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ABSTRACT 
 

The potential of Isatin (1H-indole-2,3-dione) as a donor moiety in an alternating donor-acceptor 
conjugated oligomer models was studied. Eight different electron acceptor molecules investigated 
are: thiazole (Z),thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), 
thiadiazolothienopyrazine (TPD), benzobisthiadiazole (BDD) and thienopyridine (TPY). The 
geometry and electronic properties of the oligomers were investigated using density functional 
theory (DFT) method at B3LYP/ 6-31G (d) level. Properties such as torsional angle, bond length 
and intramolecular charge transfer were analysed. The lowest excitation energies (Eex.) and the 
maximal absorption wavelength (λabs.) were studied with time-dependent density functional theory 
(TD-DFT) method. The HOMO-LUMO level and band gap energies were calculated for all the 
model oligomers. The effect of addition of another isatin moiety to isatin-acceptor type oligomers 
give rise to D-A-D type structures and the band gap energies was investigated. It was discovered 
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that (ISAT-TPD-ISAT) and (ISAT-BDD-ISAT) have lower band gaps (Eg) of 1.55 and 1.93 eV 
respectively. This result suggests that the two oligomers could be used as active layer materials in 
photovoltaic devices.    
 

 
Keywords: Oligomer; Isatin; thiazole; HOMO-LUMO band gap.  
 
1. INTRODUCTION 
 
There has been a serious search for alternative 
source of energy to complement the inadequate 
supply of world energy currently sourced from 
fossil fuel and nuclear power plants. The world 
energy need is increasing on daily basis. 
However, these sources of energy are limited. 
Besides, carbon (IV) oxide, the final product of 
fossil fuel combustion has been identified as one 
of the major contributors to global warming. Also, 
nuclear energy has been a subject of public 
debate due to the security, health risks of nuclear 
power stations and problems in the management 
of radioactive wastes generated from nuclear 
power plants. Hence, there is a need to search 
for low cost and safer sources of renewable 
energy. 
 
Solar energy is a better alternative source of 
energy. It is readily available, reliable, clean, and 
can be used all over the world. Sunlight can be 
converted directly to electricity by using 
photovoltaic cells. These are otherwise known as 
organic solar cells and are constructed by using 
conjugated polymers as photoactive layers. 
 
Conjugated polymers are π-bonded 
macromolecules in which the fundamental 
monomer unit is repeated several times [1]. 
There has been a tremendous increase in 
research interest in conjugated polymers due to 
their wide applications such as polymer light-
emitting diodes (PLED) [2-4], thin film transistors, 
all-polymer integrated circuits [1], chemical 
sensors [5], transparent conductors [6-8] and 
photovoltaic devices [9,10]. Donor-acceptor type 
conjugated polymers have been designed to 
induce minimum twisted arrangements between 
consecutive repeating units in the system. 
Interaction of the donor-acceptor moieties 
enhances the double bond character between 
the repeating units. As a result a conjugated 
polymer with an alternating sequence of the 
appropriate donor and acceptor units in the main 
chain can induce a reduction in its band gap 
energy [11]. 
 
Various polymers have been designed and 
synthesized for application in photovoltaic 

devices. They include poly (p-phenylenevinylene) 
(PPV) [12-14], polythiophene (PT) [15-17], poly 
(3,4-ethylenedioxythiophene) (PEDOT) [18-19], 
polyvinylcarbazole (PVK) [20]. Several solar cells 
have been constructed with various degree of 
efficiencies in the recent time. Smith et al. [21] 
developed bulk heterojunction solar cells using 
poly (3-dodecyl-2,5-thienylene vinylene) with 
maximum efficiency of 0.24%. Reynolds et al [22] 
blended cyanovinylene-dioxythiophene polymer 
with PCBM in ratio 1:4 to obtain a solar cell with 
0.10% efficiency. A critical factor for further 
improving the efficiency of the solar cells is that 
polymer photovoltaic materials mismatch the 
photon flux spectrum from the sun whose 
maximum flux is around 700 nm. Also, the use of 
low band gap polymers (Eg < 1.8 eV) helps in 
better harvesting of the solar spectrum and 
increasing efficiency [23-25]. 
 
Conjugated polymers based on isatin have not 
been extensively studied. Isatin or 1H-indole-2,3-
dione is an indole derivative. Schiff bases of 
isatin are investigated for their pharmaceutical 
properties [26]. Recently, Zhang et al 
synthesized a series of isoindigo-based low 
energy band gap polymers. The optical band 
gaps of the polymers are optimized for solar cell 
applications and are found to be about 1.5 eV 
[27]. Also, two conjugated polymers, IIDDT and 
IIDT based on an isoindigo core were developed 
for organic field-effect transistors by Lei et al. [28] 
Evaluation of their field-effect performance 
indicated that IIDDT exhibited air-stable mobility 
up to 0.79 cm2V-1s-1,which is quite high among 
polymer FET materials. Stalder et al. [29] 
synthesized six representatives of isoindigo-
based donor-acceptor conjugated polymers 
whose band gaps are found to be between 1.77 
and 1.99 eV. 
     
In this work, we describe a theoretical study of 
the electronic structure and optoelectronic 
properties of isatin-based alternating donor-
acceptor and donor-acceptor-donor conjugated 
oligomers. The molecular structures of the eight 
studied compounds are shown in Fig. 1. These 
correspond to eight different electron acceptors 
namely; Thiazole (Z), Thiadiazole (D), 
Thienopyrazine (TP), Thienothiadiazole (TD), 
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Benzothiadiazole (BT), 
Thiadiazolothienopyrazine (TPD), 
Benzobisthiadiazole (BDD) and Thienopyridine 
(TPY) This study has used these widely reported 
electron accepting groups along with a less 
studied electron donating group to construct 
donor-acceptor oligomers for potential 
applications in organic photovoltaic devices. 
Benzothiadiazole (BT) [30-34] for example has 
been extensively used as electron accepting unit 
in combination with several electron donating 
units such as cyclopentadithiophene (CPDT). It is 
observed that compounds made up of this  
electron accepting unit have lower-energy levels 
and reduced band gap as compare with other D-
A alternating copolymers [30-34]. 
 

These series of acceptors allow a 
comprehensive understanding of the effects of 
the backbone ring, heteroatom and fused rings 
on the geometric and electronic properties of the 
studied compounds. The geometric structures 
and electronic properties of the compounds were 
investigated by the density functional theory 
(DFT) at the B3LYP/ 6-31G (d) level. The bond 
length of the isatin-acceptor bridge, torsional 
angle and intramolecular charge transfer of the 
studied compounds were analyzed and 
correlated with their corresponding chemical 
structures. The effects of the acceptor strength 
on the electronic properties, including the 
HOMO-LUMO level and energy gap were also 
studied.
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Fig. 1. Molecular structures of the studied compounds 

 

2. COMPUTATIONAL METHOD 
 
Quantum chemical calculations of the ground 
state molecular structures of thiazole 
(Z),thiadiazole (D),thienopyrazine (TP), 
thienothiadiazole (TD), benzothiadiazole (BT), 
thiadiazolothienopyrazine (TPD), 
benzobisthiadiazole (BDD) and thienopyridine 
(TPY) were performed using the Spartan’10 
software package [30] on a 2.5GHz personal 
computer. Calculations on the ground state 
geometry, energy orbitals, dipole moments, and 
energy gaps of (ISAT)-acceptor oligomers were 
investigated with the Ab initio restricted HF-DFT 
self consistent field methods [31]. This has been 
found to be an accurate method for calculating 
the geometrical, electronic structures and optical 
properties of several organic molecules [32-38]. 
The HOMO-LUMO levels were obtained for the 
system. Also, the energy gap is obtained as the 
difference between the HOMO and LUMO 
energies. The electronic transition energies of 
the oligomers were also obtained using the time 
dependent density functional theory (TD-DFT) 
[39]. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Molecular Structure 
 
Using compound ISAT-BDD as an example, the 
definitions of torsional angle (Ө), intramolecular 
charge transfer (ICT) and bridge length (dB) are 
illustrated in Fig. 2. The optimized structure, 
atomic charge distribution and the HOMO-LUMO 
surface diagram are also shown in Fig. 3. 
 
Torsional angle is the deviation from coplanarity 
between the donor and acceptor. The large 

torsional angle (Ө0) of (ISAT-Z), (ISAT-BT) and 
(ISAT-TPY) studied compounds (Table 1) reveal 
that strong steric hindrance exist between the 
donor and acceptor moieties. The smallest 
dihedral angle values of (ISAT-TP) (-19.69°), 
(ISAT-TPD) (-21.17°) and (ISAT-BDD) (-35.71°) 
showed the coplanarity of the thienopyrazine, 
thiadiazolothienopyrazine and 
benzobisthiadiazole rings between ISAT unit 
[32,40]. The LUMO energy levels of the studied 
acceptors: Z, D, TP, TD, BT, TPD, BDD and TPY 
as obtained from the 6-31G (d) level are -0.75, -
1.27, -2.26, -2.74, -2.34, -3.72, -3.56 and -1.76 
eV respectively. It has been reported that the 
lower the LUMO energy level of the acceptor 
molecules, the higher the acceptor strength [32]. 
Hence, the order of the acceptor strength is as 
follows: TPD > BDD > TD > BT > TP > TPY > D 
> Z.  
 

Table 1. The optimum geometry results (Ө, 
dB and ICT) for model compounds calculated 

by B3LYP/6-31G (d) level 
 

Compound Ө(
0
) dB(Å) ICT(e) 

    (ISAT)2 0.00 1.448 -0.001 
ISAT-Z 28.33 1.467 -0.001 
ISAT-D 0.00 1.467   0.001 
ISAT-TP -19.69 1.464 -0.02 
ISAT-TD -5.11 1.457 -0.023 
ISAT-BT 37.53 1.481 0.00 
ISAT-TPD -21.17 1.461 -0.002 
ISAT-BDD -35.71 1.475 -0.004 
ISAT-TPY 19.32 1.465 0.00 

NB: ISAT=Isatin,  thiazole (Z),thiadiazole (D), 
thienopyrazine (TP), thienothiadiazole (TD), 

benzothiadiazole (BT), thiadiazolothienopyrazine 
(TPD), benzobisthiadiazole (BDD) and thienopyridine 

(TPY) 
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Fig. 2. Representative Plot of the optimized geometry of ISAT-Z showing torsional angle (Ө) in 

degree, Mulliken charge distribution (ICT) in e and bond length (dB) in Ǻ. 
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Fig. 3. Optimized structures, Atomic charge distribution and HOMO-LUMO surface diagram 
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Intramolecular charge transfer was calculated as 
the average of the summation of Mulliken charge 
distribution of the donor and acceptor. The order 
of the intramolecular charge transfer (ICT) 
obtained from the Mulliken charge distribution 
with the 6-31G(d) level is (ISAT-D) > (ISAT-BT), 
(ISAT-TPY) > (ISAT-Z), (ISAT)2 > (ISAT-TPD) > 
(ISAT-BDD) > (ISAT-TP) > (ISAT-TD) as shown 
in Table 1. The trend of the ICT is nearly similar 
to that of the acceptor strength except for (ISAT-
D). Similar result was observed in the case of 
(EDOT-D) [32] and ((Cbz-Edot)-D) [40]. The 
unusually high value of ICT of (ISAT-D) is 
probably due to two adjacent imine nitrogen 
atoms with high electronegativity value in the 
thiadiazole ring, which could localize electrons 
while the adjacent ISAT moiety localize a hole.  
 
Bond length is the bond distance between the 
donor and acceptor. The bond length between 
the donor and the acceptor dB (Table 1) 
decreases for the five-membered ring acceptor 
molecules with the acceptor strength: (ISAT-TD) 
< (ISAT-TPD) < (ISAT-TP) < (ISAT-D). Similar 
trend is observed for the six-membered ring 
acceptor moieties: (ISAT-TPY) < (ISAT-BDD) < 
(ISAT-BT). 
 
Dipole moment is an important parameter that 
determines the polarity of system. From the 
result obtained, it can be seen that the dipole 
moment of (ISAT-Z), (ISAT-D), (ISAT-TP), (ISAT-
TD), (ISAT-BT), (ISAT-TPD), (ISAT-BDD) and 
(ISAT-TPY) are 5.98, 7.71, 5.51, 6.50, 6.85, 
6.60, 5.38 and 7.20 Debye respectively. This 
result indicates that the polarities of the studied 
molecules are enhanced by the introduction of 
thiadiazole and thienopyridine acceptors. Similar 
observation was made for (Cbz-Edot)-based 
molecules [40]. Quadrupole moment is 
determined for the studied compounds and the 
values are presented in Table 2. The average of 
the diagonal quadrupole moment tensor 
elements Qii and unique quadrupole moment Q 
are as defined below: 
 

Qii = (Qxx + Qyy + Qzz) / 3    (3.1) 
 

Q = Qxx – Qyy      (3.2) 
 

As revealed in Table 2, all the diagonal elements 
of the quadrupole moment tensor for the model 
compounds are negative. This indicates that the 
negative charge distribution is farther removed 
from the molecular centre of the nuclear charges. 
The values of the off-diagonal elements Qxz and 

Qyz of the molecules are relatively lower which 
can be attributed to its symmetric plane nearly 
perpendicular to the z-axis. It can be observed 
that the dipole and quadrupole moment values of 
(ISAT-D), (ISAT-TPD), (ISAT-BDD) and (ISAT-
TPY) are relatively higher, indicating that the 
thiadiazole and thienopyridine are stronger 
electron donor. The [40] made the same 
observation for (Cbz-Edot)-TPD and (Cbz-Edot)-
TD. 
 

3.2 Molecular Energies and Related 
Properties  

 
The electronic properties of all the studied 
compounds were obtained by DFT calculations 
at the B3LYP/6-31 G (d) level. Table 3 and Fig. 4 
show the result of the analysis of HOMO-LUMO 
energy gap of studied compounds. 
 
As shown in Table 3, the LUMO energy level of 
model compounds decreases in the order: (ISAT-
TPY) > (ISAT-BT) > (ISAT-TP) > (ISAT-Z) > 
(ISAT-D) > (ISAT)2 > (ISAT-TD) > (ISAT-BDD) > 
(ISAT-TPD), which is the same order as the 
acceptor strength. The HOMO energy level of the 
model compounds is between -5.53 and -6.71 
eV. The calculated band gap, Eg of the studied 
compounds increases in the order as follows: 
(ISAT-TPD) < (ISAT-BDD) < (ISAT-TD) < (ISAT-
TPY) < (ISAT-TP) < (ISAT-BT) < (ISAT-Z) < 
(ISAT-D) < (ISAT)2 < (ISAT). The significant 
reduction in Eg value of (ISAT-TPD), (ISAT-BDD) 
and (ISAT-TD) compared to that of (ISAT) 
indicates the profound effect of intramolecular 
charge transfer. The frontier molecular orbital 
(MO) contribution is essential in determining the 
charge-separated states of the model oligomers. 
In order to create an efficient charge-separated 
state, the highest occupied MO (HOMO) must be 
localized on the extended donor moiety and the 
lowest unoccupied MO (LUMO) on the acceptor 
moiety. 
 

It is revealed in Fig. 3 that the HOMO state 
density is distributed entirely over the conjugated 
molecules, while the LUMO electron density is 
mainly on the acceptors’ moieties. A significant 
contribution to the LUMO of the electron 
accepting groups was observed in (ISAT-BDD), 
(ISAT-TD) and (ISAT-TPD). The reduction in the 
band gap of these compounds compared                  
with others is due to the introduction of the 
thiadiazole segment in their structures. Similar 
observation was made in (Cbz-Edot)-based 
counterparts [40].   
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Table 2. Quadrupole moments (in Debye Ǻ) of the model compounds calculated by B3LYP/ 6-
31G (d) method 

 
Compound Qxx Qyy Qzz Qxy Qxz Qyz Qii Q 
(ISAT)2 -109.12 -100.25 -173.15 -0.00 0.00 0.00 -127.51 -8.88 
(ISAT-Z) -133.62 -94.13 -97.17 -8.97 4.63 -0.29 -101.64 -19.49 
(ISAT-D) -105.07 -97.56 -96 -6.33 0 0 -99.55 -7.51 
(ISAT-TP) -132.62 -109.61 -118.7 -23.45 -4.26 -0.1 -120.31 -23 
(ISAT-TD) -133.85 -114.75 -119.05 -18.2 -4.15 1.37 -122.55 -19.1 
(ISAT-BT) -134.17 -111.56 -117.41 -14.19 -10.13 -0.7 -121.04 -22.61 
(ISAT-TPD) -150.04 -139.16 -139.3 -29.99 -5.68 -0.86 -142.83 -10.88 
(ISAT-BDD) -170.54 -129.9 -138.78 -14.81 -11.04 1.35 -146.41 -40.64 
(ISAT-TPY) -115.67 -112.67 -120.73 -23.75 4.3 0.59 -116.36 -3.01 

 
Table 3. Electronic properties (HOMO, LUMO and Eg) of model compounds as calculated by 

B3LYP/6-31G (d). 
 

Model Compound HOMO (eV) LUMO (eV) Eg (eV) 
ISAT  -6.55  -2.65  3.9 
(ISAT)2  -6.71  -3.06  3.65 
(ISAT-Z)  -6.23  -2.85  3.48 
(ISAT-D)  -6.56  -2.93  3.63 
(ISAT-TP)  -5.78  -2.73  3.05 
(ISAT-TD)  -5.63  -3.08  2.55 
(ISAT-BT)  -6.15  -2.7  3.45 
(ISAT-TPD) -5.78  -3.87  1.91 
(ISAT-BDD) -5.91  -3.68  2.23 
(ISAT-TPY) -5.53  -2.25  2.98 

 

 
 

 

HOMO of ISAT-TPD LUMO of ISAT-TPD 
 

  
 

HOMO of ISAT-BDD LUMO of ISAT-BDD 
 

Fig. 4. Representative Plot of frontier orbital’s of studied compounds by DFT/B3LYP/6-31 G (d) 
level 
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Table 4. Electronic transition data for the model compounds obtained by TD/DFT-B3LYP/6-31G 
(d) calculation 

 
Electronic 
transition 

λabs.(nm) Eex. (eV) O.S MO/Character Coefficient 

(ISAT-Z)       
S0     S1 464.49 2.6692 0.0004 HOMO       LUMO 0.9778 
S0     S2 433 4.0266 0.0076 HOMO-1      LUMO 0.976 
S0     S3 307.91 4.3871 0.0719 HOMO-2       LUMO 0.7034 
(ISAT-D)       
S0     S1 465.5 2.6635 0.0001 HOMO        LUMO 0.9845 
S0     S2 402.76 4.0145 0.0000 HOMO-1       LUMO 0.9787 
S0     S3 308.84 4.2843 0.0000 HOMO-6        LUMO 0.6269 
(ISAT-TP)       
S0     S1 472.89 2.6218 0.0479 HOMO        LUMO 0.8294 
S0     S2 461.22 2.6882 0.0065 HOMO-1       LUMO 0.8144 
S0     S3 422.3 2.9359 0.2117 HOMO          LUMO+1 0.8538 
(ISAT-TD)       
S0     S1 508.26 2.4394 0.097 HOMO          LUMO 0.5195 
S0     S2 484.49 2.6708 0.0001 HOMO-1       LUMO 0.3806 
S0     S3 464.21 3.7905 0.0077 HOMO-2        LUMO 0.8284 
(ISAT-BT)       
S0     S1 462.42 2.6812 0.0004 HOMO        LUMO 0.8854 
S0     S2 419.38 3.7222 0.0007 HOMO         LUMO+1 0.8988 
S0     S3 385.15 3.9152 0.0014 HOMO-1        LUMO+1 0.3553 
(ISAT-TPD)       
S0     S1 709.93 1.7464 0.1379 HOMO         LUMO 0.9603 
S0     S2 530.31 2.338 0.0006 HOMO-3        LUMO 0.9639 
S0     S3 490.61 2.5271 0.0281 HOMO-1        LUMO+1 0.2344 
(ISAT-BDD)       
S0     S1 558.73 2.219 0.2904 HOMO           LUMO 0.9407 
S0     S2 467.74 2.6507 0.0054 HOMO-1       LUMO 0.6819 
S0     S3 457.99 2.7552 0.0161 HOMO         LUMO+1 0.6633 
(ISAT-TPY)       
S0     S1 489.87 2.5309 0.0447 HOMO          LUMO 0.9595 
S0     S2 460.53 2.6922 0.0011 HOMO-1         LUMO 0.9579 
S0     S3 385.93 3.2126 0.3331 HOMO          LUMO+1 0.9323 

 

3.3 Absorption Properties 
 
For a new material to be considered useful in 
photovoltaic devices its absorption spectrum 
must match with the solar emission spectrum 
which is located at approximately 700 nm which 
corresponds to a low energy of 1.77eV [41]. Also, 
a good photovoltaic material should have broad 
and strong visible absorption characteristics. 
Using the optimum ground-state structures of the 
studied compounds, the excitation energy, Eex. 
(eV), absorption wavelength, λmax.(nm) and 
oscillator strength (O.S) are calculated and are 
as shown in Table 4. The values are calculated 
by TD-DFT method using the optimized 
geometry obtained by B3LYP/6-31G (d) level. 
 
The calculated absorption wavelength of the 
model compounds decreases in this order: 

(ISAT-TPD) > (ISAT-BDD) > (ISAT-TD) > (ISAT-
TPY) > (ISAT-TP) > (ISAT-D) > (ISAT-Z) > 
(ISAT-BT). This order is the same as obtained for 
the acceptor strength. It is noteworthy that the 
largest oscillator strength originates from S0---S1 
electronic transition. The band signals observed 
at 464.49, 465.50, 472.89, 508.26, 462.42, 
709.93, 558.73 and 489.87 nm correspond to the 
HOMO-LUMO transition. There is a difference of 
about 351.20 nm between the maximum 
absorption wavelengths of (ISAT-TPD) and 
(ISAT-BDD). 
 

3.4 Effect of the Conjugation Length on 
the Electronic Properties 

 
It is an accepted technique to decrease the band 
gap of conjugated polymers by increasing their 
conjugation length. The effect of increasing the
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Table 5. The HOMO, LUMO and band gap energies, Eg obtained by DFT-B3LYP/6-31G (d) 
calculation for the studied oligomers 

 
Model compound  HOMO (eV) LUMO (eV) Eg (eV) 
ISAT-Z-ISAT  -5.97  -2.93  3.04 
(ISAT-D-ISAT)  -6.29  -3  3.29 
(ISAT-TP-ISAT)  -5.59  -2.96  2.63 
(ISAT-TD-ISAT)  -5.43  -3.36  2.07 
(ISAT-BT-ISAT)  -6  -2.86  3.14 
(ISAT-TPD-ISAT)  -5.57  -4.02  1.55 
(ISAT-BDD-ISAT)  -5.73  -3.8  1.93 
(ISAT-TPY-ISAT)  -5.49  -2.96  2.53 

 
conjugation length of the donor-acceptor type 
oligomers by adding another donor molecule on 
the electronic properties was studied. The values 
of calculated HOMO, LUMO and energy gap (Eg) 
of the alternating donor-acceptor-donor 
oligomers as obtained by DFT-B3LYP/6-31G (d) 
are as shown in Table 5. 
 
It can be seen from Table 5 that the increasing 
order of the calculated energy gap Eg (eV) is: 
(ISAT-TPD-ISAT) < (ISAT-BDD-ISAT) < (ISAT-
TD-ISAT) < (ISAT-TPY-ISAT) < (ISAT-TP-ISAT) 
< (ISAT-Z-ISAT) < (ISAT-BT-ISAT) < (ISAT-D-
ISAT). This order corresponds with the order of 
the acceptor strength. (ISAT-TPD-ISAT) and 
(ISAT-BDD-ISAT) have smaller energy gap, 
values, compared to other studied oligomers. 
Chang et al., [30] recently reported the synthesis 
and optoelectronic properties investigation of 
alternating conjugated polymers containing 
cyclopentadithiophene (CPDT) and 
benzothiadiazole (BT) as electron donor and 
acceptor units respectively. They observed an 
increase in the band gap energy value for a 
polymeric system with an additional CPDT unit 
(CPDT-BT-CPDT) which was attributed to a 
weaker charge transfer between the D-A  units. 
However, in our studied oligomeric systems, we 
observed a reduction in the band gap energy 
value for ISAT-BT-ISAT which shows an 
excellent charge transfer between our donor and 
acceptor units 
 

4. CONCLUSION 
 
The structural, geometric and electronic 
properties of isatin-based alternating donor-
acceptor type oligomers have been studied 
theoretically using density functional theory at 
B3LYP/6-31G (d) level. It was observed that the 
HOMO level, LUMO level and energy band gap 
of the studied compounds were controlled by the 
acceptor strength. From the study, it was 
discovered that (ISAT-TPD-ISAT) and (ISAT-

BDD-ISAT) have the least energy band gap of 
1.55 and 1.93 eV, respectively. These values 
suggest that they could serve as active layers in 
photovoltaic devices which require that the 
absorption spectrum of the material matches with 
the emission spectrum of the sun whose 
maximum flux is around 700 nm. 
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