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ABSTRACT 
 

This paper presents a hydrodynamic model of flow in a bifurcating stream, in which the effects of 
environmental thermal differentials are investigated. The governing nonlinear and coupled 
equations are solved analytically using similarity transformation and perturbation series expansions 
methods. Solutions for the temperature, velocity and concentration are obtained and analyzed 
graphically. The results show that the heat exchange parameter reduces the velocity of the flow, 
and this enhances early deposition of the streambed loads. Furthermore, it is seen that free 
convection force increases the flow velocity, thus serving as a cushion for the adverse effect of 
heat exchange parameter on the flow. 
 

Original Research Article 



 
 
 
 

Okuyade and Abbey; PSIJ, 12(2): 1-14, 2016; Article no.PSIJ.26430 
 
 

 
2 
 

Keywords: Bifurcating stream; hydrodynamic model; thermal differentials; similarity transformation; 
perturbation method. 

 
1. INTRODUCTION 
 
Much of the studies on flow in streams and rivers 
have been carried out using non-hydrodynamic 
approaches such as hydrologic, hydraulic and 
stochastic probability models. The hydrologic 
model involves the use of spatial form of the 
continuity equation or water balance and flux 
relation Singh [1]; the hydraulic model is based 
on the use of St. Venant equations Singh [2]; the 
stochastic probability model involves the use of 
Monte Carlo method Hoey [3], Galino [4]. Being 
motivated by this, we presented an analytic and 
hydrodynamic model of the flow in a bifurcating 
stream. In the said model, which is part one of 
the study, the effects of bifurcation angle and 
nature of the source rocks on the flow were 
investigated, while the effects of environmental 
thermal differentials were played down. 
Presently, we shall examine the situation where 
the environmental thermal differentials are 
considered significant. Therefore, the purpose of 
this study is to investigate the effect of 
environmental thermal differentials on the flow of 
a bifurcating stream. 
 
Several reports exist in literature on the flow in 
bifurcating and non-bifurcating channels. 
Bifurcation (in sense that a flow system divides 
into two or more daughter channels) 
phenomenon is seen in both natural and artificial 
worlds. Therefore, it is significant in science and 
engineering. This import greatly attracted the 
interest of researchers in the past decades. 
Pedley et al. [5] introduced the use of theoretical 
approach or mathematical tools in the study of 
branching flows. Tadjar and Smith [6] 
investigated a three-dimensional one-to-two 
symmetrical flow in which the mother is straight 
and of circular cross-section, containing a fully 
developed incident motion, while the diverging 
daughters are straight and of semi-circular cross-
section.  Using the method of direct numerical 
simulation and slender modeling for a variety of 
Reynolds number and divergent angles, they 
observed that a flow separation or reversal 
occurs at the corners of the junction. Additionally, 
they noticed that the inlet pressure increases as 
the bifurcation angle increases. Soulis [7] 
showed that changes in bifurcation angle alter 
the flow condition and changes the magnitude of 
the wall shear stress. Zhang et al. [8] studied the 
flow phenomenon in micro/mini channel networks 
of symmetrical bifurcation using computer 

simulation with analytic validation, and saw that 
oscillation amplitude has dominant effects on the 
streaming velocity in channel networks. More so, 
they observed that the streaming velocity is 
proportional to the oscillation frequency. 
Okuyade and Abbey [9] studied blood flow in 
abifurcating artery, using the method of regular 
perturbation, and noticed that an increase in 
bifurcation angle and Reynolds number 
increases the transport velocity factor.  
 
The flow through porous media is prevalent in 
nature and artficial settings. Therefore, it is of 
principal interest in science and engineering. It 
has relevance in petroleum engineering for the 
study of the movement of natural gas, oil and 
water through the oil reserviour; in chemical 
engineering for filtration of and purification 
processes; in hydrology for studying the 
underground water resources. Rao and Sobha 
[10] investigated the flow in a rotating porous 
straight pipe, and showed that the Nusselt 
number increases with increase in porosity. 
Avremenko et al. [11] studied the flow in a curved 
porous channel with rectangular cross-section 
filled with a fluid saturated porous medium, the 
flow being driven by a constant azimuthal 
pressure gradient, and using a gerneralized 
Fourier series method of solution found that the 
velocity profiles depend on the geometry of the 
channel and Darcy number. 
 
Moreso, the study of the flow of fluid through 
porous media has also been extended to include 
the effect of magnetic field.  Abdel-Malek and 
Helal [12] investigated the effect of magnetic field 
on the flow in a rectangular enclosure using 
perturbation technique, and reported that the 
imposed magnetic field diminished the wall 
shear. Asadolah et al. [13] examined the 
influence of magnetic field on the skin friction 
factor of a steady fully developed laminar flow 
through a pipe by experimental and finite 
difference numerical scheme. They observed 
that the pressure drop varies in proportion to the 
square of the magnetic field and sine angle; the 
pressure is proportional to the flow rate, and the 
axial velocity asymptotically approaches its limit 
as the Hartmann number becomes large. 
Ventakaswalu et al. [14] studied the free 
convection flow through a vertical porous 
channel in the presence of an applied magnetic 
field using the finite difference numerical 
approach, and noticed that the velocity 
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decreases with the increase in the magnetic and 
porosity parameters throughout the region. 
  
Similarly, magnetohydrodynamic convective heat 
and mass transfer in porous and non-porous 
media is of considerable interest in techical field 
due to its applications in industries, geothermal, 
high temperature plasma, liquid metal and MHD 
power generating systems. Okuyade [15] 
investigated the effects of magnetic field and 
convective force on the flow in bifurcating porous 
fine capillaries using the regular perturbation 
series expansions method, and found that 
magnetic field reduces the flow velocity, whereas 
the convective force increases it. Additionally, 
Okuyade and Abbey [16] examined blood flow in 
bifurcating arteries analytically, and observed 
that an increase in the heat exchange parameter 
and Grashof number increases the velocity, 
concentration and Nusselt number of the flow, 
while an increase in the heat exchange 
parameter increases the Sherwood number.  
 
The purpose of this present paper is to examine 
the effects of thermal differentials on a bifurcating 
flowing stream. 
     
This paper is organized in the following format: 
section 2 is the material and methods, section 3 
is the results and discussion, and section 4 is the 
conclusion.  
 
2. MATERIALS AND METHODS 
   
There is always a temperature difference 
between the internal/ambient temperature of the 
stream and that at its surface called the external 
or environmental temperature condition. This 
temperature differential can be described in 
terms of the Newton’s law of cooling as 

int( )exth
y

θ θ θ∂ = −
∂

 where h is the film heat 

transfer coefficient that could be negative. The 
magnitude of the temperature at the surface of 
the stream is influenced by the climatic condition 
of the region where it is found. In particular, the 
environmental temperature depends 
tremendously on the radiation from the sun. The 
higher the radiation the higher it becomes. When 
the environmental temperature is higher than the 
equilibrium temperature of the stream, heat flows 
from the surface into it, that is, the stream 
absorbs heat from the environmental source. The 
effects of heat absorption can be seen in the 
energization of the water particles. 

We assumed the stream bifurcates 
symmetrically, as shown in Fig. 1, and that the 
flow is symmetrical about the 'z -axis. Therefore, 
if ( ',' vu ) are respectively the velocity 
components of the fluid in the mutually 
orthogonal ( ',' yx ) axes, then the mathematical 
equations of mass balance/continuity, 
momentum, energy and diffusion governing the 
flow, considering the Boussinesq 
approximations, become: 
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The model examines the dynamics of a 

bifurcating stream flowing from a point −∞='x  

towards a shore at oxx ='
, then continued 

towards +∞='x , as seen in Fig. 1. The model 
shows that the channel is assumed symmetrical 
and divided into two regions: the upstream (or 

mother) region oxx <'
 and downstream (or 

daughter) region oxx >'
, where ox

 is the 
bifurcation or the nodal point, which is assumed 
the origin such that the stream boundaries 

become dy ±='  for the upstream region and 
'' xy α=  for the downstream region. Due to the 

geometrical transition between the mother and 
daughter channels, the problem of wall curvature 
effect is bound to occur. To fix up this, a very 



 
 
 
 

Okuyade and Abbey; PSIJ, 12(2): 1-14, 2016; Article no.PSIJ.26430 
 
 

 
4 
 

 
 

Fig. 1. A physical model of symmetrical bifurcating flowing stream (α and β are the bifurcation 
angles and are equal) 

 
simple transition wherein the width of the 
daughter channel is made equal to half that of 
the mother channel i.e.  d± is such that the 
variation of the bifurcation angle is straight-
forwardly used (see Tadjar and Smith [6]).  
Furthermore, if the width of the stream ( d2 ) is 

far less than its length ( ol ) before the point of 

bifurcation such that the ratio of 1
2 <<ℜ=

ol

d
, 

(where ℜis the aspect ratio), the flow is laminar 
and Poiseuille (see Bestman [17]). d  is 
assumed to be non-dimensionally equal to one 
(see Tadjar and Smith [6]). Similarly, at the entry 
region of the mother channel, the flow velocity is 

given as ( )2'1' yUu o −= , where oU is the 

characteristic velocity, which is taken to be 
maximum at the centre and zero at the wall (see 
Tadjar and Smith [6]). Based on the fore-going, 
the boundary conditions are: 
 

1'=u , 0'=v , 1'=T , 1'=C   at  0'=y              (6) 
                       

0'=u , 0'=v , 'T = wT , wCC ='    at  1'=y     (7)                                                            

 
for the mother channel 
 

0'=u , 0'=v , 'T = 0, 0'=C    at  0'=y           (8) 

                                 
0'=u , 0'=v , 'T = γ 1 wT ,  wCC 2' γ= , γ 1 < 1, 

γ 2 < 1  at '' xy α=                                           (9)                           
 

for the daughter channel    
 
Introducing the dimensionless variables and 
similarity transformations, 
 
We have 

                                                                      

0'' =f                                                   (10)  
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1( ) 0R eSc f f δΦ + Φ + − Φ + Φ + Φ =  

 (13)  

 
with the boundary indications: 
 

1,1,0,1 ' =Φ=Θ== ff  at 0=η               (14) 
 

1 =  at      = ,= ,0,0' ηwwff ΦΦΘΘ==  
                                                                        (15) 
for the mother channel  
                                                              

0,0,0,0 ' =Φ=Θ== ff     at  η  = 0        
(16)                

   

 
'

1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ  

1 21, 1γ γ< <
   

at  ax=η                               (17)

       

 
 
for the daughter channel
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where 
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are the dimensionless variables, 
 

Ψ = (Uoυ x ) ½ f ( )η ,   η = y
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the similarity transformations,  
 

u = 
y∂
Ψ∂

 ,  v = 
x∂
Ψ∂−                      (19) 

 
the velocity components,    
 
and βt   and  βc  are  the volumetric expansion 
coefficient for temperature and concentration 

respectively; 'p  is the pressure; C∞  is the 

concentration at equilibrium. T∞  is the 

temperature at equilibrium;κ  is the permeability 
parameter of the porous medium. 2

oB is the 

applied uniform magnetic field strength due to 

the nature of the fluid; eσ is the electrical 

conductivity of the fluid; ok  is the thermal 

conductivity of the fluid. Cp is the specific heat 
capacity at constant pressure; Q is the heat 

absorption coefficient; 2
rk   is the rate of chemical 

reaction of the fluid, which is homogeneous and 
of order one. 'C  is concentration (quantity of 
material being transported); D  diffusion 
coefficient; g is gravitational field vector; 'T   is 
the fluid temperature; 'ρ   is the density of the 

fluid. µ   is the viscosity of the fluid; mµ  is the 

magnetic permeability of the fluid; υ  is the  

kinematic viscosity; cl is the scale length; Uo is 

the characteristic or reference velocity which is 
maximum at the centre and almost zero at the 

wall. wC  is the constant wall concentration at 

which the channel is maintained; wT  is the 

constant wall temperature at which the  channel 
is maintained; 

∞
p  is the ambient/equilibrium 

pressure. Re is the Reynolds number; Gr is the 
Grashof number due to temperature difference; 
Gc is the Grashof number due to concentration 
difference. χ 2 is the local Darcy number; M2 is 

the Hartmann’s number; Pr is the Prandtl 

number; Sc is the Schmidt number; 2
1δ  is the 

rate of chemical reaction; and N2 is the heat 
exchange parameter. 
 
Equations (10) - (13) are coupled and highly non-
linear. Therefore, to linearize and make them 
tractable, we introduce the regular perturbation 
series solutions of the form:                                       
                                 

...),(),(),( 1 ++= yxhyxhyxh o ξ         (20) 
 

 where 1
Re

1 <<=ξ  Is the perturbing parameter. 

We choose this parameter because, almost at 
the point of bifurcation, due to a change in the 
geometrical configuration, the inertial force rises 
and the momentum increases. The increase in 
the momentum is associated with a drastic 
increase in the Reynolds number, indicating a 
sort of turbulent flow. In this regard, equations 
(10) - (17) become: 
 
for the zeroth order: 
 

0"=of
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with the boundary conditions 
 

of = 1, '
of  = ''

of  = 0, oΘ = 1, oΦ =1   at η   = 0                      

             (25) 
 

of  = 0, '
of = ''

of =0, oΘ = Θ w, oΦ = Φ w at η  = 1          

             (26) 
                   

for the first order:  
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(30) 

 

with the boundary conditions 
  

0,0,0,0 11
'

11 =Φ=Θ== ff   at  η  = 0 (31) 
             

'
1 1 1 1 1 20, 0, , ,w wf f γ γ= = Θ = Θ Φ = Φ

1 21, 1γ γ< <
  at  axη =                        (32)                

      

The zeroth order equations describe the flow in 
the upstream channel, while the first order 
equations describe the flow in the downstream 
channels. The presence of the zeroth order 
terms in the first order equations indicate the 
influence of the upstream on the downstream 
flow. 
   

The solutions to equations (21) - (26) and (27) - 
(32) are: 
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for the mother channel 
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( ) ( ) ( ) ( )
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and for the daughter region. 
 

                                                       
3. RESULTS AND DISCUSSION        

 

 
This paper investigates the effects of thermal 
differentials on the flow in a bifurcating stream. 
To this end, Fig. 2 – Fig. 8 obtained using Maple 
12 computational soft ware show the profiles of 
the flow variables obtained for various values of

2
1χ , N2 and Gr/Gc. For realistic values of Pr 

=0.71, γ1 = 0.6, γ2 =0.6,  γ =0.7, Φw = 2.0, Θw 

=2.0, 2.02
1 =δ , M2= 0.2, α =10, Re=400, and 

varying values of 2χ = 0.1, 0.5, 1.0, 10; N2= 
0.001, 0.01, 0.1, 0.4 and Gr/Gc=0.01, 0.1, 0.5, 
1.0, 5, 10, the profiles indicate that the flow 

velocity decreases as 2χ  and  N2 increase, but 
increases with the increase in Gr/Gc.  
 
A high porosity of the stream bank may give 
room for a soak-away of the water. Therefore, as 
the porosity increases the stream water is 
soaked away into its bank, thus leading to a 
dcreases in its volume. Moreso, the water level 
of the stream will remain decreased if there is not 
a commensurate increase in the water supplied 
from the aquifers that feed it, possibly, due to 
man’s water delivery activities on them. 
Consequent upon these, the flow velocity, which 
is usually maximum when the volume is high, 

decreases. These may account for what is seen 
in Fig. 2. And, this is in perfect agreement with 
Avremenko et al. [11], Asadolah et al. [13] and 
Ventakaswalu et al. [14]. s In another 
development, a high porosity of the source rock 
of the stream creates room for water to flow from 
the supplying aquifers into it. However, by the 
analysis of this model the flow velocity of the 
water from the aquifers decreases with high 
porosity of the source rock. Even so, the 
oscillatory/fluctuation motion, manifested in the 
form of back-and-forth movement of the water, 
as seen in Fig. 3 and Fig. 4, possibly, may be 
due to the internal waves developed in the water 
in the flow process, or may be due to the 
interaction between the pressure forces and the 
gravity forces. 
 
Furthermore, as the environmental temperature 
increases, the stream may lose its water through 
evaporation, and soak-away into the dry flood 
plain. This leads to a decrease in its water level. 
Again, if the water supplied from the aquifers is 
not equatable to that which is lost (due to man’s 
water delivery activities on them), the stream 
water level in such a season remains reduced. 
Consequently, the velocity, which is usually 
maximum when the water volume is high, drops. 
This accounts for the results seen in Fig. 5. 

   

 
 

Fig. 2. Velocity-porosity parameter (χχχχ2) profiles at various distances (η) in the mother channel 
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Fig. 3. Velocity profiles for various porosity parameter (

Fig. 4. Velocity-porosity parameter (

Fig. 5. Velocity-heat exchange parameter (N

 

On the other hand, there is always a temperature 
differential between the environmental 
temperature and the ambient temperature of the 
water.The temperature differential in the 
presence of gravity produces free convection 
currents, which serve as lifting/buoyancy forces 
for the water particles. In particular, the 
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(see Fig. 6–Fig. 8). A comparison with previous 
research works shows a complete agreement; 
see Okuyade [15], Okuyade and Abbey [16]. 
 

The increase and decrease in the velocity 
coupled with the oscillating/fluctuating motion of 
the water have some great significance on the 
flow. The increase in velocity saves the stream 
from early shallow-up as it tends to delay the 

deposition of the sediments and bedloads it is 
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On the other hand, the decrease in velocity 
produces the contrary situation. Furthermore, the 
oscillatory/fluctuating motion leads to loss of 
energy for the flow in the axial direction, and this 
adversely affects the transport of the bedloads. 
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4. CONCLUSION 
 
The steady flow in a bifurcating stream with 
emphasis on the effects of environmental thermal 
differentials is presented. The solutions of the 
problem are analyzed graphically. The analyses 
show that the porosity and heat exchange 
parameters decrease the flow velocity, while the 
free convection force increases it. Furthermore, 
an increase in the porosity leads to a oscillatory 
fluctuating motion. These results have serious 
implications on the flow. The increase in velocity 
tends to delay the deposition of sediments/ 
bedloads on the stream floor and flood plains, 
thus saving it from early shallow-up. On the other 
hand, the decrease in the velocity leads to the 
contrary. Similarly, the fluctuating motion leads to 
loss of energy for the axial flow. In particular, the 
free convection force tends to cushion the 
velocity reducing-effects of porosity and heat 
exchange parameters. It is worthy to note that a 
considerable amount of work is needed to further 
study and understand the streaming flow 
hydrodynamically. 
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