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Abstract

In this paper we calculate the Witt groups of P1. It’s a known result, but we calculate it by

another method: we use the localisation theorem of Balmer and the excision theorem of S. Gille.
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1 Background

1.1 Witt Groups of a Shifted and Twisted Scheme

Let X be a scheme which contains 1
2

and V BX be the category of locally free coherent OX -modules,
i.e. vector bundles. Let L be a line bundle over X. We define a duality

∗ : V BX −→ V BX

E 7−→ ∗(E) := E∗ = HomOX (E ,OX)⊗OX L

which is the usual duality twisted by the line bundle L. We identify naturally $ : E ∼−→ E∗∗. If
L = OX , then E∗ is the usual dual and $ is locally given by the application that maps an element
e of E to the evaluation at e. The triple (V BX , ∗, $) is an exact category with duality.
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Definition 1.1. The Witt group of a scheme X twisted by the line bundle L is:

W(X,L) :=W(V BX , ∗, $) (1.1)

For the particular case L = OX , we denote W(X,L) =W(X).

1.2 Derived Witt Group

Let Db(V BX) be the derived category of bounded complexes of vector bundles. We provide this
category by a twisted shifted duality which is composed by a duality functor $n,E· : E · −→
DL[n]DL[n](E ·) and functorial isomorphisms of biduality DL[n] : E · −→ E ·∨ ⊗ L[n].

We represent the derived Witt group by:

Wn(X,L) :=W
(
Db(V BX), DL[n], 1, $n,•

)
.

Elements of Wn(X,L) are isometric classes of such (E ·, φ·) with

φ· : E · −→ DL[n](E ·)

is a symmetric isomorphism, with addition

[E ·, φ·] + [F ·, ψ·] = [E · ⊕F ·,
(
ϕ· 0

0 ψ·
)
]

modulo metabolic classes, and the opposite is

−[E ·, φ·] = [E ·,−φ·].

Witt groups are functorial. To a morphism f : Y → X, we have pullbacks

f∗ :Wn(X,L) −→ Wn(Y, f∗L)[
E ·, φ·

]
7−→

[
f∗E ·, f∗φ·

]
We have also a multiplication (Gille-Nenashev)

Wn(X,L1)×Wm(X,L2) −→ Wn+m(X,L1 ⊗ L2)([
E ·, φ·

]
,
[
F ·, ψ·

])
7−→

[
E · ⊗F ·, φ· ⊗ ψ·

]
This product is anticommutative:

[E · ⊗F ·, φ· ⊗ ψ·] = (−1)nm[F · ⊗ E ·, ψ· ⊗ φ·].

Theorem 1.1. (Homotopic Invariance [Balmer])

Let π : X ×A1 −→ X be the projection, and i : X −→ X ×A1 the section x 7→ (x, 0). Then π∗ and
i∗ are inverse isomorphisms:

Wn(X,L)
π∗ // Wn(X × A1, π∗L)
i∗
oo (1.2)

Proof. See [1].

To a closed subset Z ⊂ X, there is a subcategory DbZ(V BX) ⊂ Db(V BX) of bounded complexes
of vector bundles over X which are exact over U = X r Z. The Witt groups of this subcategory
are denoted Wn

Z(X,L).
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Theorem 1.2. (Localization [Balmer])

There is a long sequence

· · · → Wn
Z(X,L)

Inclusion−−−−−−→Wn(X,L)
Restriction−−−−−−−→Wn(U,L|U )

∂−→Wn+1
Z (X,L)→ · · · (1.3)

when ∂ is explicit. To a class in Wn(U,L|U ), we can write [E ·U , φ·U ] when φ· : E · → DL[n](E ·) is a
symmetric morphism of D(V BX) such that its restriction over U is an isomorphism. The mapping
cone C(φ·) is exact over U and belongs to the subcategory DZ(V BX). Balmer provides C(φ·) with
a symmetric isomorphism ψ· : C(φ·) → DL[n+1](C(φ·)) which is unique up to an isometry, and we
set ∂([E ·, φ·]) = [C(φ·), ψ·].

Proof. See [2].

Theorem 1.3. (Excision [Gille])

If i : Z ↪→ X is the inclusion of a closed subset Z ⊂ X with codimension d, where Z and X are
smooth, then there is a natural isomorphism

i∗ :Wn(Z,L|Z ⊗ detNZ/X)
'−→Wn+d

Z (X,L). (1.4)

Proof. See [3].

If i is the inclusion i : Z ↪→ Z × Ad given by i(z) = (z, 0), then it may be explicit. Suppose
that x1, x2, · · · , xd are the standard coordinates in Ad, and K·(x1, · · · , xd) is the Koszul complex.

Theorem 1.4. Consider the inclusion i : Z ↪→ Z × Ad and denote the projection π : Z × Ad → Z.
The isomorphism of the excision theorem is:

i∗ :Wn(Z,L|Z ) −→ Wn+d
Z (Z × Ad,L)[

E ·, φ·
]
7−→

[
(π∗E , π∗φ)⊗K·(x1, · · · , xd), k·

]
where k. is a symmetric isomorphism between

[
(π∗E , π∗φ)⊗K·(x1, · · · , xd), k·

]
and its shifted dual.

Proof. See [3].

Theorem 1.5 (Balmer). The Witt groups of a point Spec(k) = A0
k = P0

k = ∗ = pt are

Wn(A0
k,O) =

{
W(k) for n ≡ 0 (mod 4)

0 otherwise
(1.5)

where W(k) denotes the Witt group of isometry classes of anisotropic quadratic forms over k.

Proof. See [4].

Remark 1.1. In this work, the value of W(k) is not important.

Theorem 1.6 (Walter). Let X be a scheme which contains 1
2

. Consider the projective space PrX
over X such that r ≥ 1. Let m ∈ Z/2 and O(m) ∈ Pic (PrX)/2.

If r is even, then Wi(PrX ,O(m)
)

=

{
Wi(X) if m is even

Wi−r(X) if m is odd

If r is odd, then Wi(PrX ,O(m)
)

=

{
Wi(X)⊕Wi−r(X) if m is even

0 if m is odd

Proof. See [5].

3



Mouhamad et al.; BJMCS, 10(3), 1-9, 2015; Article no.BJMCS.18366

1.3 Torus

Let Gm = A1 r 0. This Gm is an affine variety: Gm = Spec(k[T, T−1]).

Definition 1.2. An algebraic torus is an algebraic group which is isomorphic to a finite product
of Gm:

Gm ×Gm...×Gm = Gnm.

Theorem 1.7. Let x be the coordinate on Gm. For all variety Y , all line bundle L over Y and all
n we have the isomorphism:

Wn(Y,L)⊕Wn(Y,L)
'−→ Wn(Y ×Gm, π∗L)

([E ·, φ·], [F ·, ψ·]) 7→
[
π∗E · ⊕ π∗F ·,

(
π∗ϕ· 0

0 xπ∗ψ·
)]
.

We can denote that isomorphism by (1, 〈x〉) : (e, f) 7→ e+ 〈x〉f , when we identify every symmetric
complex in Y to its pullback into Wn(Y ×Gm).

Proof. See [3].

Remark 1.2. We have a long localisation exact sequence:

· · · // Wn
s0(Y )(Y ×A1,π∗L) // Wn(Y ×A1,π∗L)

j∗
// Wn(Y ×Gm,π∗L)

∂ //

s∗1
tt

Wn+1
s0(Y )

(Y ×A1, π∗L) //· · ·

Wn(Y,L)

π∗ ∼=
OO

Wn(Y,L)

s0∗ ∼=
OO

〈x〉

jj

Where s0 : Y ↪→ Y × A1 is the null section and s1 : Y ↪→ Y × A1 is the constant section at 1.

Lemma 1.8. There is an isomorphism between the localisation exact sequence and the following
one:

0 // Wn(Y × A1, π∗L)
j∗
// Wn(Y ×Gm, π∗L)

∂ // Wn+1
s0(Y )(Y × A1, π∗L) // 0

0 // Wn(Y,L)
i1 //

π∗ ∼=
OO

Wn(Y,L)⊕Wn(Y,L)
p2 //

(π∗,〈x〉.π∗) ∼=
OO

Wn(Y,L) //

s0∗ ∼=
OO

0

where i1 and p2 denote the inclusion of the first factor and the projection on the second one, s0
the null section and finally x is the coordinate on A1 which vanishes at 0.

Proof. See [3].

Remark 1.3. The Witt groups of Gm are known; if x1, x2, · · · , xn are the coordinates on Gnm, then

W1(Gnm) =W2(Gnm) =W3(Gnm) = 0.

Also we have:

W0(Gm) =W(k)〈1〉 ⊕W(k)〈x〉,

and

W0(Gm ×Gm) =W(k)〈1〉 ⊕W(k)〈x1〉 ⊕W(k)〈x2〉 ⊕W(k)〈x1x2〉.

etc.
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2 Witt Groups of P1

Let k an algebraically closed field and P1 := P1
k. Let Db(P1) = Db(V BP1) the derived category of

bounded complexes of vector bundles over P1 with the usual duality E•∨ = HomOP1
(E•,OP1).

Let calculate the Witt groups of P1 using the localisation sequence with the closed subset Z =
{0} ∪ {∞} and its open complementary Gm. Firstly we have Pic(P1) ∼= Z. As Witt groups are
periodic modulo 2 on L ∈ Pic(X), so it really remains two kinds of groups to calculate: Wn(P1,OP1)
and Wn(P1,OP1(1)).

2.1 Calculation of Wn(P1,OP1)

Theorem 2.1. For all n ∈ N,

Wn(P1,OP1) =

{
W (k) if n ≡ 0 or 1 [4],

0 otherwise.
(2.1)

Proof. We have the following exact sequence:

· · · // Wn(P1) // Wn(Gm)
∂ // Wn+1

0,∞ (P1) // Wn+1(P1) // · · ·

Wn(k)⊕Wn(k)

(〈1〉,〈x〉) ∼=
OO

Wn(k)⊕Wn(k)

∼= (i0∗,i∞∗)
OO

.

As Wn(k) = 0 for n 6= 0 (mod4), we found W2(P1) = 0 and W3(P1) = 0, and it becomes the exact
sequence:

0 // W0(P1) // W0(Gm)
(∂0,∂∞)

// W1
0 (P1)⊕W1

∞(P1) // W1(P1) // 0

W(k)⊕W(k)

(〈1〉,〈x〉) ∼=
OO

W(k)⊕W(k)

∼= (i0∗,i∞∗)

OO
.

We can separate two connected components 0 and ∞.

Then we obtains
∂0(a〈1〉+ b〈x〉) = i0∗(b)

and
∂∞(a〈1〉+ b〈x〉) = ∂∞(a〈1〉+ b〈x−1〉) = i∞∗(b)

because 〈x〉 = 〈x−1〉.

Thus it grows

0→W0(P1)→W(k)〈1〉 ⊕W(k)〈x〉

(
0 1
0 1

)
−−−−→W(k)⊕W(k)→W1(P1)→ 0.

We define a filtration of Db(P1) as

0 ⊆ Db{0,∞}(P1) ⊆ Db(P1).

That gives us a short exact sequence of categories:

0→ Db{0,∞}(P1) ↪→ Db(P1) � Db(P1)/Db{0,∞}(P1)→ 0.

Where
Db{0,∞}(P1) ∼= Db{0}(P1)qDb{∞}(P1)
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and
Db(P1)/Db{0,∞}(P1) ∼= Db(P1 r {0,∞}).

Now
Wp
{0,∞}(P

1) ∼=Wp
{0}(P

1)⊕Wp
{∞}(P

1).

Then with respect to the excision theorem of Gille, we obtain:

Wp
{0}(P

1) :=Wp(Db{0}(P1)) ∼=Wp−1({0}),
and

Wp
{∞}(P

1) :=Wp(Db{∞}(P1)) ∼=Wp−1({∞}).

Thus, if p ≡ 1 (mod4), we have

Wp
{0}(P

1) ∼=W(k) et Wp
{∞}(P

1) ∼=W(k).

Recall that for x = X0
X1

where X0 = 0 at {0} and X1 = 0 at {∞}, the isomorphism W(k) ∼=
Wp
{0}(P

1) is described by:

〈a1, a2, ..., ar〉 7→ 0 // OP1(−1)⊕r−a1X1 0 · 0

0 −a2X1 · 0
· · · ·
0 · · −arX1


��

X0 0 · 0

0 X0 · 0
· · · ·
0 · · X0


// OP1

⊕r a1X1 0 · 0

0 a2X1 · 0
· · · ·
0 · · arX1


��

// 0

0 // OP1
⊕r−X0 0 · 0

0 −X0 · 0
· · · ·
0 · · −X0


// OP1(1)⊕r // 0

With respect to the localisation theorem of Balmer, the spectral sequence is reduced to:

· · · → Wp(Db{0,∞}(P
1))

α−→Wp(Db(P1))
β−→Wp(Db(P1 r {0,∞})) ∂−→Wp+1(Db{0,∞}(P

1))→ · · · ,

where α is the inclusion and β is the restriction.

Then for p = 0, we have:

0→W0(P1)→W0(Gm)
∂−→W1

{0,∞}(P1)→W1(P1)→ 0.

Recall that Gm = Spec(k[t, t−1]) and W0(Gm) ∼=W(k)〈1〉 ⊕W(k)〈x〉 which is a free W(k)-module
of rank 2.

Describe now ∂(〈1〉) and ∂(〈x〉).

• 〈1〉:= 0 // OP1

1

��

// 0

0 // OP1 // 0

and ∂(〈1〉) = 0 // OP1

0

��

1 // OP1

0

��

// 0

0 // OP1
−1
// OP1 // 0

The two lines of ∂(〈1〉) are acyclic complexes so ∂(〈1〉) = 0, then

W(k)〈1〉 ⊂ ker(∂) =W0(P1)
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〈x〉 :=0 // OP1(−1)

X0

��

// 0

0 // OP1 // 0

and ∂(〈x〉) =0 // OP1

−X1

��

X0 // OP1

X1

��

// 0

0 // OP1
−X0 // OP1 // 0

which prove that ∂(〈x〉) = 〈1〉.

Then 〈1〉 7−→ (0, 0) and 〈x〉 7−→ (〈1〉, 〈1〉).

Next, P1 with trivial duality has the following Witt groups:

W0(P1) = ker(∂) =W(k)〈1〉,

and

W1(P1) = coker(∂) =
W(k)⊕W(k)

W(k)(〈1〉, 〈1〉)
∼=W(k).

2.2 Calculation of Wn(P1,OP1(1))

Theorem 2.2. For all n ∈ N, Wn(P1,OP1(1)) = 0.

The groups Wn(P1,OP1(1)) are more complicated. We use the theory of divisors.

Definition 2.1. An irreducible divisor on a smooth variety X is an irreducible subvariety Z ⊂ X
of codimension 1. A divisor on a smooth variety X is a formal sum of irreducible divisors with
coefficients in Z

D = a1Z1 + a2Z2 + · · ·+ arZr.

Divisors on X form an abelian group Div(X). A divisor is effective if all its coefficients ai ≥ 0. We
write D � E if D − E E is effective.

For an open U ⊂ X, we have a restriction morphism

Div(X) −→ Div(U)

D =
∑

aiZi 7−→ D|U =
∑

Zi∩U 6=∅

ai(Zi ∩ U)

To every irreducible divisor is a non-archimedean valuation vZ : K(X)× → Z, which measures the
order of cancellation or the pole order of f ∈ K(X)× at the generic point of Z. The principal
divisor associated to a function f ∈ K(X)× is div(f) =

∑
Z irreducible

vZ(f).

For each divisor D we have a subsheaf OX(D) with sections on each open set U ⊂ X are

OX(D) = {f ∈ K(X)×/div(f)|U � −D|U } ∪ {0}.

The bundle OX(D) is the sheaf of sections of a line bundle is also noted that OX(D). The general
theorem of this theory is:
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Theorem 2.3. To each smooth variety X, it corresponds an exact sequence:

1→ O(X)× → K(X)×
div−−→ Div(X)

D 7→OX (D)−−−−−−−→ Pic(X)→ 1.

Let denote L1 = π∗L⊗O
Y×A1

OY×A1(s0(Y )). It’s a line bundle over Y ×A1 whose sections are

rational sections of L with at worst a simple pole along s0(Y ) and which are regular everywhere
else.

Lemma 2.4. There is an isomorphism between the localisation exact sequence and the following
one:

0 // Wn(Y×A1,L1)
j∗
// Wn(Y×Gm,L1)

∂ // Wn+1
s0(Y )

(Y×A1,L1)
// 0

0 // Wn(Y,L)
i2 //

p ∼=

OO

Wn(Y,L)⊕Wn(Y,L)
p1 //

(π∗,〈x〉.π∗) ∼=

OO

Wn(Y,L) //

σ ∼=

OO

0

where i1 and p2 denote the inclusion of the first factor and the projection on the second one, s0 the
null section and finally x is the coordinate on A1 which vanishes at 0.

Note that the isomorphism in middle of diagrams of this lemma and the lemma is the same
π∗L and L1 have the same restrictions to Y × Gm, but the role of factors of the direct sum in the
bottom exact sequence is reversed.

Lemma 2.5. Let ξ : L
∼=−→ L1 be an isomorphism of line bundles over a variety X. Then

ξ] :Wn(X,L) −→ Wn(X,L1)[
E ·, φ·

]
7−→

[
E ·, (1E·∨[n] ⊗ ξ) ◦ φ·

]
is an isomorphism between derived Witt groups which is compatible with restriction to open subsets
and to localisation long exact sequences.

We identify OP1(1) ∼= OP1(0). But P1 is the union of two open subsets A1
0 = Spec(K[x]) and

A1
∞ = Spec(K[x−1]). We have OX(0)(k[x]) = x−1k[x] and OX(0)(k[x−1]) = xk[x−1].

Proof of theorem 2.2. For (P1,OP1(1)), we identify OP1(1) ∼= t−1 · OP1 = L(0), all germs of rational
functions with at worst a simple pole at 0 and regular elsewhere. Then the localisation sequence
becomes:

0−→W0(P1,OP1 (1))−→W0(Gm)
(β0,β∞)
−→ W0

0 (P1,t−1·OP1 )⊕W0
∞(P1,OP1 )

∂−→W1(P1,OP1 (1))−→0.

Here we have (β0, β∞) : W0(Gm) → W(k) ⊕ W(k), but W0(Gm) ∼= W(k)〈1〉 ⊕ W(k)〈t〉. Thus
β0 : a〈1〉 + b〈t〉 7−→ a β∞ : a〈1〉 + b〈t〉 7−→ b. Then (β0, β∞) is an isomorphism and its kernel is
ker(β0, β∞) =W0(P1,OP1(1)) = 0, and its cokernel is coker(β0, β∞) =W1(P1,OP1(1)) = 0.

3 Conclusion

Arason proved that: if k is a field of characteristic not 2 and n ≥ 1 then W (Pnk ) = W (k). In 90’s
Balmer introduced Wn(X), where X is a derived and more general triangulated categories, which
have a lot of applications, see for example [6]. Later, Walter proved a projective bundle theorem,
which allowed the calculation of W i(PrX ,O(m)) where X is a scheme containing 1

2
, r ≥ 1, m ∈ Z/2,
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PrX is the r-projective space over X and O(m) ∈ Pic(PrX)/2 [Picard group].

In this paper, we calculate Wn(P1) using the famous Balmer’s localization sequence, a simple
method which permits us to eliminate some hardness. The mentioned method opens the road to
find, with real few geometric complexities, Wn(P2) and Wn(P3). That is our actual objective.
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