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ABSTRACT 
 

Aim: This research examines the economic impacts of drought severity and duration to 
interdependent production sectors in an urban catchment. 

Methodology: We developed a dynamic water input-output model extension to analyze the 
drought vulnerability and resilience of economic sectors in an urban region. The model utilizes the 
North American Industry Classification System (NAICS), which encompasses 65 economic sectors 
in our regional analysis. The model is applied to a case study of the United States (US) National 
Capital Region, a predominantly urban region that is considered one of the major economic drivers 
of the US. 

Results: Simulation results identify the critical economic sectors that experience the highest 
inoperability and economic losses as a result of water reduction schemes implemented during 
drought events. In the two scenarios studied (drought warning and drought emergency), sectors 
exhibit disproportionate levels of resilience and sensitivity to the magnitude and duration of water 
reduction. In each case, the economic loss and inoperability rankings of critical sectors differ due to 
differences in the quantity and value of the sectors’ production outputs. 

Conclusion: Observed data trends provide valuable insights for decision makers in formulating 
drought preparedness policies, water conservation programs, and short-term responses aimed to 
reduce water consumption in cases of emergency. The dynamic water reallocation I-O model 
developed in this study can be applied to other drought-prone regions and be used to generate 
insights on the economic consequences of drought, ecosystem thresholds, and water reallocation 
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strategies that minimize the economic impacts of prolonged drought events and their ripple effects 
across sectors. 

 

 

Keywords: Drought; water supply; reallocation; input-output analysis; economic sectors. 

 

1. INTRODUCTION 

 
The long-term sustainability of our water supply 
and demand is a subject of intensive global 
research. It is generally acknowledged that 
population growth, rapid urbanization, and 
threats of climate change exert tremendous 
pressure on the world’s finite water supply. For 
example, a recent study has shown that based 
on 2005 water withdrawal rates, climate change 
will cause a third (1,100) of all counties in the 
United States to experience a high risk of water 
shortage by mid century [1]. Another study also 
projects that current economic and population 
growth rates will result in a 40% global water 
deficit by 2030 [2]. To address these problems, 
researchers underscore the need to develop 
diagnostic tools for planning adaptation 
strategies, especially during drought conditions 
[3]. These strategies are often regional or basin-
wide in scale, and require water reallocation 
across sectors to minimize the net effect of the 
water crisis. Although it is recognized that 
modeling water scarcity is a complex 
undertaking, planning for demand management 
is considered a more effective mitigation 
measure than augmenting supply [4]. Increasing 
available water supply requires considerably 
higher infrastructure investments and often 
involves large-scale projects compared to 
managing water demand. 

 

Water scarcity poses unacceptable economic 
risks that can impair growth and development. 
Within an economy, competition for limited water 
exists between agriculture and more highly 
valued sectors such as the manufacturing and 
service industries [5,6]. In regions characterized 
by water scarcity, policy makers face the 
challenge of designing an equitable water 
sharing plan across sectors [7]; however, the 
process often raises controversy due to the 
economic and social implications of water 
demand prioritization [8]. During drought events, 
water reallocation induces significant yet varying 
impacts on the operation and productivity of 
economic sectors. Sector responses to the 
magnitude, timing, and duration of water 
reduction exhibit high variability owing to the 

sectors’ non-uniform sensitivity to water scarcity. 
For example, the effect of drought on agriculture 
is immediate and can be large-scale. The 
productivity and economic structure of the 
agriculture sector are highly sensitive to the 
onset and severity of drought but the sector’s 
operation is able to recover with improving 
drought condition. Other sectors exhibit 
resilience to drought over the short-term but 
experience long-term effects on their economic 
productivity even as the drought condition 
improves.  

 

Several methodologies have been proposed to 
analyze the impacts of drought and water 
reallocation on interdependent economic sectors. 
Seung et al. [9] applied computable general 
equilibrium modeling to demonstrate the effects 
of water trade-off between agriculture and 
recreation in Churchill County, Nevada. 
Velasquez [10] combined an input-output model 
extension to an energy model to estimate direct 
and indirect water consumptions across 
production sectors in Andalusia, Spain. The 
resulting model was used to determine the extent 
to which water availability may limit the economic 
growth of certain sectors. Zhao et al. [11] used 
input-output modeling techniques to account for 
the water footprint of consumer products in the 
water-stressed Haihe River basin in China. This 
footprint was used as a metric for assessing the 
compatibility of the economic activities in the 
basin with the concept of virtual water strategy 
for conserving water. Lennox and Dinkanova [12] 
developed a regional computable general 
equilibrium model to analyze the economic 
effects of water reallocation in Canterbury, New 
Zealand. Lopez-Morales and Duchin [13] applied 
a water input-output model to examine how 
government policies influence the adoption of 
alternative irrigation technologies. They found 
that policies can induce sustainable water 
withdrawals but prices of agricultural products 
rise by 5-8%. Banerjee et al. [14] developed an 
ecosystem services trade-off methodology to 
analyze the economic losses associated with 
drought, and applied this method to a case study 
of the Murray-Darling basin in southern Australia. 
Cazcarro et al. [15] constructed a multi-regional 
input-output model to assess water pressures, 
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regional water footprints, and water trade-off 
among production sectors in Spain.  

 

In modeling system interdependencies, the use 
of the economic input-output (I-O) model has 
gained popularity in recent years because of its 
practicality and relative ease of access to data 
[16]. The I-O model, which was developed by 
Leontief [17] and received the Nobel Prize in 
Economics in 1973, has been applied in 
numerous economic studies. The I-O model and 
computable general equilibrium extensions are 
useful in assessing the resilience of 
interdependent economic systems. Resilience is 
interpreted as the ability of a system to protect 
itself from external perturbations and eventually 
recover to its ideal state after being exposed to 
disruptive events [18,19]. For example, Rose and 
Liao [20] have demonstrated the role of 
resilience in counteracting the adverse effects of 
water service disruptions within an economic 
region.  

 

Economic I-O models are traditionally used for 
modeling the ripple effects of changes in demand 
and supply patterns across interdependent 
sectors. Recently, there has been a rising trend 
in extending the I-O model for disaster risk 
analysis applications. Within the I-O literature, 
there are standard variables that capture the 
relevant measures of performance in an 
economic system (e.g., monetary units of 
production). In the proposed model, we seek to 
develop performance measures to characterize 
and quantify different types of subsystem 
interdependencies – building on and 
supplementing the economic-based 
interdependencies typically used in I-O models. 
Haimes and Jiang [21] expanded the Leontief 
model to analyze situations where 
interdependent systems are unable to satisfy the 
needed demand for their outputs. Santos [22] 
explicitly integrated the use of economic I-O 
accounts to model the effect of infrastructure 
inoperability and its ripple effects to 
interdependent economic sectors.   

 

This paper focuses on the economic 
consequences of drought to urban water users. 
When water availability plays a critical role in an 
urban economy, reductions in water supply can 
result in serious disruptions to the over-all 
economic activities of the region. In this study, 
we develop a regional input-output model 
extension to estimate the inoperability and 
economic losses that are incurred across 

interdependent sectors over time during 
prolonged periods of drought. It was applied to a 
study of the impacts of water demand 
management in the United States (US) National 
Capital Region (NCR), a predominantly urban 
region that is considered an economic driver in 
the US.  

 

2. METHODOLOGY  

 

2.1 Water Input-Output Extension Model 

 
The water I-O model presented in this study is an 
extension of the inoperability input-output model 
(IIM). It was developed to capture the effects of 
water supply reduction scenarios to 
interdependent economic sectors. The IIM is a 
transformation of the traditional I-O model that 
utilizes a dimensionless variable called 
inoperability, which is a measure of the inability 
of a sector to meet demands for its output. 
Inoperability values range between 0 and 1; an 
inoperability value of 0 corresponds to the 
undisrupted state of affairs, a value of 1 
corresponds to total system failure. The IIM was 
recently developed to describe the dynamic 
recovery of interdependent industry sectors that 
are exposed to a disruptive event. To date, this 
dynamic IIM (DIIM) has been expanded and 
applied in various fields [23-25]. The dynamic 
formulation of the IIM serves as the basis for the 
proposed Water Input-Output Extension Model. 
The formulation is as follows: 

 

�(�) = �(� − 1) + �[�∗�(� − 1) + �∗(� − 1) −
�(�−1)  (1) 

 

Where �(�) and �(� − 1) correspond to the 
inoperability vector at time � and � − 1, 
respectively; �∗ is the interdependency matrix 
that represents sector interdependencies and 
can be obtained directly from published I-O data, 
� is the resilience coefficient matrix, and 
�∗(� − 1) is the vector of demand perturbations at 
time � − 1. For simplicity, we assume in the 
subsequent case study that the demand 
perturbations are negligible, as the focus of the 
analysis will be on the changes in the 
inoperability, �(�) and �(� − 1). This is a 
reasonable assumption since user demand for 
water is expected to remain at pre-drought levels 
despite the reduced supply (i.e., this has to be 
contrasted with the concept of “forced” demand 
reduction where consumers have to curtail their 
demand for water or look for other sources to 
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compensate for shortfalls). Furthermore, the 
formulation for the resilience matrix are based on 
Lian and Haimes [23], which is reproduced here 
as follows: 
 

��� =
�

�������
∗ �

�� �
��(�)

��(�)
�                             (2) 

 

The term ���
∗  corresponds to the diagonal 

elements of the �∗ matrix, which are pre-
specified constants defined previously in Eq. (1). 
Hence, the above recovery parameter (���) only 
depends on the initial condition (t=0) and a 
terminal condition (t=T). Note also that it is 
assumed that recovery is achieved when ��(�) 
has reached a negligible level relative to the 
initial inoperability ��(0). Hence, the model in Eq. 
(1) depends primarily on the assessment of the 
inoperability ��(�), which will be the subject of 
subsequent discussions. 

 

In the inoperability vector �(�) in Eq. (1), each 
element denoted by ��(�) corresponds to the 
inoperability of sector i. The effects of reduced 
water availability on the production output of a 
sector can be estimated by computing the ratio 
between the water input requirement (��) and the 
total production output (��) of a particular industry 
sector �. The resulting ratio, ��/��, gives 
information regarding the portion of a sector’s 
output that is dependent on water input. 
Furthermore, this ratio provides insights on how 
a regional shock to the water supply can be 
modeled as an inoperability to a particular sector 
i. For simplicity, this ratio is assumed to be 
invariant of time for similar reasons as discussed 
earlier (i.e., the “as planned” water dependency 
of a sector to support its production is assumed 
to remain at pre-drought levels). The water input 
requirement (��) and total production output (��) 
data for each sector can be obtained from the 
regional economic accounts as published by the 
US Bureau of Economic Analysis [26]. 

 

Furthermore, we introduce a time-dependent 
drought multiplier, �(�), to describe the extent to 
which a drought scenario disrupts water supply 
availability. This multiplier ranges between 0 and 
1. A value of 0 is the ideal case where the water 
supply remains in an undisrupted state, while a 
value of 1 refers to the maximum disruption. The 
multiplier �(�) measures the water availability 
disruption caused by a drought scenario on 
sector production. For each period t, we assume 
that the disruption, �(�), affects the entire 
regional economy; hence, it does not include a 
sector-specific subscript, i. Nevertheless, this 

disruption trickles across the different industry 
sectors after being multiplied with the water 
dependency ratio (��/��). Collectively, this 
formulation creates a sector inoperability that is a 
function of both the industry sector i, as well as 
the period t, as follows: 
 

��(�) =
��

��
�(�)                                                 (3) 

 

Relating Eq. (3) to (1) for every iteration t 
generates the inoperability of each industry 
sector. The time-dependent disruption 
function, �(�), is assumed to be a characteristic 
of the drought scenario being considered. In the 
case study section (Section 2.4), we will describe 
how this function is simulated for several 
scenarios. Hence, by tracking the resulting 
inoperability of each sector, we are also able to 
estimate the associated economic losses 
triggered by the disruption in water supply. The 
Water Input-Output Extension Model builds on 
the dynamic inoperability formulation presented 
in Eq. (1) and includes a function that updates 
the level of inoperability based on the prevailing 
level of water availability disruption. 
 

��(�) = �
(��/��)�(�), �(�) > 0

��
����(�), �(�) = 0  

�                  (4) 

 

Note that ��
����(�) is the i

th
 element of the vector 

�(�) as formulated in Eq. (1). The new 
formulation in Eq. (4) realistically captures the 
progression of a sector’s inoperability depending 
on the magnitude of the disruption to water 
availability. The inoperability of a particular sector 
is directly proportional to the disruption, �(�), and 
the proportionality constant happens to be the 
sector-specific water dependency ratio, ��/��. 
Furthermore, consider a time sequence where 
�(� − 1) > 0 and �(�) = 0. Based on Eq. (4), the 
inoperability at time t will be ��

����(�), which 
implies that a sector’s inoperability does not 
quickly recover to the ideal value of 0 (i.e., full 
production capacity). This makes sense, as the 
effect of restoring water availability does not 
instantaneously reinstate a sector’s production to 
its full capacity. As implied in Eq. (2), the length 
of time to achieve full recovery ultimately 
depends on a sector’s interdependency with 
other sectors (as captured by ���

∗ ), as well as its 
inherent resilience (as captured by ���). 
 

On the other hand, the economic loss incurred by 
a sector i results from its failure to operate at its 
normal state (i.e., the undisrupted condition, 
where sector inoperability is 0). When a sector 
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experiences some level of inoperability, this 
causes the sector to have a temporary loss in its 
ability to deliver the normal level of production. 
Hence, for every period t, economic loss is 
calculated as the product of the inoperability 
��(�) and the economic output of the sector for 
this period. This approach implicitly assumes that 
the economic output of sector i can be averaged 
over the drought horizon T. This assumption is 
reasonable because the drought horizons 
considered in the case study span significantly 
long periods (e.g., 90 days), which in effect 
minimizes the effect of daily production output 
fluctuations.           

 

2.2 Database Sources 

 
This section provides a discussion of the data 
sources for the US NCR case study. Based on 
recorded history and projections [27], this 
economic region is vulnerable to shortfalls in the 
delivery of essential services, such as water 
supply disruptions triggered by droughts. These 
disruptions in turn can lead to degraded 
production levels. In order to quantify the impact 
of reduced sector production levels on the 
regional economy, economic data (such as input 
requirements, commodity outputs, and income 
statistics, among others) for each regional sector 
are collected and assembled from different 
sources.  

 

2.2.1 Sector classifications 
 

This paper adopts the data collection 
methodology using the North American Industry 
Classification System (NAICS). The Regional 
Input-Output Multiplier System (RIMS II) uses an 
aggregated version of the detailed sector 
classification, composed of 65 sectors (see Table 
1). The standardized sector classification method 
allows users to yield comparable results when 
applying the same model to another region. 

 

2.2.2 Input-output matrices 

 

The Bureau of Economic Analysis (BEA) 
publishes the annual I-O matrices for the 65-
sector decomposition as depicted in Table 1. 
This methodology is coupled with RIMS II to 
provide a useful framework for evaluating 
economic interdependencies [28]. These data 
are available from BEA for the nation as a whole, 
each state, metropolitan regions (using the U.S. 
Census definitions), and counties.   

 2.2.3 Gross domestic product 

 

Gross Domestic Product (GDP) consists of final 
consumption, other than those used as 
intermediate production inputs to the 65 
endogenous sectors. As such, GDP is also 
interpreted as the value of final uses (or 
consumptions), which includes personal 
consumption expenditure, gross private domestic 
investment, government purchases, and net 
foreign exports (i.e., difference in exports and 
imports) [16]. GDP data is also available for all 
states and metropolitan areas within the United 
States.  
 

2.3 Virginia Drought Classification 
 

This study adopts the Virginia Drought Severity 
Classification System. Drought conditions are 
typically determined using indices that are 
calculated based on parameters such as rainfall, 
stream flow, groundwater levels, and 
temperature. In the United States, drought 
classification is based on a variety of indices, for 
example, the Palmer Drought Severity Index 
(PDSI). Normal conditions are indicated by a 
PDSI value of zero; worsening drought 
conditions are indicated by increasingly negative 
PDSI values. In the Commonwealth of Virginia, 
drought conditions are monitored by the Virginia 
Drought Monitoring Task Force (DMTF). The 
DMTF uses four drought indicators (Table 2): 
precipitation, stream flow, groundwater level, and 
reservoir storage. Each indicator is assigned four 
drought severity categories: normal, watch, 
warning, and emergency. The water reductions 
are enforced when at least two of these 
indicators are in the same drought category. 

 

2.4 Case Study 

 
The US National Capital Region (2012 
population of 5.9 million) was selected for this 
case study due to its high population density, 
urbanization, and economic activity. It includes 
the Washington District of Columbia, 11 counties 
and 6 cities in Virginia, 5 counties in Maryland, 
and 1 county in West Virginia (Fig. 1).  The 
region is a major economic driver in the US and 
includes seven of the highest-income counties in 
the country [29]. It is also home to several federal 
agencies, professional service sectors, research 
facilities, and large-scale data centers. 
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Table 1. Sector classification adopted in the US NCR case study 
 

Sector Description Sector Description 
S1 Farms S34 Pipeline transportation 
S2 Forestry, fishing, and related 

activities 
S35 Other transportation and support activities 

S3 Oil and gas extraction S36 Warehousing and storage 
S4 Mining, except oil and gas S37 Publishing industries (includes software) 
S5 Support activities for mining S38 Motion picture and sound recording 

industries S6 Utilities S39 Broadcasting and telecommunications 

S7 Construction S40 Information and data processing services 
S8 Food and beverage and tobacco 

products 
S41 Federal Reserve banks and credit 

intermediation S9 Textile mills and textile product mills S42 Securities, commodity contracts, and 
investments 

S10 Apparel and leather and allied 
products 

S43 Insurance carriers and related activities 
S11 Wood products S44 Funds, trusts, and other financial vehicles 
S12 Paper products S45 Real estate 
S13 Printing and related support 

activities 
S46 Rental and leasing services 

S14 Petroleum and coal products S47 Legal services 
S15 Chemical products S48 Miscellaneous professional and scientific 

services 
S16 Plastics and rubber products S49 Computer systems design and related 

services 

S17 Nonmetallic mineral products S50 Management of companies and enterprises 

S18 Primary metals S51 Administrative and support services 
S19 Fabricated metal products S52 Waste management and remediation 

services S20 Machinery S53 Educational services 
S21 Computer and electronic products S54 Ambulatory health care services 
S22 Electrical equipment, appliances, 

and components 
S55 Hospitals and nursing and residential care 

facilities 

S23 Motor vehicles, bodies and trailers, 
and parts 

S56 Social assistance 

S24 Other transportation equipment S57 Performing arts, spectator sports, and 
museums 

S25 Furniture and related products S58 Amusements, gambling, and recreation 
industries S26 Miscellaneous manufacturing S59 Accommodation 

S27 Wholesale trade S60 Food services and drinking places 
S28 Retail trade S61 Other services, except government 
S29 Air transportation S62 Federal government enterprises 
S30 Rail transportation S63 Federal general government 
S31 Water transportation S64 State and local government enterprises 
S32 Truck transportation S65 State and local general government 
S33 Transit and ground passenger 

transportation 
From: [26] 

 
Table 2. Virginia drought categories 

 
Drought Indicator Drought severity level

a
 

Normal Watch Warning Emergency 
Precipitation (October-
September data) 

>85th percent <85 percent <75 percent <65 percent 

Stream flow 
(7-day average compared 
to historic levels) 

>25th percentile 10th-25th 
percentiles 
 

5th-10th 
percentiles 

<5th percentile 
 

Groundwater level 
(compared to historic data) 

>25th percentile 10th-25th 
percentiles 

5th-10th 
percentiles 

<5th percentile 
 

Reservoir storage >120 days 90-120 days 60 to 90 days <60 days 
Water reduction

b
 NA 0-5% 5-10% 10-15% 

aThe state of Maryland uses the same four indicators for classifying drought severity, however, the water reduction goals are 
slightly different for each drought category. 

b
at least two indicators must have the same drought severity level to trigger water reduction 



Fig. 1. Map of the US National Capital Region. The study area includes: The Washington 
District of Columbia, 11 counties and 6 cities in Virginia (Alexandria, Arlington, Clar

Culpeper, Fairfax, Fairfax City, Fauquier, Falls Church, Fredericksburg, Loudon, Manassas, 
Manassas Park, Prince William, Rappahannock, Spotsylvania, Stafford, and Warren), 5 

counties in Maryland (Calvert, Charles, Frederick, Montgomery, Prince George)

 
A regional I-O database was constructed for 
contiguous US NCR counties and cities based on 
BEA economic estimates. Using assumptions 
extrapolated from Table 2, the Water I
was implemented for two scenarios (i.e., warning 
and emergency). We recognize that a myriad 
number of drought scenarios can be potentially 
considered for analysis (e.g., various 
combinations and durations of watch, warning, 
and emergency scenarios). For a more 
streamlined discussion and demonstration of the 
Water Input-Output Extension Model
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Fig. 1. Map of the US National Capital Region. The study area includes: The Washington 
District of Columbia, 11 counties and 6 cities in Virginia (Alexandria, Arlington, Clar

Culpeper, Fairfax, Fairfax City, Fauquier, Falls Church, Fredericksburg, Loudon, Manassas, 
Manassas Park, Prince William, Rappahannock, Spotsylvania, Stafford, and Warren), 5 

counties in Maryland (Calvert, Charles, Frederick, Montgomery, Prince George), and 1 county 
in West Virginia (Jefferson) 

O database was constructed for 
contiguous US NCR counties and cities based on 
BEA economic estimates. Using assumptions 
extrapolated from Table 2, the Water I-O Model 

ios (i.e., warning 
and emergency). We recognize that a myriad 
number of drought scenarios can be potentially 
considered for analysis (e.g., various 
combinations and durations of watch, warning, 
and emergency scenarios). For a more 

d demonstration of the 
Output Extension Model, we focused 

specifically on the two subsequent drought 
scenarios, both with a 90-day recovery timeline. 
This recovery assumption is consistent with 
historically observed droughts in the region [
 
2.4.1 Scenario 1: drought warning
 
For a drought warning to occur, it is assumed 
that at least one of the following conditions 
applies: streamflow level falls within the 5
percentiles, groundwater level falls within the 5
10

th
 percentiles, and precipitation is below 75% 
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Fig. 1. Map of the US National Capital Region. The study area includes: The Washington 
District of Columbia, 11 counties and 6 cities in Virginia (Alexandria, Arlington, Clarke, 

Culpeper, Fairfax, Fairfax City, Fauquier, Falls Church, Fredericksburg, Loudon, Manassas, 
Manassas Park, Prince William, Rappahannock, Spotsylvania, Stafford, and Warren), 5 

, and 1 county 

specifically on the two subsequent drought 
day recovery timeline. 

This recovery assumption is consistent with 
historically observed droughts in the region [27]. 

2.4.1 Scenario 1: drought warning 

For a drought warning to occur, it is assumed 
that at least one of the following conditions 
applies: streamflow level falls within the 5

th
-10

th
 

percentiles, groundwater level falls within the 5th-
recipitation is below 75% 
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of normal. In addition, it is assumed that the 
reservoir level is expected to deplete in the next 
60-90 days. With these conditions, a drought 
watch occurs where available water supply is 
reduced by about 5-10% of the normal 
consumption requirement levels. 

 
This scenario considers a 90-day horizon that 
comprises three periods:  

 

 Period 1: Water reduction starts at Day 0 
with �(0) = 0% and worsens until water 
reduction peaks at 60 days with �(60) =
5%. We simulated the intermediate values 
of the disruption function �(�) to describe 
the transition from �(0) = 0% to �(60) =
5%. 

 Period 2: Approximately one week in the 
5% water reduction condition 

 Period 3: Water reduction condition is 
improved until recovery is achieved at t=90 
days, or �(90) ≈ 0%. The disruption 
function �(�) was simulated from a value of 
5% at the beginning of Period 3 until it 
reaches a level that is reasonably close to 
0% at the end of the 90-day horizon. 

 
2.4.2 Scenario 2: drought emergency 

 
Based on Table 2, an emergency can happen if 
either stream flow or groundwater level falls 
below the 5th percentile, or precipitation is below 
65 percent of normal. Furthermore, it is assumed 
that reservoir level will deplete in less than 60 
days. When these conditions are met, a drought 
emergency occurs where available water supply 
is reduced to within 10-15% of the normal 
consumption levels. 

 
For comparability with the drought warning 
scenario, a 90-day horizon with three periods 
also is considered. The process of simulating the 
intermediate values of the disruption parameter 
�(�) is similar to Scenario 1 and is not repeated 
here for brevity. The assumed periods are as 
follows: 
 

 Period 1: Water reduction starts at t=0 and 
worsens until peak reduction value is 
reached at t=45, or �(45) = 15%. 

 Period 2: Approximately two weeks in the 
15% water reduction condition 

 Period 3: Water reduction condition is 
improved until recovery is achieved at t=90 
days, or �(90) ≈ 0%. 

3. RESULTS AND DISCUSSION 
 
3.1 Scenario 1: Drought Warning 
 
For the drought warning scenario, the top ten 
sectors with highest inoperability values (Fig. 2), 
in decreasing order, are: Mining (S4), Utilities 
(S6), Textile mills and textile product mills (S9), 
Apparel and leather and allied products (S10), 
Electrical equipment, appliances, and 
components (S22), Educational Services (S53), 
Accommodation (S59), Support activities for 
mining (S5), Federal general government (S63), 
and Furniture and related products (S25). In 
general, sector inoperability remains unchanged 
until day 5, then starts to increase as the water 
reduction increases, remains relatively steady as 
the water reduction is maintained at 5%, and 
finally decreases very rapidly up to about 20 
days since the water supply is gradually returned 
to normal levels. An exception is exhibited by the 
Accommodation sector, whose inoperability 
continues to increase even as the water supply is 
kept steady at its peak 5% reduction, before it 
starts to decrease when the water supply begins 
to gradually improve. 
 
For the same scenario, the top ten sectors with 
highest economic losses (Fig. 3), in decreasing 
order, are: Real estate (S45), Educational 
services (S53), State and local government 
(S65), Utilities (S6), Federal government 
enterprises (S62), Federal general government 
(S63), Accommodation (S59), Other services 
(S61), Broadcasting and communications (S39), 
and Computer systems design and related 
services (S49). The cumulative economic loss for 
these sectors is US$ 18 million, a sixth of which 
is incurred by the Real estate sector and a tenth 
by each of the sectors: Educational services, 
State and local government, and Utilities. The 
Real estate sector incurs the largest loss 
because it has a relatively significant water 
dependence ratio coupled with the fact that it is 
one of the largest contributors to the gross 
regional product [26]. 
 

It can also be inferred from Fig. 3 that economic 
losses are negligible up to about day 10 when 
losses begin to rise more rapidly. Note also that 
the onset of peak economic loss (where 
economic loss starts to plateau) for each sector 
is different, indicating varying levels of economic 
resilience over time to water reduction levels. In 
contrast with droughts that have previously 
affected other less urban regions in Eastern US 
[27], the “Farms” sector (denoted by S1 in     



 
 
 
 

Pagsuyoin and Santos; BJECC, 5(2): 134-146, 2015; Article no.BJECC.2015.011 
 
 

 
142 

 

Table 1) did not place in the 10 critical sectors 
generated by the economic loss ranking. This 
observation is intuitive since the National Capital 
Region considered in this case study was limited 
to the highly urbanized counties in the three 
states (Maryland, Virginia, and West Virginia). 
Hence the resulting economic loss to the Farms 
sector is relatively negligible as this sector is not 
a primary contributor to the gross regional 
product of the study area.  
 

3.2 Drought Emergency 
 
The top ten sectors with highest inoperability 
values (Fig. 4), in decreasing order, are: Utilities 
(S6), Mining (S4), Apparel and leather and allied 
products (S10), Textile mills and textile product 
mills (S9), Electrical equipment, appliances, and 
components (S22), Educational Services (S53), 
Accommodation (S59), Pipeline transportation 
(S34), Support activities for mining (S5), and 
Federal general government (S63). The Utilities 
sector exhibits the most dramatic increase in 
inoperability. Its peak inoperability is between 
three to ten times the inoperability of the nine 
other sectors, and ten times its inoperability in 
the drought warning scenario.  However, its 
recovery is also the most rapid when water 
supply begins to improve. Generally, sector 
inoperability returns to normal around the 75-85 
day mark. The increased inoperability of the 
Utilities sector under the drought emergency 
scenario is likely attributed to its failure to deliver 
its product output (e.g., services such as 
domestic water and sewage collection and 
treatment) to other sectors of the economy as a 
result of water reduction. The inoperability of the 
Pipeline transportation sector increases to its 
peak value at day 65, approximately 5 days after 
the water supply begins to improve, before it 
starts to dissipate to the pre-drought level. This 
phenomenon can be explained as a ripple effect, 
where the indirect effects of other sectors (as 
captured by ���

∗  in Eq. (2)) exceed the inherent 
resilience (as captured by ���) of the affected 
sector. Furthermore, other sectors that are not 
necessarily shown in Fig. 4 (i.e., there are a total 
of 65 sectors) may have also contributed to the 
indirect inoperability of the Pipeline transportation 
sector prior to its full recovery to the pre-drought 
level. It can be seen from Fig. 4 that the 
inoperability for the most affected sector 
(Utilities) reaches a peak value close to 0.025 
(i.e., 2.5% inoperability, or equivalently a 97.5% 
reliability). This is followed by a cluster of sectors 
that have reached peak inoperability values near 

0.01 (i.e., 1% inoperability, or 99% reliability). 
These inoperability values may not sound 
alarming at first; nevertheless to put these 
numbers into perspective, a six-sigma quality 
compliant system requires a maximum failure 
rate of 3.4 parts per million (or an inoperability 
value of 0.0000034). 
 
The top ten sectors with highest economic losses 
(Fig. 5), in decreasing order, are: Utilities (S6), 
Real estate (S45), Educational services (S53), 
State and local government (S65), Federal 
government enterprises (S62), Federal general 
government (S63), Accommodation (S59), Other 
services (S61), Computer systems design and 
related services (S49), and Retail trade (S28).  
The cumulative economic loss for these sectors 
is US$ 73 million, 25% of which is incurred by the 
Utilities sector and 14% by the Real estate 
sector. Generally, it takes 10-20 days from the 
onset of water reduction before the sectors 
experience rapid economic loss.  Similar to the 
drought warning scenario, sectors continue to 
experience economic losses even after water 
supply begins to improve, albeit at a slower pace, 
before the economic losses plateau. The total 
economic loss for this particular drought 
emergency scenario appears to be in the same 
order of magnitude as other historically observed 
droughts in the region [27].  
 

3.3 Implications to Water Demand 
Management and Prioritization  

 
For the studied scenarios (drought warning and 
drought emergency), drought severity induces a 
wide variability in sector resilience to the 
magnitude and duration of water reduction over 
the drought timeline. Depending on the drought 
severity, this variability can indicate 
disproportionate economic losses and 
inoperability among production sectors when 
uniform water reduction is imposed in the entire 
region. The level of resilience across sectors is 
also not proportional to the degree of water 
reduction, as indicated by the changes in critical 
sector rankings (e.g., Utilities sector) in the two 
simulated scenarios. Furthermore, although 
sector inoperability increases (i.e., production is 
disrupted) earlier in the drought timeline, there is 
a delay in the onset of the sector’s economic 
loss. These trends provide water and industry 
managers valuable insights in formulating 
adaptation strategies that can minimize the 
magnitude of sector losses and production 
disruptions over time. 
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Fig. 2. Ten most critical sectors in terms of inoperability 
 

 
 

Fig. 3. Ten most critical sectors in terms of economic loss (Total loss = $18M) 
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Fig. 4. Ten most critical sectors in terms of inoperability 
 

 
 

Fig. 5. Ten most critical sectors in terms of economic loss (Total loss = $73M) 

S6 Utilities

S4 Mining, except oil and gas

S10 Apparel and leather and allied products

S9 Textile mills and textile product mills

S22 Electrical equipment, appliances, and components

S53 Educational services

S59 Accommodation

S34 Pipeline transportation

S5 Support activities for mining

S63 Federal general government

0.0000 

0.0050 

0.0100 

0.0150 

0.0200 

0.0250 

0 30 60 90 

In
o
p
er
ab

ili
ty
, q

 

Time, days 

S6 

S4 

S10 

S9 

S22 

S53 

S59 

S34 

S5 

S63 

S6 Utilities
S45 Real estate
S53 Educational services
S65 State and local general government
S62 Federal government enterprises
S63 Federal general government
S59 Accommodation
S61 Other services, except government
S49 Computer systems design and related services
S28 Retail trade

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

16.00 

18.00 

20.00 

0 30 60 90 

Ec
o
n
o
m
ic

 L
o
ss
, $
M

 

Time, days 

S6 

S45 

S53 

S65 

S62 

S63 

S59 

S61 

S49 

S28 



 
 
 
 

Pagsuyoin and Santos; BJECC, 5(2): 134-146, 2015; Article no.BJECC.2015.011 
 
 

 
145 

 

For the scenarios considered in the case study, 
the model yields different rankings of critical 
sectors depending on the importance given to 
the economic loss and inoperability measures. 
The magnitudes of the production output for 
different sectors vary considerably in the National 
Capital Region (as in any other region); hence, 
different rankings of sector criticality were 
depicted from Figs. 2 through 5. It should be 
emphasized that when non-uniform water 
reallocation is considered as a strategy for 
managing water demand, reallocation should not 
be based solely on the economic loss or 
inoperability ranking. Water reduction in a sector 
will have ripple effects to other sectors that 
provide inputs or accept outputs from this sector; 
consequently, these affected sectors also will 
experience changes in their inoperability and 
economic loss profiles. 
 

4. CONCLUSIONS 
 
In this paper, we demonstrate the adverse 
effects of water availability disruptions to 
interdependent sectors of a regional economy. 
We present a water input-output model extension 
for estimating the consequences incurred across 
interdependent sectors during periods of drought. 
The model features two distinct measures of risk 
for identifying critical interdependent economic 
sectors namely, economic loss and inoperability. 
Economic loss reflects the monetary worth of the 
reduced production for an industry sector. In 
contrast, inoperability identifies the critical 
sectors not necessarily on the magnitude of the 
financial loss, but rather on the ‘normalized’ loss 
of each sector as a proportion of its total 
production output. This dynamic model extension 
features versatile functions that allow the 
evaluation of intervention strategies implemented 
during the drought timeline that can influence 
sector recovery as water supply conditions 
evolve. The US NCR case study demonstrates 
that economic sectors exhibit varying resilience, 
both in terms of productivity and economics, to 
water distribution schemes that are implemented 
during drought events. Simulation results identify 
the critical sectors that are sensitive to slight 
changes in water reduction schemes. Observed 
data trends also provide valuable insights for 
decision makers in formulating drought 
preparedness policies, long-term water 
conservation programs and short-term responses 
aimed to reduce water consumption in cases of 
emergency. The dynamic water reallocation I-O 
model developed in this study can be applied to 
other drought-prone regions, and be used           

to generate insights on the economic 
consequences of drought, ecosystem thresholds, 
and water reallocation strategies that minimize 
the economic impacts of prolonged drought 
events and their ripple effects across sectors. 
This paper contributes to advancing the current 
state of research in the development of drought 
impact analysis models. Robust analytical 
models are critical in developing drought 
management strategies especially in vulnerable 
regions that are expected to experience 
increased drought frequencies as a result of our 
changing climate patterns. These tools are 
particularly useful in arid regions; they can 
facilitate the formulation of policies that minimize 
the direct and indirect impacts of drought across 
sectors. Ultimately, evaluating the effects of 
droughts to interdependent industry sectors can 
enhance the capability of a region to better 
allocate its scarce resources in times of 
emergency.  
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