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Abstract 
It is an important issue to numerically solve the time fractional Schrödinger 
equation on unbounded domains, which models the dynamics of optical so-
litons propagating via optical fibers. The perfectly matched layer approach is 
applied to truncate the unbounded physical domain, and obtain an initial 
boundary value problem on a bounded computational domain, which can be 
efficiently solved by the finite difference method. The stability of the reduced 
initial boundary value problem is rigorously analyzed. Some numerical results 
are presented to illustrate the accuracy and feasibility of the perfectly matched 
layer approach. According to these examples, the absorption parameters and 
the width of the absorption layer will affect the absorption effect. The larger 
the absorption width, the better the absorption effect. There is an optimal ab-
sorption parameter, the absorption effect is the best. 
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1. Introduction 

As one of the most important model in modern science, the Schrödinger equa-
tion has a variety of applications in many fields, such as optics, Bose-Einstein 
condensation, quantum mechanics and molecular physics. The Schrödinger eq-
uation can be derived by considering Gaussian probability distribution [1]. It 
makes sense to consider the non-Gaussian distribution, and Laskin [2] [3] ob-
tained the space fractional Schrödinger equation. The diffusion of particles is 
still Markovian for the space fractional Schrödinger equation, and it is no need 
to consider the memory of the equation. However, the memory and hereditary 
properties must be considered under the non-Markovian evolution. Naber firstly 
proposed the time fractional Schrödinger equation based on the generation of 
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the time fractional diffusion equation [4], and studied the properties of the time 
fractional Schrödinger equation. In addition, Sjögreen proposed the perfectly 
matched layer method of Maxwell’s equations [5]. Singer and Turkel studied the 
Helmholtz equation based on the perfectly matched layer method [6]. Karim and 
the coauthors combined perfectly matched layer with finite element method [7] 
to study the numerical modeling of acoustic devices in piezoelectric. As a fun-
damental model of fractional quantum mechanics [8], the fractional Schrödinger 
equation [9] [10] has attracted massive attention from both physicists and ma-
thematicians; see the references [11] [12] [13] and references therein. Although 
the approximate and analytical solutions have been studied for some initial con-
ditions or nonlinear terms, the expression of the solution is very complex [14] 
[15]. Thus, how to design the efficient method to solve the fractional Schrödin-
ger equation on unbounded domain is an important issue. 

This paper aims to numerically solve the following time fractional Schrödin-
ger equation (TFSE) on unbounded domain 

( ) ( ) ( ) ( ]0 , , ,  , 0, ,C
t xxi D x t x t x t T= − ∈ ×αψ ψ              (1) 

( ) ( )0,0 , ,x x x= ∈ψ ψ                     (2) 

( ), 0, ,x t x→ →∞ψ                      (3) 

where 1i = − , ( ),x tψ  is the complex-valued wave function, 0
C

tDα  is the Ca-
puto fractional derivative operator with ( )0,1∈α  defined by  

( ) ( )
( )

( )0 0

,1 1, d
1

tC
t

x s
D x t s

s t s

∂
=
Γ − ∂ −

∫α
α

ψ
ψ

α
 

with the usual Gamma function ( )Γ ⋅ . The function ( )0 xψ  is the initial condi-
tion with compactly supported in the domain of interest. 

There are several approaches to efficiently solve the partial differential equa-
tions defined on unbounded domain, including infinite element method, boun-
dary element method, artificial boundary method and absorbing layer approach. 
We restrict ourselves to the last strategy and numerically solve the TFSE by ap-
plying the perfectly matched layer (PML) technique, which was originally pro-
posed by Berenger for electromagnetism [16] and has been successfully applied 
to solve a variety of partial differential equations [17] [18] [19], to study the be-
havior of quantum mechanical systems without having spurious reflections from 
waves traveling out of the interested domain. The key idea of PML approach is 
to surround the physical domain by an artificial unphysical layer to damp the 
waves entering the layer region without any reflections. Many works are presented 
to study the numerical solution of the Schrödinger-type equation by adopting the 
PML approach. Zheng applied the PML approach to solving the linear and non-
linear Schrödinger equation on unbounded domain in [20]. Nissen and Kreiss 
used a modal ansatz to derive the PML approach for the Schrödinger equation in 
[21], and demonstrated how to choose the optimal parameters of the PML. The 
PML approach for a system of two-dimensional coupled nonlinear Schrödinger 
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equations with mixed derivatives is derived in [22], and the stability is proved 
for a specified absorption function. The recent theoretical and numerical devel-
opments concerning PML approach for solving the Schrödinger equation are 
presented in the review [23] and the references therein. 

There are some works to study the numerical solution of the time fractional 
Schrödinger equation on unbounded domain. Li, Zhang and Antoine [24] [25] 
designed the artificial boundary conditions and fast algorithms to efficiently solve 
the TFSE in unbounded domains. Antoine and coauthors designed a series of 
PML for the time dependent space fractional partial differential equations [26] 
[27] [28]. Unfortunately, the study of the PML for TFSE is very rare. This paper 
aims to research this issue and the corresponding stability. 

The rest of this paper is organized as follows. In Section 2, the general solution 
of the TFSE is obtained by applying the Laplace transformation, and the PML 
approach for TFSE is applied to obtain a reduced initial boundary value problem 
(IBVP) on a bounded domain. The stable property of IBVP with PML function 
is analyzed rigorously. The IBVP is discretized by applying the finite difference 
method in Section 3. In Section 4, some numerical results are presented to illu-
strate the accuracy and effectiveness of the our PML approach. Finally, the con-
clusions and research purposes are given in Section 5. 

2. PML Approach for TFSE 
2.1. PML Function 

The perfectly matched layers with width d are introduced to divide the whole area 
into three parts, the interior domain [ ],i l rx xΩ =  with adjacent PML is reduced 
to the computational domain [ ],c l rx d x dΩ = − + , and exterior domain is  

\e iΩ = Ω . In order to obtain the equation in the PML, which is modified 
through the idea of Nissen [21], consider the constraint on ( ),x tψ  on the exte-
rior domain [ ),o rxΩ = +∞   

( ) ( ) ( ]0 , , , 0, ,C
t xx oi D x t x t x T= − ∈Ω ×αψ ψ               (4) 

( ),0 0, ,ex x= ∈Ωψ                       (5) 

( ), 0, .x t x→ →∞ψ                       (6) 

One notes that the Laplace transform of Caputo fractional derivative [29] sa-
tisfies  

( ) ( ) ( )1
0

ˆ ( ) 0 .c
tD f t s s f s s f−  = − 
α α α  

Applying the Laplace transform to Equation (4), we get  

( ) ( )ˆ ˆ, , ,xxis x s x s− =αψ ψ  

which has a general solution  

( ) ( ) ( )1 2ˆ , e e .is isx s c s c s
+ +− − −= +

α α
ψ  

Assume that ( ) 0Re is− ≥α  for ( ) 0Re s ≥ . Since ( )ˆ , 0x s →ψ  when  
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x →∞ , we have  

( ) ( ) ( ){ }1ˆ exp e d ,
r

xi
PML r x

x c is x x+  = − − − +  ∫α θψ σ ω ω           (7) 

where the absorption function ( )σ ω  is a real and non-negative function in ω . 
To obtain decaying solution, the parameter θ  is usually chosen as a constant  

in the interval 0,
2

 π ∈ 
 

θ . The PML function (7) satisfies  

( ) ( )
ˆ1 1ˆ 0.

1 e 1 ei iis
x xx x
 ∂ ∂

+ = 
∂ ∂+ +  

α
θ θ

ψψ
σ σ

              (8) 

Applying the inverse Laplace transform to (8), we get the following initial boun-
dary value problem in bounded domain  

( ) ( ) ( ) ( ]0 , 0, 0, ,C
t ii D x t x x x T

x x
∂ ∂ + = ∈Ω × ∂ ∂ 

α ψψ γ γ          (9) 

( ) ( )0,0 ,  ,ix x x= ∈Ωψ ψ                     (10) 

( ) ( ) { } [ ], 0, , , 0, ,l rx t x t x d x d T= = − + ×ψ             (11) 

where ( )
( )

1
1 eix

x
=

+ θγ
σ

. One can observe that ( ) 0x =σ  for [ ],l rx x x∈  to  

reduce the original Equation (1) in the bounded computational domain. Thus, 
Equation (9) can be solved both in the interior domain and in the layer by letting 
( )xσ  vanish in the interior. 

2.2. Stability 

Based on the idea of smooth exterior scaling (SES) [21], we present the stability 
of the reduced IBVP (9)-(11) in this section. In SES the ansatz  
( ) ( ) ( ), ,x t x x t=ψ κ ϕ  is introduced. Substituting the ansatz into (9), we have  

( ) ( ) ( ) ( ) ( ) ( )
2

0 2

1 1 , , , ,C
t PMLi D x t x t V x x t

x xx
 ∂

= − + 
∂   

αϕ ϕ ϕ
υ υ

       (12) 

where ( ) ( )1 eix x= + θυ σ  and ( )
( ) ( ) ( )

( )

2

4

3 2
4PML

x x x
V x

x

′ ′′−  =
υ υ υ

υ
. The ( )xκ  

can be obtained as ( ) ( )
1
2x x

−
=κ υ . 

Lemma 1. [25] Let ( )u t  be a complex valued function which is absolutely 
continuous on [ ]0,T . Then, the following inequality holds  

( ) ( ) ( ) ( ) ( )2
0 0 0 , 0 1,C C C

t t tD u t u t D u t u t D u t≤ + < <α α α α          (13) 

where u  represents the complex conjugate function of u and 2u uu= .  
Lemma 2. [25] Let 0 1< <α . We assume that ( )u t  is a nonnegative abso-

lutely continuous function that satisfies  

( ) ( ) ( ) ( ]0 1 2 ,  0, ,C
tD u t c u t c t t T≤ + ∈α                  (14) 
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where 1 0c >  and ( )2c t  is an integrable nonnegative function on [ ]0,T . We 
have  

( ) ( ) ( ) ( ) ( ) ( ),1 1 , 1 0 20 ,tu t u E c t E c t D c t−≤ + Γα α α
α α αα          (15) 

where ( ) ( ),
0

n

n

zE z
n

∞

=

=
Γ +∑α µ α µ

 are the Mittag-Leffler functions and ( )0 tD u t−α  

is the Riemann-Liouville integral given by ( ) ( )
( )

( )0 10

1 d
t

t

u
D u t

t
−

−=
Γ −

∫α
α

τ
τ

α τ
. 

Theorem 1. Let ( )x i= −γ β η . Assume that 0 0≥ >β β , 0≥η , ( ), ∈β η  
and that (12) has a smooth solution in any interval 0 t T≤ ≤ < ∞ . Then  

( ) ( ) ( )2 2
, ,0 .t K T⋅ ≤ ⋅ϕ ϕ                    (16) 

Proof. Since ( ) ( )
1x
x

=γ
υ

, the Equation (12) can be written as  

( ) ( ) ( ) ( ) ( ) ( )0 , , , ,C
t PMLxx

i D x t x x x t V x x t= − +  
αϕ γ γ ϕ ϕ        (17) 

where ( )
22

4
xx x

PMLV x
−

=
γγ γ

. 

By multiplying (17) by ( ),x tϕ , taking the complex conjugate of (17), mul-
tiplying the result by ( ),x tϕ , and combining the two equations and integrating 
over iΩ , we get  

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )
0 0

1 2

, , , , d

d

.

i

i

C C
t t

PML PMLxx xx

x t D x t x t D x t x

i i i V V x

I I

Ω

Ω

 + 

 = − + − 
= +

∫

∫

α αϕ ϕ ϕ ϕ

γϕ γϕ γϕ γ ϕ ϕϕ       (18) 

( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

1 d

d

2 d .

i

i

i

xx xx

x x x x

x x x x

I i i x

i i i i i i x

x

Ω

Ω

Ω

 = − 

 = − − − + + + 

 = − + 

∫

∫
∫

γϕ γϕ γϕ γ ϕ

ϕ β η ϕ β η ϕ β η ϕ β η

ηϕ βϕ βϕ ηϕ

 

Denote z iw= +ϕ , we have  

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( )

( )

( ) ( ) ( )

1

2 2

2 2

2 2 2 2

1

2 d

4 d

4 d 4 d

4 d

4 d 4 d
2

  

i

i

i i

i

i i

x x x x

x x x x

x x x x x x

x x

xx
x x x x

I z iw z iw z iw z iw x

z z w w x

z w x zz ww x

z w x

z w x z w x

C

Ω

Ω

Ω Ω

Ω

Ω Ω

 = − − + + − + 

 = − + 

   = − + − + +   
 − +  

   = − + + − +          

≤

∫
∫

∫ ∫

∫

∫ ∫

η β β η

β η β η

βη η β ηβ

η β

ηβ
βη η β

2 ,ϕ

 

where 
( )

1 max 4
2

xx
x xx

C
  = − 
  

ηβ
η β .  
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( ) { } 2
2 2d 2 Im d ,

i i
PML PML PMLI i V V x V x C

Ω Ω
 = − = ≤   ∫ ∫ϕϕ ϕϕ ϕ  

where ( )2 x x xxC = −η β ηβ . 
Applying the Lemmas 1 and 2, we have  

2 2
0 3
C

tD C≤α ϕ ϕ  

with ( ){ }3 max x xxxx
C = −ηβ η β , and  

( ) ( ) ( )2 2
, ,0t K T⋅ ≤ ⋅ϕ ϕ  

in any interval 0 t T≤ ≤ . This completes the proof.                      □ 

3. Finite Difference Scheme for Reduced IBVP 

In this section, the following difference scheme is established for the equation 
and the following assumptions are made. The interval [ ],l rx d x d− +  is un-
iformly divided into M equal parts, the interval [ ]0,T  is uniformly divided into 
N equal parts, the spatial step size is ( )2r lh x x d M= − + , the temporal step 
size is T N=τ , let ( )0jx jh j M= ≤ ≤ , ( )0nt n n N= ≤ ≤τ ,  

{ }| 0h jx j MΩ = ≤ ≤ , { }| 0nt n NΩ = ≤ ≤τ . 

Assume { }| 0 ,0n
j j M n NΦ = ≤ ≤ ≤ ≤φ  is a grid function defined on hΩ ×Ωτ , 

where ( ),n
j j nx t≈φ ψ . The following notations are reported  

( )

( )
( ) ( ) ( )( ) ( )

1 1 11
2 2 2

1
0

0 1 1
1

, , ,
2

 ,
2

n n
n nj j n j jn

k k x j j

n
n n l
j j n l n l j n j

l

x
h

D a a a a

+
+ − +

− −

− − − −
=

−
+

= = =

 = − − − Γ −  
∑

α
α α α α

τ

φ φ
φ φ

γ γ δ φ φ

τφ φ φ φ
α

 

where ( ) ( )1 11la l l− −= + −αα α . 
The PML function (9) can have the following approximation by applying the 

Crank-Nicolson finite difference scheme  
1
2 0,

nn
j j x j x jiD

− 
+ =  

 
τφ γ δ γ δ φ                   (19) 

( )0
0 ,j jx=φ ψ                         (20) 

where 0 j M≤ ≤ , and 0 n N≤ ≤ . 

4. Numerical Results 

In this section, the absorbing function is given ( ) ( )2
0x x d= −γ σ , where 0 0>σ  

is the absorption strength factor. Some numerical results are given to demon-
strate the effectiveness of the PML approach in this section. 

Example 1. Consider the time fractional Schrödinger equation with the initial 
condition  

( ) ( )2,0 exp ,x x ikx= − +ψ  

where k is the wave number. The computational interval is [ ],l rx d x d− + =  
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Figure 1. The influence of the thickness of the PML absorbing layers. 

 
[ ]5 ,5d d− − + , the wave number is chosen as 20k = . Since the exact solution is 
undiscovered, we calculate the TFSE on a very fine grid and in a large area 
[ ]15,15−  as reference solution. 

Figure 1 plots the reference solution and the numerical solution with different 
PML width 0.2,0.4,0.7,1d = . One can see that the performance of PML is greatly 
improved when the absorbing layer is enlarged. The width of PML is selected as 

1d =  in the following computations.  
Figure 2 shows the numerical and exact solutions for different fractional or-

ders 0.4, 0.8=α  at different times, and one can observed that the numerical so-
lutions fit the exact solutions very well, which means that the designed absorbing 
function in PML is very efficient. Figure 3 studies the influence of the absorp-
tion strength factor, we can see the PML approach present approximate solution 
very well as 0 1=σ  in this example, which demonstrates the validity of the pro-
posed method. 
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Figure 2. Numerical solutions compared with exact solutions for different orders 0.4=α  and 0.8=α . 
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(a) 

 
(b) 

Figure 3. The numerical solutions with different 0σ  at different times. 
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5. Conclusion 

The perfectly matched layer function of the time fractional Schrödinger equation 
on an unbounded domain is developed by applying the perfectly matched layer 
approach to obtain an initial boundary value problem on a bounded computa-
tional domain, which can be solved efficiently by adopting finite difference me-
thod. Based on the idea of smooth exterior scaling, the stability of the reduced 
initial boundary value problem is presented. The numerical results are reported 
to demonstrate the validity of the proposed method. 
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