation 
values show strong association between 
predictor and predictand whereas smaller P 
values indicate that the occurrence of this 
association is less likely by chance. The 
correlation and partial correlation statistics and P 
values shows the strength of the association 
between predictor and predictand. The 
association strength of individual predictors 
varies on a monthly basis and the most 
appropriate combination of predictors was by 
looking at the analysis output of the twelve 
months. P value less than 0.05 is consistently 
used as the cut-off. However, even if P is less 
than 0.05 the result can be statistically significant 
but not be of practical significance. When there is 
high correlation and low P value, the scatter plot 
was used to evaluate whether this result is due to 
few outliers, or is a potentially useful downscaling 
relationship. The Scatter plot may also reveal 
that one (or both) of the variables should by 
modified using the “transform operation”, to make 
linear relationship. The predictor variables are 
normalized with respect to their means and 
standard deviations. 

 
Table 1. Large-scale atmospheric variables (Predictors) used as potential inputs in SDSM 

 

No. Predictors Description No. Predictors Description 

1 tempas mean temperature at 2 m                        14 p500as 500hpa geo-potential height 

2 shumas surface specific humidity                           15 p5_zas 500hpa velocity 

3 rhumas near surface relative 
humidity 

16 p5_vas 500hp meriodinal velocity 

4 r850as relative humidity at 
850hpa                        

17 p5_zhas 500hpa divergence 

5 r500as relative humidity at 500 
hpa 

18 p5_uas 500pa zonal velocity 

6 p8zhas 850 hpa divergence 19 p5_fas 500hpa air flow strength 

7 p8thas 850hpa wind direction                                 20 p_zhas surface divergence 

8 p850as 850hpa geo-potential 
height                       

21 p_zas surface velocity 

9 p8_zas 850 hpa velocity 22 p_vas surface meridian velocity 

10 p8_vas 850 hpa meriodinal 
velocity                        

23 p_uas surface zonal velocity 

11 p8_uas 850hpa zonal velocity                                    24 p_thas surface wind direction 

12 p8_fas 850hpa airflow strength                                25 p_fas surface air flow strength 

13 p5_thas 500hpa  wind direction                              26 mslpas men sea level pressure 
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2.4.6 SDSM model calibration 
 

By calibrating of the SDSM, the downscaling 
model is build based on multiple linear 
regression equations, daily predictand data (i.e. 
meteorological station data) for GCM predictor 
variables. In this study calibration is done by 
using selected Screen Variables (See Tables 3, 
4 and 5) and level of the variance in  the local 
predictand of daily precipitation, maximum and 
minimum temperature of Local station data for 
the period of 1985-2015 are used. This 31 period 
is served as the baseline for this study. During 
model calibration, conditional for precipitation 
while unconditional process for maximum and 
minimum temperature was applied. In 
unconditional process, a direct link assumed 
between the predictors and predictand whereas 
conditional processes are done with intermediate 
process. 
 

2.4.7 Weather generation 
 

The Weather Generator operation generates 
ensembles of synthetic daily weather series 
given observed (or NCEP re-analysis) 
atmospheric predictor variables. The procedure 
enables the verification of calibrated models 
(using independent data) and the synthesis of 
artificial time series for present climate 
conditions. The User selects a calibrated model 
and SDSM automatically links all necessary 
predictors to model weights. The user must also 
specify the period of record to be synthesized as 
well as the desired number of ensemble 
members. Synthetic time series are written to 
specific output files for later statistical analysis, 
graphing and/or impacts modeling. 
 

2.4.8 Generation 
 

The Scenario Generation process produces daily 
base data for maximum temperature, minimum 
temperature and precipitation for the period 
1961-2099. Each predictand (i.e. precipitation, 
maximum and minimum temperature) scenario is 
generated based on the calibration result and the 
daily atmospheric predictors of the HadCM3 (See 
Tables 3, 4 and 5). The calibration result is used 
based on assumption that predictor-predictand 
relationships under the current condition remain 
valid under future climate conditions too. 
 

HadCM3 has two emission scenarios A2 and B2. 
For A2 emission, scenario twenty ensembles of 
synthetic daily time series data were produced 
for 139 years. The stochastic component of 

SDSM allows the generation of up to 100 
ensembles. Where ensemble data has the same 
statistical characteristics but vary on a day-to-day 
basis. Selection of only twenty ensembles is 
done due to reasonably match between 
observed and simulated daily temperature and 
precipitation. In addition, large number of 
ensembles notably did not improve and 
subjective for large deviation among ensembles 
output, only 20 individual ensemble outputs are 
averaged to improve the performance of model 
for future time horizon. For time horizons 1961-
2099, the A2 emission scenario precipitation, 
maximum and minimum temperature outputs are 
generated. 
 
Data for the time slices representing periods 
1985-2015 (baseline), mid-century (MC) climate 
change projection (2030-2059), and end century 
(EC) projection (2070-2099) were used for 
further analysis. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Calibration and Generation of Future 

Climate Scenarios for Ferozpur 
Subcatchment 

 
3.1.1 Selection of potential predictor variable  

 
The first step in the downscaling procedure using 
SDSM was to establish the empirical 
relationships between the predictand variables 
(maximum temperature, minimum temperature, 
and precipitation) collected from station and the 
predictor variables obtained from the NCEP re-
analysis data for the current climate. This was 
involved in the identification of appropriate 
predictor variables that have strong correlation 
with the predictand variable. The next step was 
the application of these empirical predictor-
predictand relationships of the observed climate 
to downscale ensembles of the same local 
variables for the future climate. Data supplied by 
the HadCM3 for the A2 and B2 emission 
scenarios for the period of 1961-2099 for 
Ferozpur subcatchment. This is based on the 
assumption that the predictor-predictand 
relationships under the current condition remain 
valid under future climate conditions too. 
Therefore, according to the above procedure the 
potential predictors selected for maximum 
temperature, minimum temperature, and 
precipitation for the study area are listed in   
Table 2. 
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Table 2. List of selected predictor variables that gave better correlation results at p<0.05 
 

Predictand Predictor variable Description Cor. 
coefficient 

Partial 
cor. 

Tmax ncepp500as.dat 500 hPa geopotential height 0.773 0.449 
ncepshumas.dat Surface specific humidity 0.701 0.069 
nceptempas.dat Mean temperature at 2m 0.765 0.435 

Tmin ncepp500as.dat 500 hPa geopotential height 0.756 0.410 
ncepshumas.dat Surface specific humidity 0.771 0.182 
nceptempas.dat Mean temperature at 2m 0.812 0.434 

Precipitation ncepp5_fas.dat 500 hPa airflow strength 0.051 0.050 
ncepp5_vas.dat 500 hPa meridoinal velocity 0.066 0.038 
ncepp8_zas.dat 850 hPa vorticity 0.040 0.027 

 

The partial correlation coefficient (r) shows the 
explanatory power that is specific to each 
predictor. All are significant at p ≤ 0.05. 2hpa: is 
a unit of pressure, 1 hPa = 1 mbar = 100 Pa = 
0.1 kPa. Correlation matrix was used to 
investigate intervariable correlations for specified 
analysis period (annual). SDSM also reports 
partial correlations between the selected 
predictors and predictand. These statistics help 
to identify the amount of explanatory power that 
is unique to each predictor. 
 

3.1.2 Model calibration  
 

The Model calibration process constructs 
downscaling models based on multiple 
regression equations, given daily Tmax, Tmin and 
precipitation data of the study area (the 
predictand) and regional-scale, atmospheric 
(predictor) variables. SDSM optimizes the model 
using either dual simplex or ordinary least 
squares optimization in the advanced settings of 
SDSM 4.2. The model structure was arranged as 
monthly as sub models required by unconditional 
and conditional settings for temperature and 
precipitation respectively (Tables 3, 4 and 5). 
 

3.1.3 Weather generator  
 
Ensembles of synthetic daily weather series were 
generated and given observed (or NCEP re-
analysis) atmospheric predictor variables. The 
procedure enables the verification of calibrated 
models (using independent data) and the 
synthesis of artificial time series for present 
climate conditions of the study area (7305 days) 
(Table 6). 
 
3.1.4 Maximum and minimum temperature  
 
Monthly average of 20 years (1985-2004) of the 
observed weather data and SDSM weather 
generated values using calibration OUT file 
(NCEP data) maximum temperature (Tmax) and 

minimum  temperature (Tmin) for the location 
showed that the observed values were same as 
the weather generated values using calibrated 
OUT file in SDSM (Figs. 2 and 3). The average 
R

2
 value for both Tmax and Tmin cases during 

calibration period was 0.99. 
 
3.1.5 Precipitation 
 
In case of precipitation, the weather generated 
precipitation was greater than observed 
precipitation during all months from January to 
December (Fig. 4). The analysis of the statistical 
parameter revealed that the mean (µ) of weather 
generated precipitation was 17 per cent more 
than that of the observed precipitation and the 
average R

2
 value was 0.97. 

 

3.2 Future Climate Predictions 
 
This section presents the annual and monthly 
trends of Tmax, Tmin and Precipitation for present 
(from 1985-2015), future scenarios MC and EC. 
 
3.2.1 Maximum temperature 
 
The annual and monthly trends in maximum 
temperature during different years of Baseline, 
mid-century (MC) and end-century (EC) is 
presented in Tables 7 and 8 and their graphical 
representation is shown in (Fig. 5). Average 
annual Tmax of 19.59°C for the Baseline would 
increase to 19.77°C in MC and 20.26°C in EC. 
This implies that in MC and EC, increase in Tmax 
would be 0.18 and 0.67°C respectively in future. 
In MC, the change in Tmax would be positive in 
the month of January, April, May, June and 
August negative in the month of February, 
March, July, September, October and December 
and no change in the month of November. 
Highest positive change would be of 2.77°C in 
the month of January and negative change of 
0.97°C in the months of March and September. 



 
 
 
 

Ali et al.; IJECC, 8(1): 39-52, 2018; Article no.IJECC.2018.004 
 
 

 
46 

 

In EC, the change in Tmax would be positive in 
the month of January, April, May, June, August, 
October, November and December and negative 
in the month of February, March, July and 

September. The maximum positive change 
would be 3.20°C in the month of January and 
negative change of 0.68°C in the month of 
March. 

 

 
 

Fig. 2. Mean monthly observed Tmax and weather generated Tmax (1985-2004) 
 

 
 

Fig. 3. Mean monthly observed Tmin and weather generated Tmin (1985-2004) 
 

 
 

Fig. 4. Mean monthly observed precipitation and weather generated precipitation (1985-2004)
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Table 3. Calibration statistics of daily maximum temperatures 
 

Predictor 
variable 

R square value 
Statistical measure Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

ncepp500as.dat 
ncepshumas.dat 
nceptempas.dat 

R
2 

0.025 0.008 0.012 0.022 0.057 0.008 0.011 0.007 0.042 0.041 0.093 0.026 0.029 
Standard Error 4.024 3.418 4.454 4.568 4.743 3.886 3.406 3.227 3.390 3.661 3.804 3.489 3.839 
Durbin-Watson 
statistics 

0.321 0.632 0.555 0.589 0.513 0.547 0.861 0.957 0.709 0.498 0.392 0.405 0.582 

 
Table 4. Calibration statistics of daily minimum temperatures 

 
Predictor 
variable 

R square value 
Statistical measure Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

ncepp500as.dat 
ncepshumas.dat 
nceptempas.dat 

R
2 

0.021 0.019 0.027 0.073 0.035 0.069 0.019 0.022 0.124 0.093 0.086 0.042 0.053 
Standard Error 3.069 2.259 2.550 2.397 2.381 2.542 2.388 2.145 2.737 2.593 2.222 2.545 2.486 
Durbin-Watson 
statistics 

0.427 0.615 0.632 0.846 0.713 0.476 0.659 0.543 0.443 0.346 0.571 0.479 0.563 

 
Table 5. Calibration statistics of daily precipitation 

 
Predictor 
variable 

R square value 
Statistical 
measure 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 

ncepp5_fas.dat 
ncepp5_vas.dat 
ncepp8_zas.dat 

R
2 

0.011 0.002 0.029 0.000 0.023 0.000 0.060 0.020 0.013 0.056 0.100 0.083 0.033 
Standard 
Error 

10.652 13.369 12.485 12.197 8.766 9.917 13.925 13.123 9.255 11.257 9.499 17.916 11.863 
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3.2.2 Minimum temperature 
 
Average annual Tmin of 6.77°C for the Baseline 
would increase to 7.18°C in MC and 7.43°C in 
EC (Table 7). These results indicate that the 
increase in Tmin would be 0.41 and 0.66°C in MC 
and EC (Fig. 6) respectively in future. In MC, the 
change in Tmin would be positive in the month of 
January, March, April, May, June, November and 
December negative in the month of February, 
July, August, September and October (Table 8). 
Highest positive change would be of 2.24°C in 
the month of December and negative change of 
1.1°C in the month of September. In EC,                    
the change in Tmin would be positive in the       
month of January, February, March,  April, May, 
June, November and December and negative in 
the month of  July, August, September and 
October. The maximum positive change would 
be 2.62°C in the month of December and 
negative change of 0.47°C in the month of 
September (Fig. 6). 
 

The above data indicates that under A2 scenario 
mean annual temperature would increase by 
0.29°C in MC and 0.67°C in EC compared to that 
of the Baseline period. 
 

3.2.3 Precipitation 
 

The precipitation showed an increasing trend on 
annual basis, in Baseline the average annual 
precipitation is 824.52 mm which is likely to 
increase to 1079.9 mm in MC and 1057.8 mm in 
EC (Table 7) and (Fig. 7). These results indicate 
that in MC the precipitation would increase by 
255.38 mm (30.97%) and in EC by 233.28 mm 
(28.29%) respectively. Monthly trends (averaged 
over years in each time slice) showed that 
change in precipitation would be positive in all 
the months of MC and EC compared to that of 
the Baseline, except in months of August and 
September (Fig. 7). The highest positive change 
in precipitation would be in the month of July, 
which was computed as 90.25 mm in MC and 
74.16 mm in EC. 

 
 

 
 

Fig. 5. Annual (a) and monthly (b) maximum temperature trends in Baseline, mid-century (MC) 
and end century (EC) 
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These results commensurate with the previous 
findings [17] indicating significant warming and 
increasing rainfall over India towards the end of 
the 21

st
 century using PRECIS under A1B 

scenario [17] and with [18] who used multi model 

outputs for climate projections indicating northern 
India, particularly states of Rajasthan, Madhya 
Pradesh, Uttar Pradesh, Uttaranchal, Himachal, 
Delhi, Punjab and Haryana are projected to 
experience higher levels of warming than the rest  

 

 
 

 
 

Fig. 6. Annual (a) and monthly (b) minimum temperature trends in Baseline, mid-century (MC) 
and end century (EC) 
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Fig. 7. Annual (a) and monthly (b) precipitation trends in Baseline, mid-century (MC) and end 
century (EC) 

 
Table 6. SIM file produced by the weather generator operation 

 

Predictor variable Line order and representation 

ncepp500as.dat 

ncepshumas.dat 

nceptempas.dat 

Order Representation 

[1] the number of predictor variables (in this case 3 screened predictor 
variables) 

[2] the season code (1=annual, 4=seasonal, 12=monthly);  

[3] the maximum number of days in a year (here a calendar year is 
used, so there are up to 366 days in leap years);  

[4] the start date of the data used for model calibration (1/1/1985) 

[5] the number of days simulated (7305 days in our case) 

[6] Model fitting start date(1/1/1985) 

[7] Number of days used in the model fitting (7305 days) 

[8] Whether the model is conditional (True) for temperature and 
unconditional (False) for precipitation   

[9] Transformation (1=none, 2=fourth root, 3=natural log, 4=lognormal) 
in this case none (1) 

[10] Ensemble size (20) 

[11] Auto-regression indicator (True or False) 

[12] Predictand file name 

[13] Predictor filenames (in this case five) 

[14] Model parameters; the first 6 columns in this example are the 
parameters (including the intercept), the last two columns are the 
SE and r-squared statistic 

[15] The root directory of the predictand file 
 

of the country. Indo-Gangetic plains is likely to 
experience a 0.5-1°C rise in average 
temperatures during MC and 3.5-4.5°C rise in 
EC, and increased frequency of extremely wet 

rainy seasons from PRECIS climate model [19]. 
In future, though temperature would increase but 
increased temperature would shorten crop 
duration [6,20]. 
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Table 7. Annual based Climate predictions for the three time slices of the future weather for 
Ferozpur subcatchment 

 

Temperature Baseline (1985-
2015) 

Mid Century (2030-2059) End Century (2070-2099) 

Annual Tmax (
o
C) 19.59 19.77 20.26 

Annual Tmin (
oC) 6.77 7.18 7.43 

Mean (oC) 13.18 13.47 13.85 

Precipitation (mm) 824.52 1079.9 1057.8 
 

Table 8. Monthly based maximum and minimum temperature and precipitation values 
averaged under three different time slices for Ferozpur subcatchment 

 

Month Tmax (
oC) Tmin (

oC) Precipitation (mm) 

1985-
2015 

2030-
2059 

2070-
2099 

1985-
2015 

2030-
2059 

2070-
2099 

1985-
2015 

2030-
2059 

2070-
2099 

Jan 6.48 9.25 9.68 -2.29 -0.17 -0.22 67.95 85.20 84.11 

Feb 9.42 8.94 9.18 0.11 -0.04 0.26 94.59 155.30 149.37 

Mar 14.63 13.66 13.95 3.3 3.48 3.77 123.03 153.96 145.47 

Apr 19.74 20.18 20.67 6.59 7.0 7.38 100.27 113.31 103.84 

May 24.16 25.34 27.06 9.76 10.4 10.94 71.65 99.79 104.15 

June 28.24 28.95 29.49 13.64 14.4 14.74 48.75 63.71 59.66 

July 29.73 29.46 29.18 17.17 17.15 17.01 86.83 177.08 160.99 

Aug 29.22 29.42 29.88 16.65 16.36 16.2 83.11 56.10 66.29 

Sep 27.12 26.15 26.66 11.97 10.87 11.5 43.10 30.02 36.88 

Oct 21.96 21.84 22.25 5.38 5.13 5.21 32.44 46.05 45.37 

Nov 15.37 15.37 16.02 0.7 1.04 1.48 25.94 28.37 28.01 

Dec 9.0 8.7 9.08 -1.69 0.55 0.93 46.85 60.82 64.82 

Mean 19.59 19.77 20.26 6.77 7.18 7.43 824.52 1079.9 1057.8 
 

4. CONCLUSION 
 
The framework was used for generation of 
climate change projections for the Ferozpur 
subcatchment of Jhelum sub-basin of Kashmir 
Valley. The specific conclusions in this context 
are: 
 
In case of Tmax and Tmin three among twenty six 
predictor variables viz ncepp500as, ncepshumas 
and nceptempas were having maximum 
correlation and partial correlation with observed 
data/predictand and in case of precipitation 
ncepp5_fas, ncepp5_vas and ncepp8_zas were 
having maximum correlation and partial 
correlation with observed data. 
 
Monthly average as well as annual average Tmax 
and Tmin observed and weather generated for 
calibration results were same with R2 value of 
0.99 in all cases while as in case of precipitation 
both mean monthly and average annual weather 
generated results were little higher than 
observed with R

2
 value of 0.97. 

The climate projections for 21st century under A2 
scenario indicated that mean annual temperature 
would increase by 0.29°C in MC and 0.67°C in 
EC and precipitation would increase by 255.38 
mm (30.97%) during MC and 233.28 mm 
(28.29%) during EC. 
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