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ABSTRACT 
 

In this study, we present a numerical algorithm for solving systems of Volterra-differential-difference 
equations with variable coefficients by collocation method. This algorithm based on polynomial 
approximation, using the first kind Chebyshev polynomial basis with collocation method. This 
method transforms the system of Volterra-differential-difference equations and the given conditions 
into matrix equation which corresponds to a system of linear algebraic equation. In addition, 
convergence analysis of the method is presented. Some cases of the mentioned equations are 
solved as examples to illustrate the reliability of the method. The results reveal that the method is 
very effective and accuracy. 
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1. INTRODUCTION 
 
Systems of linear integral equations and their 
solutions are great importance in science and 
engineering [1–3]. Most physical and biological 
problems, such as biological applications in 
population dynamics and genetics can be 
modeled by the differential equation, an integral 
equation or an integro-differential equation or a 
system of these equations [4,5]. Moreover, the 
competition between tumor cells and the immune 
system, electromagnetic theory lead to the 
problem of solving integro-differential equation 
systems [6].  
 
The systems of integral and integro-differential 
equations are usually difficult to solve 
analytically; so a numerical method is                
needed. Nowadays, systems of the integral                     
and integro-differential equations have                    
been solved using Euler matrix method                       
[7], Chebyshev polynomial solution [8,9], 

Bernstein operational matrix method [10],                       
Tau method [11], homotopy perturbation                  
method [12-14], Euler matrix method [15],                     
Taylor collocation method [16] and others                 
[17-22]. 
 
Chebyshev polynomials are encountered in 
several areas of numerical analysis and they 
hold particular importance in various subjects 
such as orthogonal polynomials, polynomial 
approximation, numerical integration and spectral 
methods [23-25]. Moreover, It is interesting to 
note that they also play an important part in the 
representation theory of algebras and polynomial 
factorization [26-28]. 
 
The aim of this paper is to develop the 
Chebyshev collocation method with matrix 
relations for a linear system of Volterra-
differential-difference equations: for 
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where sa , sb , j

pqc  and iλ  are constant and 11 ≤≤− j
pqa . )(tf j , )(tH j

pk , )(tP j
sk  and ),( xtF j

vk  

are analytic functions and )(xyk  unknown functions. For numerical solution of Eq.(1) with initial 

conditions Eq.(2), we construct to the Chebyshev series solutions that is; 
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where )(tTr  denotes the Chebyshev polynomials of the first kind, )0( Nra j

r ≤≤  are unknown 

Chebyshev coefficients, and N  is chosen any positive integer.  
 
Collocation method with matrix relations have been used for solving differential-difference, pantograph 
equations, Fredholm-Volterra differential equations, singular equations, fractional differential and 
pantograph equation by some authours [29-43].  
 
The Chebyshev polynomials )(tTr  of the first kind are the polynomials in t  of degree r , defined by 
relation [23-25] 
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θntTr cos)( = ,  when θcos=t  
 
If the range of the variable t  is the interval ]1,1[−
, the range the corresponding variables θ  can be 
taken ],0[ π . These polynomials have the 

following properties [23-25]: 
 

i) )(1 tTr+   has exactly 1+r  real zeroes on 

the interval ]1,1[− (The Chebyshev-Gaus 

grid points). The i -th zero it  of )(1 tTr+  is 

located at 
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iii) It is well known that the relation between 

the powers nt  and the Chebyshev 
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2. FUNDAMENTAL MATRIX RELATIONS     
 
To solve Eq.(1), we construct the following matrix 
realation. Using the Eq.(3), we have the matrix 
relations of solutions  
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j tty AT )()( = ,  mj K,1,0=                (7) 
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By using the expression (5-6) and taking 

Nr ,,1,0 K=  we find the corresponding matrix 
relation as follows 
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for even N , 
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Then, by taking into account (8) we obtain 
 

Ttt ))(()( 1−= DYT  

 
and  
 

Tpp tt ))(())(( 1)()( −= DYT  ,  lp ,,1,0 K=  (9) 

 
To obtain the matrix )(t(k)Y  in terms of the 

matrix )(tY , we can use the following relation: 
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Consequently, by substituting the matrix forms 
(10) and (11) into (9) and its derivatives, we get 
the approximate solution and its first-derivative of 
the matrix relations 
 

jTN
j tty ADY 1))(()( −=  and 

( ) jTpTpN
j tty ADBY 1)(

)())(()( −=        (11) 

 

Moreover, Using Eq.(7) and Eq.(9), we obtain the following matrix representation of )( ss
N
j btay − : 
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and using Binomial expansion, we obtain the following matrix relation between the matrices 
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So, using Eq.(12) and Eq.(13), we have the matrix relations of )( ss
N
j btay − : 
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2.1 Matrix Representation of Volterra Integral Part  
 
Let assume that ),( xtF j

vk   can be expanded to univariate Chebyshev series with respect to t  as 

follows: 
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Then the matrix representations of the kernel function ),( xtF j
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Substitutig the relations (6) and (16) in integral part, we obtained 
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3. METHOD OF SOLUTION 
 
We are now ready to construct the fundamental matrix equation corresponding to Eq.(1). For this 
purpose, we substitute the matrix relations Eqs.(11),(14),(17) into Eq.(1) and obtain the matrix 
equation: 
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When the points of Chebyshev-Gauss grid are substituting in Eq.(16), the fundamental matrix 
equation of the system of Fredholm-differential-difference equations Eq.(1)  is 
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Hence, the matrix equation (17) correponding to Eq.(1) can be written in the form 
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We can obtain the approximate solutions of 
Eq.(1) with the conditions Eq.(2) by terms of 
Chebyshev polynomials. By replacing the 
conditions matrices (21) by the last l  rows of the 
matrix (23) we obtain the new augmented matrix 
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We can easly check the accuracy of the method. Since the truncated Chebyshev series (3) is an 
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4. NUMERICAL EXAMPLES 
 
In this section, we give some the numerical examples. All numerical scheme are calculated by using 

Maple 13. The absolute errors in Tables are the values of )()( tytyN N
jj

j
e −= , those at selected 

points. In Tables, )()(max tyty N
jj −  is maximum absolute errors and )(

____

WCond  is condition 

numbers of the matrix 
____

W .  
 

Moreover, we compare the absolute errors and  2L -norm errors is defined by 
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where )(xy  and )(xy N  denote the approximate solution obtained by the present method and the 

exact solution, respectively. In Tables, )()( xyxyN Ne −=  are absolute error for selected points.  

 
Example 1. Consider the systems of Volterra-delay-differential equations: 
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From equations (29), we have 
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For 5=N , the Chebyshev-Gaus grid points are 
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Moreover, the matrix form for conditions can be written as: 
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From system (27) and conditions (28), the new augmented matrix 
___

W  and 
∗
F  is the systems of linear 

equations with ten unknowns, then solving this system, Chebyshev coefficients matrix are obtained 
as: 
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Thereby, the solutions of the problem for 5=N  become 
 

54325
0 005818.0040788.0167888.0500703.01)( tttttty +++++=  

54325
1 013582.0037622.0165140.0502289.01)( tttttty −+−+−= . 

 
In Tables 1 and 2, we compare the exact solutions and approximate values for various N . Figs. 1 
and 2 display the comparison of absolute errors for various N . Moreover, we compare the absolute 
errors and error estimation function in Fig.3. The numerical results show that the accuracy improves 
when N is increased. Tables and figures indicate that as N  increases the errors decrease; hence for 
better results, using large number N  is recommended. 
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Table 1. Numerical result for approximate solution of )(0 ty  in Example 1 
 

t  Exact solution N=5 N e=5 N=6                Ne=6 N=7 Ne=7 
-1.0 0.367879 0.367784 0.949E-4 0.367830 0.439E-4 0.367879 0.283E-6 
-0.8 0.449328 0.449291 0.375E-4 0.449292 0.369E-4 0.449329 0.888E-7 
-0.6 0.548811 0.548822 0.113E-4 0.548788 0.235E-4 0.548811 0.116E-6 
-0.4 0.670320 0.670352 0.322E-4 0.670310 0.983E-5 0.670319 0.279E-6 
-0.2 0.818730 0.818748 0.176E-4 0.818729 0.142E-5 0.818730 0.170E-6 
0.0 1.000000 1.000000 0.000E-0 1.000000 0.000E-0 1.000000 0.000E-0 
0.2 1.221402 1.221438 0.356E-4 1.221406 0.362E-5 1.221402 0.303E-6 
0.4 1.491824 1.491961 0.136E-3 1.491850 0.253E-4 1.491823 0.763E-6 
0.6 1.822118 1.822255 0.136E-3 1.822179 0.607E-4 1.822119 0.228E-6 
0.8 2.225540 2.225022 0.518E-3 2.225561 0.204E-3 2.225541 0.886E-6 
1.0 2.718281 2.715199 0.308E-2 2.717893 0.388E-3 2.718260 0.213E-4 

 

Table 2. Numerical result for approximate solution of )(1 ty  in Example 1 
 

t  Exact solution N=5 N e=5 N=6                Ne=6 N=7 Ne=7 
-1.0 2.718281 2.718636 0.354E-4 2.718313 0.319E-4 2.718280 0.149E-5 
-0.8 2.225540 2.225878 0.337E-4 2.225570 0.299E-4 2.225539 0.133E-5 
-0.6 1.822118 1.822426 0.308E-3 1.822142 0.240E-4 1.822117 0.132E-5 
-0.4 1.491824 1.492037 0.212E-3 1.491836 0.119E-4 1.491823 0.116E-5 
-0.2 1.221402 1.221477 0.745E-4 1.221404 0.202E-5 1.221402 0.493E-6 
0.0 1.000000 0.999999 0.200E-9 0.999999 0.000E-0 1.000000 0.000E-0 
0.2 0.818730 0.818826 0.955E-3 0.818725 0.490E-5 0.818730 0.593E-6 
0.4 0.670320 0.670621 0.301E-3 0.670282 0.372E-4 0.670318 0.111E-5 
0.6 0.548811 0.548973 0.162E-3 0.548710 0.101E-3 0.548812 0.135E-5 
0.8 0.449328 0.447873 0.145E-2 0.449224 0.104E-3 0.449331 0.221E-5 
1.0 0.367879 0.361189 0.668E-2 0.368151 0.271E-3 0.367841 0.376E-4 

 

  
 

Fig. 1. Comparison of the absolute errors for 
)(0 ty  in Ex. 1 

 
Fig. 2. Comparison of the absolute errors for 

)(1 ty  in Ex. 1 
 
Example 2. Let us consider a system of first-order linear VIDEs 
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1)0(0 =y , 1)0(1 −=y . 
 

The exact solutions are tety +=0 , tety −=1 . Table 3 contains a numerical comparision of 

absolute errors between our solution Chebyshev collocation method and the solutions obtained by 
HPM [12] and ADM [44].  Present method is incisive, because for the same number basis functions it 
obtains beter results. Moreover, we give the comparison of absolute errors for present methods for 
various N in Figs. 3 and 4, and error estimation function display in Fig. 5. 
 

Table 3. The values of seven terms approximations w ith related errors 
 

t  Absolute errors of ADM Absolute errors of HPM Prese nt method 

70 =eN  71 =eN  70 =eN  71 =eN  70 =eN  71 =eN  

0.0 0.000E-0 0.000E-0 0.000E-0 0.000E-0 0.100E-9 0.100E-9 
0.2 0.300E-8 0.200E-8 0.300E-8 0.200E-8 0.466E-7 0.404E-7 
0.4 0.320E-6 0.320E-6 0.320E-6 0.320E-6 0.130E-6 0.747E-7 
0.6 0.536E-5 0.535E-5 0.536E-5 0.535E-5 0.700E-6 0.824E-6 
0.8 0.390E-4 0.390E-4 0.390E-4 0.390E-4 0.246E-8 0.273E-6 
1.0 0.179E-3 0.179E-3 0.179E-3 0.179E-3 0.873E-6 0.107E-5 

 

 
 

 

Fig. 3. Comparison of the absolute errors for 
)(0 ty  in Ex. 2 

 

Fig. 4. Comparison of the absolute errors for 
)(1 ty  in Ex. 2 

 

 
 

Fig. 5. Plot of the error estimation function for N =9 in Ex. 2 
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Fig. 6. Plot of the absolute error in Ex. 3 
 
Example 3.  Now, we consider the following problem 
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with 
 

0)0(0 =y , 1)0(1 =y , 1)0(2 −=y , 1)0('
0 =y , 0)0('

1 =y , 1)0('
2 =y . 

 

where 
 

1)sin(3)cos()cos()cos()( 2
0 +−−+= ttttttttf  

)sin()sin(1)cos(2)(cos)cos()sin(2)( 2
1 tetettttttf tt −−+−+−=  

)cos()sin()sin(3)(cos2)( 2
2 tttttf +−=  

 

The exact solution of this system is )sin()(0 tty = , )cos()(1 tty = , )cos()sin()(2 ttty −= . In Fig. 

6, we display the absolute error obtained by present method for 10=N . 
 
Example 4. Let us consider the following systems 
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with initial condition 0)0(0 =y , 0)0(1 =y  and 

 

64)
4

1
(

2

1
)7()( 24/2/2/

0

2

−−−−+−−++−= −− ttteeteteettf ttttt , 

 

64)26()
4

1
(

2

1
)1()( 222/2/

1

2

−+−++−−++−= −−− tttettteeeettf ttttt . 

 

 The exact solution of this system is ttety −=)(0 , ttety =)(1 . The computational results, which are 

obtained by present method are given nin Table 4 and 5. Figs. 11 and 12 display comparison of the 
absolute errors for various N . 
 

Table 4. Numerical result for approximate solution of )(0 ty  in Example 4 

 
t  Exact solution N=8 N e=8 N=9                Ne=9 N=10 Ne=10 
-1.0 -0.368794 -0.368792 0.161E-6 -0.368794 0.148E-7 -0.368794 0.414E-9 
-0.8 -0.359463 -0.359463 0.393E-7 -0.359463 0.738E-8 -0.359463 0.142E-9 
-0.6 -0.329286 -0.329286 0.730E-7 -0.329286 0.435E-8 -0.329286 0.252E-9 
-0.4 -0.268128 -0.268127 0.246E-6 -0.268128 0.498E-9 -0.268128 0.406E-9 
-0.2 -0.163746 -0.163746 0.154E-6 -0.163746 0.131E-7 -0.163746 0.559E-9 
0.2 0.244280 0.244280 0.192E-6 0.244280 0.209E-7 0.244280 0.685E-9 
0.4 0.596729 0.596729 0.300E-6 0.596729 0.473E-8 0.596729 0.267E-9 
0.6 1.093271 1.093271 0.245E-6 1.093271 0.375E-8 1.093271 0.866E-9 
0.8 1.780432 1.780432 0.170E-7 1.780432 0.641E-8 1.780432 0.239E-8 
1.0 2.718281 2.718281 0.107E-6 2.718281 0.851E-8 2.718281 0.361E-8 

 
Table 5. Numerical result for approximate solution of )(1 ty  in Example 4 

 
t  Exact solution N=8 N e=8 N=9              Ne=9 N=10 Ne=10 
-1.0 -2.718281 -2.718281 0.190E-6 -2.718281 0.1068E-7 -2.718281 0.135E-5 
-0.8 -1.780432 -1.780432 0.148E-6 -1.780432 0.842E-8 -1.780432 0.288E-9 
-0.6 -1.093271 -1.093271 0.200E-6 -1.093271 0.535E-8 -1.093271 0.346E-10 
-0.4 -0.596729 -0.596729 0.373E-6 -0.596729 0.998E-8 -0.596729 0.744E-9 
-0.2 -0.244280 -0.244280 0.200E-6 -0.244280 0.631E-8 -0.244280 0.714E-9 
0.2 0.163746 0.163746 0.193E-6 0.163746 0.809E-8 0.163746 0.666E-9 
0.4 0.268128 0.268128 0.465E-6 0.268128 0.173E-7 0.268128 0.145E-9 
0.6 0.329286 0.329286 0.339E-6 0.329286 0.175E-8 0.329286 0.809E-9 
0.8 0.359463 0.359463 0.321E-6 0.359463 0.341E-7 0.359463 0.457E-8 
1.0 0.367879 0.367879 0.117E-5 0.367879 0.251E-8 0.367879 0.809E-8 

 
                                 Table 6. Compare of some numerical values for Examp les 2 and 4 
 
 8=N  

Example 2 Example 4 

)()(max 00 tyty N−  
0.931160E-8 0.159960E-12 

)()(max 11 tyty N−  
0.517564E-7 0.132420E-12 

)(0 NE L  0.456041E-5 0.509900E-6 

)(1 NE L  0.213654E-4 0.111080E-5 

)(0 NET  0.993247E-8 0.891350E-7 

)(1 NET  0.981129E-8 0.113042E-6 

 



 
 
 
 

Öztürk and Gülsu; BJAST, 14(4): 1-20, 2016; Article no.BJAST.23893 
 
 

 
18 

 

 
 

 

Fig. 7. Comparison of the absolute errors for 
)(0 ty  in Ex. 4 

 

Fig. 8. Comparison of the absolute errors for 
)(1 ty  in Ex. 4 

 
5. CONCLUSION 
 
In the present paper we used Chebyshev 
collocation method to solve systems of Volterra-
differential-difference equations. The main idea 
of the proposed method is to convert the problem 
including linear algebraic equation and find the 
Chebyshev coefficients in truncated Chebyshev 
sum. Numerical examples reveal that the present 
method is very accurate and convenient for 
solving systems of high order linear VFIDEs. 
Tables and figures indicate that as N  increases, 
the errors decrease more rapidly; hence for 
better results, using large number N  is 
recommended. We compare the some 
computational errors for Examples 2 and 4 suchs 

as maximum errros, truncation errors and 2L -
norm errors in Table 6. 
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