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Abstract

In this paper, we shall continue a study of the CS-recovery of signals studied in [1]. Under
the assumption that a m X n matrix A obeys the RIP of order s we decompose the space of

unknown vectors into sets My, Mji,--- , M7 defined by a bias function p, on a good location

To ={1,2,---,s} and research a good condition of CS-recovery.
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1 Introduction

This paper introduces the theory of compressed sensing(CS). For a signal € R", let ||z|o be the
lo-norm of @, which is defined to be the number of nonzero coordinates, ||| be the {;-norm of x
and ||z||2 be the l>-norm of @. Let « be a sparse or nearly sparse vector. Compressed sensing aims to
recover a high-dimensional signal (for example: images signal, voice signal, code signal...etc.) from
only a few samples or linear measurements. The efficient recovery of sparse signals has been a very
active field in applied mathematics, statistics, machine learning and signal processing. Formally,
one considers the following model:

y=Ax + z, (1.1)
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where A is a m X n matrix(m < n) and z is an unknown noise term.

Our goal is to reconstruct an unknown signal x based on A and y given. Then we consider
reconstructing @ as the solution &* to the optimization problem

min ||z|[;, subjectto ||y — Ax|2 <e, (1.2)
x

where ¢ is an upper bound on the the size of the noisy contribution.
In fact, a crucial issue is to research good conditions under which the inequality

|z — 2|2 < Collz — ®rll + Cie, (1.3)

for suitable constants Cy and Ci, where T is any location of {1,2,--- n} with number |T| = s
of elements of T" and x7 is the restriction of « to indices in 7. One of the most generally known
condition for CS theory is the restricted isometry property (RIP) introduced by [2]. When we discuss
our proposed results, it is an important notion. The RIP needs that subsets of columns of A for
all locations in {1,2,--- ,n} behave nearly orthonormal system. In detail, a matrix A satisfies the
RIP of order s if there exists a constant § with 0 < § < 1 such that

2 2 2
(1 =9d)llallz < [[Aal2 < (1+6)lal> (1.4)
for all s-sparse vectors a. A vector is said to be an s-sparse vector if it has at most s nonzero entries.
The minimum ¢ satisfying the above restrictions is said to be the restricted isometry constant and
is denoted by Js.

Many researchers has been shown that the [; optimization can recover an unknown signal in noiseless
cases and in noisy cases under various sufficient conditions on s or d2s when A obeys the RIP. For
example, E.J. Candes and T. Tao have proved that if 525 < v/2 — 1, then an unknown signal can be
recovered [3]. Later, S. Foucart and M. Lai have improved the bound to d2s < 0.4531 [4]. Others,
025 < 0.4652 is used in [5], d2s < 0.4721 for cases such that s is a multiple of 4 or s is very large
in [6], 625 < 0.4734 for the case such that s is very large in [5] and §, < 0.307 in [7]. In a recent
paper, Q. Mo and S. Li have improved the sufficient condition to d2s < 0.4931 for general case
and d2s < 0.6569 for the special case such that n < 4s [8]. J. Ji and J. Peng have improved the
sufficient condition to ds < 0.308 [9]. T. Cai and A. Zhang have improved the sufficient condition
to 0s < 0.333 for general case [10]. T. Cai and A. Zhang have improved the sufficient condition to
dr in case of k > %57 in particular, d2s < 0.707 [11]. By using a rescaling method, H. Inoue has
obtained the sufficient conditions of &; < 0.5 and das < 0.828 in [12].

Recently, In [1] we have researched good conditions for the recovery of sparse signals by investigating
the difference between the loc-norm of h = &* —x and the mean M of {|ha|, -+ ,|hs|}-
In more details, we considered a function p on Ty = {1,2,--- , s} defined by

_ Il £ [ho| +--- + [P
| + |ha| + -+ |hs|”

p(r)

:1727“' ) S,

where the index of h is sorted by |h1| > |h2| > --- > |h,| and have shown that for ¢ > 1 and < < p(1)

B 2s 1 :

if A obeys the RIP of order =% and § 2 < o \/T,(TC)7 then we have stable recovery of approximately
p(re)

sparse signals, where 7. is a natural number such that £(r. — 1) < p(r.) < re, 2 < 7. < 2. But,

the function p on Ty and r. depend on «. Furthermore 7. is not easily searched. In this paper, in

order to compensate for these defects, we decompose K.(y,A) = {x € R"; |y — Ax||2 < ¢} into
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the following subsets { Mo, M1, -+, Mz}:

Mo = {fv € Ke(y,A); pa (%5) < %}
1 2 1 1
= \Y, 5 z | T = z | & <<-0s
M, {:ceK(y A); p (55>>5andp <4s> 2}
M, = {mng(y,A); Pz (kz—;gs) —— and w<k2i045) %}, 2<k<6,
M; = {:v € K:(y,4); pz (%s) = 1}

by deviding To = {1,2,---,s} into To N [1, £), To N (kT'*E)S, ’%64 (k=1,---,6) and To N (%s,s], and

we show for any @ € Mi(k =1,2,---,7) that if A obeys the RIP of order s and §, < ﬁ

then the inequality (1.3) holds. We also state in Section 2 the existence of CS-solution.

2 (CS-Solution

In this section, we discuss the existence of CS-solutions mathematically.

Let a m x n matrix A (m < n) and a data y € R™ be given. We define closed convex subsets of
R" by

Ko(y, A)
K.(y,A)

{x € R"; y= Az},
{x e R"; |ly— Azx|2 <e}, £>0.

When Ko(y, A) # 0, that is, y € AR™, then Ko(y, A) and K.(y, A) are
Ko(y, A) = 2o + ker A

for some vector xg € Ko(y, A), where ker A = {& € R"; Az = 0}. For example, if the rank r(A) of
A equals m, then AA" is invertible and A (A* (AA*)™'y) = y. Hence, A* (AA*) 'y € Ko(y, A).
Let y ¢ AR". Since AR" is a closed subspace of R", there exists a unique vector yo € AR" such
that ||y — yoll2 = min {|ly — Az||2; = € R"}. Then yo is a vector in AR™ such that y —yo is a
vector in the orthogonal complement (AR™)" of AR™. It is clear that K.(y, A) # 0 if and only if
lly — yoll2 < e. In this paper, we assume that Ko(y, A) # (0 in noiseless cases and K.(y, A) # () in
noise cases. We show the existence of CS-solutions.

For any ¢ > 0 we put
Dy ={z e R"; || <t}.

Then AD; is a closed convex subset of AR™ such that A (0D;) = OAD;, where 0K is a boundary
of a set K. Assume that yo € AD;. Then there exists a vector x+ in OD; such that ||y — Axt||2 =
min {|lyo — Az||2; @« € D;}. Since

ly — Az:||3 = lly — yoll3 + llyo — Az:l3,
we have

ly — Az, |l2 = min{[ly - Az|s; @€ Di},
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which implies that there exists a vector x7in (@ + ker A) N D; such that
il < l|le + |1, o e kerA.
Thus we have the following:

Proposition 2.1. Suppose that K.(y, A) # 0. Then there exists a positive number ¢y, such
that

llyo — Aze, |13 = € — [ly — o3

and the vector a7, determined by x:, equals the CS-solution «*. In particular, in noiseless cases,
x* = x},, where tg is a positive number satisfying yo = Az, .

3 Recovery of CS

Take an arbitrary @ € K.(y, A). We denote by T a vector obtained by changing coefficients of =
as follows;

|hi] > |h2| = - > |hal,

where h = (h1, ha,--hn) = x* — 7. Let To = {1,2,--- ,s} and we define a function p(r) on To
depending on x by

h h o By
pm(T)=|l|+|2|+ +| |7 r e Th.
[z |2

By deviding Tp = {1,2,---,s} into To N [1, £], To N (%s, %s (k=1,---,6) and Top N (%s,s],
we decomposed K. (y, A) into the following subsets { Mo, M1, --- , M7};

Mo = {wEKa(y,A); Pa (%8)§§}
1 2 1 1
- 3 xz | T - z | <= y
M, {w € K(y,A); p (58) > 5 and p. (43) < 2}
k+3 k+3 k+4 k+4
= 3 xr TTan T A €T Tan <7 b) S §7
My, {mEKs(y,A), p ( 20 s)> 10 and p. ( 20 s)_ 10} 2<k<6

My = {mng(y,A); e (%):1}.

Then, K.(y, A) = U]_, Mx and M; N M; = 0(i # j). (Figure 1)
Using the function p.(r) on Ty, we obtain a similar result to that of ([1] Theorem 2.1):

Theorem 3.1. Take an arbitrary @ € My (k = 1,2,---7). Assume that A obeys the RIP of
order s and s < ﬁ. Then,

[ 25—

lz* — @)z < O & — @1 + CPe,
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Pa(T)
-~
x € My
1 freeeemmnnssmn e : ,
2 V€ Mg :
LR W i Y A ]
10 . V€ M :
e {)"’(_T_) : : z € Mo ;
10 P 5
1 Sl E
2 [T /T - : : :
Y e P e
N < :
2 | S ]
s : A :
0 1 11 k+3 k+4_ 1
5°4° 20 ° 20 ° 2 s T
Figure 1: {.7\407 .7\417 cee ,M7}
where x; is a vector consisting of the s-large entries of & in magnitude and
o = A
( 2 - )
o _ 2v1+0s xf
h = .
Vi (1= (/i - 1))
Proof. Take an arbitrary @ € Mj. Let ri be a natural number such that
k+3 k+4
<
20 s<rE < s and
2 2
g(m —1) < pa(rg) < ST (3.1)
Then,
k+3 k+4
22 < palr) < :
0 <P () < 0 (3.2)
We put

bzl + 2l — @l
S
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<

k+4 K}
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G - :
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Figure 2: € M,

Let Ty = {1,2,--- ,r2} and T2 = {r2 + 1,--- ,n} be a decomposition of {1,2,--- ;n}. By (3.1) and
(3.2) we have

2\ T
s lle < 222 g s < 20 (33

By the definition of CS optimization (1.2), we have
lhzglls < Izl + 2]z — @1 (3.4)

Hence it follows from (3.3) and (3.4) that

lhrlli = [hrslls + |hoynzs lln
< as+ (1= pa(re) |hr |l
< (2 —pa(ry)) as
<

k+3
2&(1—T)S,

which implies by [1] Lemma 1.1 and the Cai idea [4] that there exist {\;}1<i<n and {ui}i<i<n
such that

N
hr, = E A,
=1
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where

V)

supp u; C T2, [supp u;| < (1 - kT—Bg)
|willoo < 2a. (3.5)

Hence we have

luill2 < [lwilloov/|supp il

k+3
< 2 -T2
< 2a0/s 50
ITa] + supp wi| < m+(17kTJBS)SSS
and
as = |[lhxll + 2l — @s]lx
1
= ———|lh7 |1 + 2| — xs]|1
pz(rk)H 1l [ [
N
< hr |2 + 2|l — x|
pz(rk)ll 1l [ [
S
< gyl + 2l — 2],
k43

20

which implies since A obeys the RIP of order s that

(1=6)|hr )z < [Ahz |3
< |<AhT17Ah>| + ‘(AthvAhT2>|
N
< Vit 8|hr 226+ > Xi[(Ahry, Aus)|

=1
N
< VT +6ellhry 2+ Y Xids ||y [l2]|ull2
i=1
2V1+dsel|hr |2

IN

k+3

+6s[lhr |2 0

1
Rz |l2 + 24/1—
k+3

N
20
= 2V1+ dse|hry |2 + 6- m*lnth”g

46, [ _k+3
Vs 20

20
1 = 1)<,
<+ 513 )6‘<

2 |l — s
— || — s
NE '

+

2 — zs|[1[|h7, |2

Since
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we have

VT H 8+ U2y /1= 58 |2 — 2

1= (14,/25 1) 4,

lhr ]2 <

)

which implies that

IN

& — x|
IRzl + [[RTg s

|z — 22

< 2llhg, |l + 2z — 2
2.7
< " lhry |2 + 2]z — @]

P (k)
Vs 2\/1—1—558—1—%\/1—kTJB?’(SSHm—wsﬂl
/ / 20
2z — . s
2V1+ 654/5

= 13

%(1—(14— s )53)

|z — ...

This completes the proof.

We state concretely the following case:

(i) Take an arbitrary & € M. If §, < %, then

s

1— 30

2v/5¢/1 + 0s/5

i <
" — 2|2 < 133,

[ — @l +

(ii) Take an arbitrary © € Ma. If §s < % ~ 0.366, then

||:l:* _ 513H2 < M7355
1—(1+V3)bs

(iii) Take an arbitrary @ € M. If 5 < %, then

WITFos
1—(14++3)ds

2 — @[l +

« 405 2v2v/1+ 654/
_ < — - ¥ e
”w wHQ— 17263Hw w5||l+ 17263 €

Though we have decomposed K.(y, A) into My(k =0,1,---,7) in this paper, we may consider the
other decompositions of K.(y, A).

4 Conclusion
In a previous paper [1], we have discussed sufficient conditions of isometry constant d by investigating

a bias function p, defined by each unknown vector x. In this paper, we decompose the space of
unknown vectors into sets Mo, My, .-, M7 defined by the bias function p,. More precisely, when
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@ is contained in My (1 < k < n), the sufficient condition of §, is improved, and so this method is
useful. When x € My, the sufficient condition of §5 is not improved by this method. We think that
this method is more usable than a previous one in [1].
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