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Abstract

From a new perspective, we reexamine self-gravity and turbulence jointly, in hopes of understanding the physical
basis for one of the most important empirical relations governing clouds in the interstellar medium (ISM), the
Larson’s relation relating velocity dispersion (σR) to cloud size (R). We report on two key new findings. First, the
correct form of the Larson’s relation is ( )s a s= R 1 pcR v

1 5
pc

3 5, where αv is the virial parameter of clouds and σpc
is the strength of the turbulence, if the turbulence has the Kolmogorov spectrum. Second, the amplitude of Larson’s
relation, σpc, is not universal, differing by a factor of about 2 between clouds on the Galactic disk and those at the
Galactic center, as evidenced by observational data.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Diffuse interstellar clouds (380); Gravitational
interaction (669); Interstellar clouds (834); Interstellar dynamics (839); Gravitational equilibrium (666);
Gravitational collapse (662); Star formation (1569); Interstellar magnetic fields (845); Dark interstellar clouds
(352); Dense interstellar clouds (371)

1. Introduction

The interstellar medium (ISM) in galaxies is subject to a
myriad of physical processes, including gravitational interac-
tions, inflow and outflow, radiative processes, magnetic field,
and feedback from stellar evolution (e.g., McKee & Ostri-
ker 2007) and thus, perhaps unsurprisingly, bears a chaotic and
turbulent appearance (e.g., Elmegreen & Scalo 2004). The role
of supersonic turbulence in interacting with the process of
gravitational collapse of molecular clouds has long been
recognized (e.g., Larson 1981). We inquire and seek solutions
as to why ISM clouds appear to follow a number of well-
defined empirical governing relations, by examining together
the two most important physical processes—turbulence and
self-gravity—guided by a new conceptual insight. Our goal is
not set out to precisely nail down these relations, but rather to
make sense of complex players involved, in a simple fashion, if
possible. The results we find are gratifyingly simple and
accurate.

The turbulence in the ISM is driven at some large scales. In
incompressible turbulence, the structure function is derived by
Kolmogorov (1941), most notably the expression for the
relation between the velocity difference between two points
and their separation, σR∝R1/3, based on a constant energy
transmission rate through the inertia scale range. In highly
compressible turbulence, the energy transmission down
through the scale is no longer conservative, with kinetic
energy also being spent to shock and/or compress the gas.
Thus, if the relation remains a scale-free power law, the
resulting exponent for a compressive turbulent medium is
expected to be larger than 1/3. We will show that the right
exponent is 3/5 in this case.

Opposite to the driving scale, the “coherence” scale in dense
cores, introduced in Goodman et al. (1998), encapsulates the
transition from turbulence-dominated energy regime to a

subsonic regime, where the sum of the thermal, magnetic,
and possibly other forms of energy dominates over turbulent
energy. The turbulence is then often thought of cascading down
between these two scales. In contrast to this simple cascading
(down) of eddies in the gravity-free case, a new conceptual
notion that we put forth here is that the dynamic interactions
between turbulence and gravity occurring on all scales result in
the formation of clouds, within which self-gravitational force
becomes important (not necessarily dominant in general), on all
scales. While the formation of clouds is originally driven by
supersonic turbulence, gravity acts to both solidify them and in
some cases detach them from the turbulence, and hence
provides a feedback loop to the turbulence itself, where the
clouds may be visualized as the boundary conditions (on all
scales) for the turbulence. As such, we shall call such an
additionally constrained turbulence a “cloud bound turbulence
chain” (CBTC), as opposed to a gravity-free turbulence. The
singular coherence scale (∼0.1 pc) above represents the
smallest cloud of our CBTC. Based on this conception, we
attempt to rederive the (revised) Larson’s relation, and compare
to observations.

2. Larson’s Relation: Confluence of Supersonic Turbulence
and Self-gravity

In the ISM, self-gravity has the tendency to organize and
fortify suitable regions into their own entities, playing a
countervailing role against supersonic turbulence that would
otherwise produce only transient structures. For a power-law
radial density profile of slope −β, the self-gravitating

potential energy is –
= - b

b
-W GM

R

3

5 2
R
2

, where R and M are the
radius and mass of the cloud. As we will show later, the density
profile of gas clouds in the supersonic regime is expected to
have β=4/5; thus, we will use = -W GM

R

11

17

2

for all
subsequent calculations. For a self-gravitating sphere of the
same density profile, the mean velocity dispersion within radius
R is related to the 1D velocity dispersion at separation R by
s̄ s=R R

2 11

14
2 . However, it proves more convenient to use s̄R

instead of σR, since the former is a more used observable.
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Hence, we shall use s̄R for all subsequent expressions; for
brevity, we use σR to represent s̄R hereafter. To reduce
cumbersomeness in expressions, we neglect all other forms of
energy but only to keep the gravitational energy W and gas
kinetic energy K; it is straightforward to include those
neglected, by modifying the expression for virial parameter.
We thus define the virial parameter αv as a = -v

K

W

2 .
The self-gravitating tendency may then be formulated as a

3D region in the 4D parameter space of (R, σR, ρR, αv ):

( )s a a
p

r a
p

= = = S
GM

R
G R G R

11

51

44

153

11

51
, 1R v v R v R

2 2

where G is gravitational constant, and ρR and ΣR are the mean
volume and surface density within radius R. If αv and σR are
independent, which we will show is the case, the region would
look like a thick plane. Equation (1) is essentially the proposed

modification to Larson’s relation by Heyer et al. (2009). More
comparisons will be made in Section 3.
The Kolmogorov (1941) power spectrum is derived for

homogeneous and isotropic 3D subsonic turbulence in
incompressible flows, valid in the energy conserving inertial
range. In contrast, the kinetic energy in the supersonic
compressible turbulence in the ISM is dissipative on all scales
due to shocks and radiative processes. It thus, at the first
instant, might suggest that the Kolmogorov turbulence may
provide an inadequate description of the compressible
turbulence of the ISM.
Fleck (1983) suggests that the relation between a scaled

velocity vR and scale R of compressible turbulence be
expressed as

( )r sº =v AR , 2R R R
1 3 1 3

which constitutes a plane in the parameter space of (R, σR, ρR),
generally different from that of self-gravity (Equation (1)),
where A is a constant. The expression essentially asserts that a
constant volumetric energy density transfer rate in compres-
sible flow is transmitted down the turbulence cascading scale.
Equation (2) reduces to the original Kolmogorov form for
incompressible flow that is a line in the 2D parameter space of
(R, uR). A formal proof of the existence of an inertial range for
highly compressible turbulence is given by Aluie (2011, 2013),
validating the density-weighted velocity formulation. Impor-
tantly, numerical simulations show that the spectrum of vR
indeed follows the Kolmogorov spectrum remarkably well for
the isothermal ISM (e.g., Kritsuk et al. 2007, 2013). We thus
continue to use the nomenclature of Kolmogorov compressible
turbulence, despite it sounding like an oxymoron, given the
spectral slope we adopt and its empirical validity to describe
the turbulence of the isothermal ISM. The general physical
arguments and quantitative conclusions reached are not altered
much with relatively small variations of the slope of the
turbulence power spectrum.
On a related note, in the subsonic compressible turbulence,

with gravity also playing an important role, such as in dark
cores in molecular clouds, the physical premise for the
argument of energy transmission through the inertia scale
range ceases to apply with respect to the total velocity. This
may be understood in that the turbulence chain driven at some
large scales no longer is the primary driver of velocity in the
subsonic regime. Rather, the velocity field is driven jointly by
turbulence, thermal (and possibly other forms of) pressure, and
gravity (Myers 1983).
Combining Equations (1) and (2) gives

⎜ ⎟⎛
⎝

⎞
⎠ ( )s a= A G R

44

153
. 3R v

1 5 3
1 5

3 5

Because A is unknown but a constant, we simply introduce
another parameter, σpc, which denotes the 1D mean turbulence
velocity dispersion within a region of radius 1 pc, to express
the strength of the turbulence. Now Equation (3) is simplified
to

⎛
⎝⎜

⎞
⎠⎟ ( )s a s=

R

1 pc
. 4R v

1 5
pc

3 5

Figure 1. Top panel shows the velocity as a function of its size for the observed
molecular clouds on the Galactic disk (open red circles), from Dame et al.
(1986), Solomon et al. (1987), Heyer et al. (2001), Heyer & Brunt (2004),
Ridge et al. (2006), Narayanan et al. (2008), and Ripple et al. (2013). Bottom
panel shows the velocity as a function of its size, for the observed molecular
clouds at the Galactic center from the CHIMPS2 survey (Eden et al. 2020; open
red circles) and the SEDIGISM (Duarte-Cabral et al. 2021; solid black
squares). In each panel, we show as red solid line as the best power-law fit
using linear regression, along with the 2σ upper and lower slopes shown as
dotted and dashed lines, respectively, obtained with bootstrapping.
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Looking at Equation (4), it may seem puzzling as to why the
virial parameter αv appears in this expression that is supposedly
an expression of the strength of the turbulence chain. But it is
expected. The appearance of αv (and the disappearance of gas
density ρ) in this expression reflects the feedback of the
boundary condition at the clouds that terminates the turbulence
chain at the small scale end, in lieu of gas density. To see that
we may express the cloud density in terms of σpc,

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

a
p

s

a
s

=

= ´

-

- -
-

n
Gm

153

44 1 pc

1.04 10 cm
1 km s

, 5

v
p

v

pc
3 5 pc

2

2

4 3 3 5 pc

1

2

where npc is the mean density within a cloud of radius 1 pc with
a virial parameter αv.

Equation (4) is the (revised) Larson’s first relation, relating
the velocity dispersion to the size of the cloud. Let us now
proceed to compare this relation to observational data. Figure 1
shows the observational data along with best power-law fits.
We fit the data to a power law of the form

⎛
⎝⎜

⎞
⎠⎟ ( )s a s=
b

R

1 pc
, 6R v

1 5
pc

leaving both the amplitude σpc and the exponent β as two free
parameters. Moreover, we perform bootstrap resampling to
obtain upper and lower 2σ limits of the fitting parameters by
fitting both parameters. We find the best parameters and the
±2σ limits for the disk clouds to be

( )

s b
s s b
s s b

=  = 
+ = =
- = =

-best fit: 0.46 0.03 km s and 0.57 0.02

2 : 0.48 and 0.59

2 : 0.45 and 0.56,

7

pc
1

pc

pc

shown as the solid, dotted, and dashed lines, respectively, in the
top panel of Figure 1. Repeating the calculation for the clouds
at the Galactic center yields the best parameters and the ±2σ
limits:

( )

s b
s s b
s s b

=  = 
+ = =
- = =

-best fit: 1.03 0.01 km s and 0.63 0.01

2 : 1.02 and 0.65

2 : 1.05 and 0.61,

8

pc
1

pc

pc

shown as the solid, dotted, and dashed lines, respectively, in the
bottom panel of Figure 1. We note that the error bars of the best
fit using the linear regression method is not necessarily
consistent with and often larger than the 2σ range obtained
using bootstrap, due to the latter’s larger sample size with
bootstrapping. The discrepancy is more noticeable for the disk
clouds due to the smaller observational data sample size, as
compared to that of the Galactic center clouds. Nevertheless,
even in the absence of this shift for the best slope, the
traditional exponent of the Larson’s relation of 1/2 is
inconsistent with the disk data at 100% level if the bootstrap
is used and at 3.5σ if the direct regression is used, whereas a
slope of 0.6 is about 1.5σ away. If considering the clouds at the
Galactic center, the contrast is still larger.

So far, we have not considered possible (perhaps different)
systematics for the observations of the Galactic disk clouds as
compared to the Galactic center clouds. The fact that the best-
fitting slope of the disk clouds of 0.57 and that of the Galactic
center clouds of 0.63 equidistantly flank our proposed slope of
0.60 is intriguing. It may be caused by some additional physics
that are not considered in our simplified treatment but operates
to varying degrees of importance in these cases. It may also be
caused by data inhomogeneities in the plotted plane, which
may already be visible. We take the simpler interpretation that
both slopes are intrinsically equal to 0.60 and the apparent
values are due to some observational systematics, although we
are not in a position to justify this assertion.
This new Larson’s relation with the exponent 3/5 is in

excellent agreement with observational data. Heyer & Brunt
(2004) measure the value of the scaling exponent of
0.59±0.07 in the spatial range of 1–50 pc (corresponding to
the original range of Larson 1981 and Solomon et al. 1987),
while fitting the entire spatial range of 0.03–50 pc probed they
get 0.62±0.09.
It is clear now that it is not just the gravity alone that gives

rise to Larson’s relation, rather it is a combination of gravity
and turbulence physics that naturally yields it. Larson (1981)
invoked virial equilibrium to explain his relation. What is new
here is that the intersection of gravity and turbulence provides a
significantly better fit for data. Forcing the slope of 0.6 to both
data sets, the best fit σpc is found to be

( )
s

s

= 

= 

-

-

0.44 0.02 km s for Galactic disk clouds

1.08 0.01 km s for Galactic center clouds. 9

pc
1

pc
1

From data in our Galaxy alone, one can thus already conclude
that CBTCs vary in different environments within a galaxy. A
two-sample KS test between the σpc distribution of the Galactic
disk clouds and that of the Galactic center clouds gives a p-
value p=5×10−20, indicating they are statistically different.
It follows then that CBTCs and hence Larson’s relation may
vary across galaxies and in different environments within
galaxies. This prediction is supported by recent observations of
molecular clouds in other galaxies (e.g., Donovan Meyer et al.
2013; Hughes et al. 2013; Colombo et al. 2014; Krieger et al.
2020).
Historically, from Equation (1) we see that, if one insists

expressing Larson’s first relation with the exponent close to
0.5, the original Larson’s first relation would be gas cloud
surface density dependent, a point later reiterated (Heyer et al.
2009). But if the range in ΣR is sufficiently narrow, one would
obtain the original scale of a slope of 1/2, which may be the
reason for that result obtained by Larson (1981). Thus, the
original Larson’s first relation has a limited scope and is
applicable only when the range of surface density is narrow
enough. In contrast, the revised Larson’s relation, Equation (4),
is expected to be valid universally, except that the strength
parameter, σpc, is expected to vary across different environ-
ments and across galaxies. To illustrate this point better, let us
express σpc in terms of direct observables, involving gas
surface density. Combining Equations (1) and (4) gives

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )


s a=

S
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-
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M
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R
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The large difference between Larson’s relation for the disk
clouds and the Galactic center clouds strongly indicates an
important role played by turbulence and that the CBTCs in the
disk and at the Galactic centers are different, since gravity is the
same. While one may use Equations (4) or (10) or other
variants to drive σpc empirically with three observables, such a
derivation does not address the physical origin of the
magnitude of σpc. A simple top-down illustrative method to
derive σpc is given in Section 4.

We should note that our adoption of the Kolmogorov
turbulence spectrum is largely motivated by available simula-
tions. The obtained consistency with observations suggests it
may be valid. The agreement with the observed fractal
dimension in Section 3 is consistent with Kolmogorov
spectrum as well. Nonetheless, in general, the turbulence
spectrum may not adhere strictly to that of Kolmogorov type. A
more general form of Equation (4) may be written as

( )( )s aµ f+R . 11vR
1 5 3 2 5

For the Kolmogorov turbulence, we have f=1/3, which
yields an exponent of 0.6. For Burgers (1948) turbulence, we
have f=1/2, corresponding to an exponent 0.7, while the
turbulence in a strong magnetic field may have an Iroshnikov–
Kraichnan (Iroshnikov 1964; Kraichnan 1965) type with
f=1/4, which would yield an exponent of 0.55. If one were
to ascribe the difference in the exponent for the Galactic disk
and Galactic center clouds to physical differences in the
respective turbulence, one way to reconcile these two different
exponents is that the turbulence on the Galactic disk is closer to
that of Iroshnikov–Kraichnan type than the turbulence at the
Galactic center. This requires further work to clarify, which is
beyond the scope of this Letter. Nonetheless, none of different
types of turbulence is expected to yield the conventional
exponent for the Larson’s relation of 0.5.

Another point worth noting is that there are clouds with
αv<1, i.e., overvirialized clouds. Obviously, these clouds
seem unlikely to be evolutionary descendants of clouds that
had α=1 and subsequently endured some gravitational
collapse. If that were the case, it would imply a turbulence
dissipation time significantly less than the freefall time of the
system, inconsistent with simulations (e.g., Stone et al. 1998).
Therefore, we suspect that these low αv systems are a direct
product of turbulence, clouds that have relatively low velocity
dispersion for their gravitational strength and are probably
transient, due to the randomness of the turbulence.

To further clarify the nature of these special clouds, we show
in Figure 2 the cloud mass as a function of its virial parameter.
To our surprise, clouds with αv<1 span the entire mass range.
This may be consistent with the randomness of the turbulence
suggested above. We note, however, that some of the most
massive clouds (�106Me), i.e., giant molecular clouds, may
be a collection of uncommunicative, smaller clouds in an
apparent contiguous region, where the measured velocity
dispersions reflect those of their smaller constituents, while
the overall gravitational energy increases with congregation;
we note that the velocity dispersion in this case may be
significantly anisotropic. Finally, the ubiquitous existence of
gravitationally unbound clouds is simply due to insufficient
gravitational force relative to the turbulence velocity field in
these clouds. A point made here is that gravitationally unbound
clouds are not necessarily those that become gravitationally
bound first and later become unbound due to internal stellar
feedback or cloud–cloud collisions (e.g., Dobbs et al. 2011).

In Figure 2 it is seen that the clouds at the Galactic center
(black squares) show a noticeable gap in mass, from ∼3Me to
∼30Me. It is not clear to us what might have caused this.
There is a separate ridge (horizontally oriented) of clouds near
the bottom of the plot for the Galactic center clouds with
masses around one solar mass. These low-mass clouds appear
to be mostly unbound. While it is not definitive, these clouds
may be the counterpart of subsolar mass clouds on the Galactic
disk called “droplets” with odd “virial” properties (Chen et al.
2019a, 2019b), although we are not sure why their typical mass
is about 1Me instead of ∼0.4Me found for the droplets.
These small systems have large virial parameters but remain
bound by external (thermal and turbulent) pressure. The
connection between these systems and the CBTC that we
envision here may no longer be direct, and considerations of
some additional physics may be required to place these systems
also within the general framework outlined here. We defer this
to a later work.
Another word to further clarify the physical meaning of

Equation (4) may be in order, which, let us recall, is a result
derived based on the joint action of the statistical order imposed
by turbulence of strength s̄pc (with a small dispersion) and the
natural selection effect by self-gravity, with (the inverse of) αv

describing the strength of the latter acting against the former. If
αv is much greater than unity, gravitational force would be too
feeble to hold the cloud together long enough to dissipate the
excess energy to allow for further consistent gravitational
contraction in the presence of internal and external disruptive
force of turbulence. Thus, the observed clouds with αv greatly
exceeding unity that are products of supersonic turbulence are
likely transient in nature. Nonetheless, they may be useful for
some physical analysis. They may be considered good
candidates for analyses where a statistical equilibrium is a
useful assumption. At the other end, when αv is close to unity,
gravitational collapse of a cloud may ensue, detaching it from
the parent CBTC. However, as noted in Figure 2, one should
exercise caution to treat clouds with an apparent αv less than
unity that may not be genuinely coherent gravitational entities,
ready to run away and collapse. We shall not delve into this
further but note that these apparently overvirialized clouds may

Figure 2. Cloud mass as a function of αv for the Galactic disk clouds (open red
circle) and Galactic center clouds (open black squares). The two vertical lines
indicate clouds with αv=1 and 2, respectively, for reference.
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not possess the usual gravitationally induced density stratifica-
tion and may lack a coherent structure (such as a well-defined
center).

3. Fractal Dimension of the ISM

Using Equations (1) and (4), we may express the cloud
density–size relation:

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
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( )
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a
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s

a
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=

= ´

-
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-
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-
-

n
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R

R
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1 km s 1 pc
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R v
p

v

3 5 pc
2

2

4 5

4 3 5 pc

1

2 4 5
3

where nR is the mean hydrogen number density within radius R
and mp is proton mass. Then, the size–cloud mass relation
follows

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )a

s
= ´ -

-
M

R
M2.6 10

1 km s 1 pc
. 13R v

2 3 5 pc

1

2 11 5

Since αv and R are uncorrelated, for clouds generated by the
same CBTC (a σpc with dispersion), we see that MR∝R11/5.
This mass–size relation with a slope of 2.2 is in excellent
agreement with the observed values of 2.2±0.1 (Heyer et al.
2001) and 2.36±0.04 (Roman-Duval et al. 2010).

There are many different techniques used to measure cloud
mass and size. We stress that the size–mass relation depends on
how clouds are defined or selected. For the same reason that the
original Larson’s size–velocity dispersion relation has an
exponent of 1/2, the original Larson’s size–mass relation has
an exponent of 2. Both are due to a small surface density range
of the clouds (e.g., Beaumont et al. 2012). The exponent in
Equation (13) expresses the size–mass relation for clouds at a
fixed virial parameter.

In the context of a fractal, self-similar structure, which may
approximate the ISM reasonably well, Equation (13) indicates
that the fractal dimension of the ISM is D=2.2 (Mandel-
brot 1983) with the implied size function of the form

( ) ( )µ µ- - -n L dL L dL L dL. 14D 1 16 5

The slope 16/5 in Equation (14) is in excellent agreement with
the observed value of 3.2±0.1 for CO-detected molecular
clouds in the Milky Way spanning the range of ∼1–100 pc
(Heyer et al. 2001).

The fractal dimension of the ISM of D=2.2 corresponds to
density power spectrum of Pk∝kD−3∝k−0.8. It is helpful to
have an intuitive visualization of this outcome. In the process
of energy transmitting downward along the spatial/mass scale
via supersonic motion, shocks, and radiative cooling, the
density structure (density fluctuation spectrum) is generated. In
three-dimensional space, an ideal, long and uniform filament
will have a density power spectrum Pk∝k−1 on scales below
the length of the filament. Similarly, a uniform sheet
corresponds to Pk∝k−2, whereas a point corresponding to a
density power spectrum of Pk=k0. In the absence of self-
gravity, compressive supersonic turbulence with sufficient
cooling has the tendency to form filaments where two planar
shocks intersect. In realistic situations with self-gravity,
filaments have varying lengths and the actual density power
spectrum is expected to deviate somewhat from this, depending
on the nature of driving and energy distribution of the driving,

and the power spectrum is in general Pk∝k− β with β<1.
Nevertheless, as long as the energy in the turbulence is
dominated on the large scales, β is not likely to be much less
than unity. Thus, we see that the Kolmogorov compressive
turbulence generated, gravitationally significant structures, in
the presence of rapid radiative cooling, have a density structure
that is dominated by filamentary structures with a small mixture
of knots.

4. Estimate σpc for Viscously Driven Turbulence

In the normal situation where star formation occurs on a
disk, it is reasonable to assume that the radius of the largest
turbulence “cloud,” which will be the driving scale of the
CBTC, is equal to the scale height of the disk for isotropic
turbulence. This driving scale, Rd, can be expressed as

( )
( )

( )
s

=R
CR R

v R
, 15d

g d g

c g

2

2

where σd(Rg) is the velocity dispersion on the driving scale Rd

at a galactocentric radius Rg, which is also the vertical
dispersion, vc(Rg) is the circular velocity at radius Rg, and C
is a constant of order unity to absorb uncertainty. We assume
that the energy source is the rotational energy at the location,
where the turbulence may be driven by some viscous processes
on the disk. With such an assertion, one can relate σd to Rd by

( ) ( )s = WBR R2 , 16d d g

where Ω(Rg) is the angular velocity at the radius Rg for a Mestel
disk that we will adopt as a reasonable approximation, and B is
another constant of order unity to absorb uncertainty. For a gas
cloud (assumed to be uniform) of radius Rd, we can express the
virial parameter by
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d

where ρd is the gas density at the driving scale. With
Equations (15)–(17) we can compute σpc using Equation (4):
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where we have defined another constant D≡B/C.
Equation (18) is expressed such that if the fiducial values are
taken, we obtain σpc=0.44 km s−1 for disk clouds center near
the solar radius, as derived earlier (see Equation (9)). Aside
from the unknown combination of D, all other fiducial values
are well observed, including the gas surface density of
5Me pc−2 (e.g., Sofue 2017). Interestingly, if we use the same
D=2.9 value along with the relevant values for other
parameters for the Galactic center, Σd=30Me pc−2

(Sofue 2017), Rg=500 pc (within which the Galactic center
clouds are observed), vc=250 km s−1 (Sofue 2017), we obtain
σpc=2.1 km s−1, larger than the value of
1.08 km s−1±0.01 dex, derived for the clouds at the Galactic
center (see Equation (9)). Although the expectation that σpc at

5

The Astrophysical Journal Letters, 906:L4 (6pp), 2021 January 1 Cen



the Galactic center is larger than that on the Galactic disk is in
agreement with the derived values, the numerical discrepancy
may be due to a number of causes. It may be in part due to
different observational systematics for disk clouds and center
clouds. It may be in part due to that the treatment of the central
region of the Galaxy as a disk breaks down or that the effective
viscosity in the two regions is different. It is notable that our
simple calculations do not require participation of some other
physical processes that might be relevant, including magnetic
field and stellar feedback. While this is not vigorous proof of
the veracity of our assumptions, the agreement found between
the predicted σpc and the directly calculated value for the
Galactic center clouds is a validation of our basic assumptions
and the resulting outcomes, that is, turbulence and gravity play
a dominant role in shaping the ISM and the formation of clouds
down to at least the sonic scale.

5. Conclusions

An analysis of a joint action of compressive turbulence and
self-gravity is performed. Physically, it may be considered that
the turbulence is bookended by the gravitationally significant
clouds at the small scales, as opposed to the driving scale on a
large scale. We denote such a turbulence chain as a “cloud
bound turbulence chain” (CBTC).

The (new) Larson’s relation, ( )s a s= R 1pcR v
1 5

pc
3 5, relat-

ing the velocity dispersion σR to the size R of a cloud, is
derived, where αv is the virial parameter of the cloud and σpc,
the velocity dispersion of the turbulence at 1pc, encodes the
strength of the CBTC. Although implicit in the assumption is
that the turbulence is supersonic, the new Larson’s relation is
shown to hold at least down to the transonic scale of 0.05 pc.
The conventional exponent of 1/2 for the Larson’s relation is
shown to be excluded.

The most significant finding is not necessarily the derivation
of this relation naturally and the exponent 3/5 being in good
agreement with observations. It is prudent to remind ourselves
that this exponent depends on the assumed Kolmogorov
spectral index for the turbulence and error treatments of cloud
measurements can certainly be improved, changes to either of
which may change its value to some extent. Rather, the fact is,
which is made plain by the analysis as well as the empirical
evidence, that, while the exponent of the Larson’s relation may
be universal or close to universal, the amplitude, σpc, is not and
may differ greatly. The latter is environment dependent,
reflecting the dependence of σpc of a CBTC on environment.
The recognition of and evidence for the nonuniversality of the
Larson’s relation is of fundamental physical importance. The
implications may be profound for the star formation process,
which is thought to be dependent on the Mach number of
turbulence, which in turn is linearly proportional to σpc.

Our analysis also yields a byproduct with respect to some
properties of the fractal nature of the ISM. We show that the
fractal dimension of the ISM is 11/5 and has a cloud (linear)

size function of ( ) /µn R dR R dR16 5 , both in nearly exact
agreement with observations.
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