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Abstract
We consider the method of signal accumulation for problems with natural constraints. We focus
on the case when the constraint has the implicit form of the type ‖x‖= C with the unknown
constant C to be determined as part of the problem solution. The construction and derivation are
carried out based on application to the real-life magnetometry problems related to public
security systems.
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1. Introduction

Magnetic object localization and classification are an old
problem that is finding its way into a multitude of applica-
tions. Passive magnetometry has been employed in fields ran-
ging from geological exploration, biomedical treatment and
wreck removal to localization of unexploded ordinance [1]. It
comprises the advantages of all-weather performance, simple
equipment and convenient signal processing.

This technique appears to be especially useful in security
systems where there is a need to detect and classify metallic
objects of moderate size and distinguish potentially hazardous
objects (such as small-arms or cold arms) from benign objects.
This is due to the fact that every gun has a barrel, which is usu-
allymade of ferromagneticmaterial which, under the influence
of Earth’s magnetic field, becomes a magnet itself and, hence,
produces a magnetic field of its own. The easiest model of a
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magnet is a point dipole, which is employed in most of the
works on the matter [2–4].

To locate a moving magnet and measure its magnetic prop-
erties, magnetic sensor arrays are commonly used. The United
States Naval Research Laboratory employed a superconduct-
ing gradiometer scheme to locate a moving magnetic dipole
source as early as 1975. Wynn, instead of only measuring
a magnetic induction vector, relied on the measurements of
a magnetic gradient tensor to track a magnetic dipole, and
managed to track a moving magnetic dipole using continuous
measurement performed by a static measuring station [2, 3].
Subsequently, numerous methods have been developed to loc-
ate the target with magnetic sensor arrays. In 2003, Heath
devised MATLAB algorithms for the three-dimensional (3D)
inversion of potential field tensor data using Monte Carlo and
Downhill Simplex approaches [5]. In 2006, Nara derived a
simple formula for the localization of a magnetic dipole using
measurements of a magnetic induction vector at two points in
close proximity and employing the magnetic gradient tensor
calculated from these measurements [4]. In all these cases the
authors concentrated on the localization of the magnet first,
implying that given themagnetic dipole’s coordinates, its mag-
netic induction could be easily calculated from the first prin-
ciples of magnetostatics.
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In 2007, Arie formulated the problem as an over-
determined nonlinear equation set using a magnetic dipole
model for the stationary target and employing a synthetic
aperture via a moving magnetic sensor to collect bulk
measurement data. He used a simulated annealing algorithm
inspired by equilibrium thermodynamics to rapidly find a good
approximation to the global optimum of this equation set [6].
In 2014, Wahlstrom indicated that the sensor models could
be combined with a standard motion model and a standard
nonlinear filter to track metallic objects in a magnetometer
network [7].

In 2017, Gao et al [8] proposed a method of target loc-
alization with the alternating magnetic field based on coher-
ent demodulation, but the single alternating magnetic dipole
should have no roll and move at a constant speed.

More recently, Liu et al [9] returned to the magnetic gra-
diometer technique and focused on the detection of metallic
objects based on their magnetic signatures without trying to
classify detected objects at the danger scale. Although this
approach seems to be sensitive enough, it is still an approxim-
ation because the calculation of the magnetic gradient tensor
based on measurements of magnetic induction in two distinct
points of space cannot be exact due to the high nonlinearity
of magnetic induction dependence on range. This is why we
abandon the gradiometry approach and base our method on
3D magnetometers only. This is similar to the approach used
by Chiba and Nara [10], who return to the 3D-magnetometer
technique to find the position of a mobile device using mag-
netic signals from two rotating magnets and using a fast Four-
ier transform to retrieve spectral properties of the resulting
magnetic signals in what may be called a cooperative envir-
onment. Our system uses absolutely non-cooperative targets
and a sensor fusion approach to not only localize the magnetic
target but to accurately measure its magnetic strength as well.

It is worth mentioning different empirical methods like
the one described in [11]. There, the authors also used
a gradiometer measuring system (see above) together with
advanced statistical methods for nonlinear empirical pattern
recognition and classification of magnetic signatures. More
specifically, [11] considers the time dependence of signals,
which are measured at different time frames (and corres-
ponding to different positions of a moving target), and then
employs a Fourier-based digital signal processing (DSP) tech-
nique (called ‘Joint Time/Frequency Analysis’) to process
them. The inescapable problemwith this approach is that these
time series contain not only information on the magnetic prop-
erties of the target in question but also information on the tar-
get’s movement. The item’s magnetic signature is variable and
does not behave linearly. The gait and speed of passage, prox-
imity to the center of the portal and background clutter all
impact and alter the concealed weapon detector(CWD) mag-
netic signature. This makes it difficult to reduce the response
to a mathematical-based linear algorithm.

Our approach, however, gets rid of this difficulty by
employing a matched filter: using the information on the tar-
get’s movements obtained independently (via ToF cameras,
which measure the positions of the target at every time frame)
we are able to detach that information which is pertinent

to the target’s movement from the target’s magnetic proper-
ties (i.e. the m vector) and deal only with the latter. This is
described in detail in section 2 below. Therefore, we are not
forced to consider any time series and to employ any threshold
analysis; instead, we deal only with the bunch of raw data
and perform measurements of the physical value of interest,
namely the ‖m‖. The latter may be used for threat discrimina-
tion as usual using either threshold analysis, neural networks,
machine learning, etc. Our goal is to provide input information
for the following steps of target acquisition, which we thor-
oughly do, introducing no additional assumptions, and to find
an optimal solution (minimum of a discrepancy).

Another misfortune of the approach in [11] is that the
details of the algorithm remain unknown as proprietary soft-
ware is employed. This makes direct comparison via sim-
ulations impossible. We plan to extend and deepen our
mathematical model and calibrate it with the use of a real
inspection zone, where we will also compare it with exist-
ing empirical algorithms. At the moment, these are beyond the
scope of the present work, which is mostly about the theoret-
ical development of the novel approach designed for the con-
strained problems widely present in real life but essentially
missing in research.

With regard to accurate measurement of vector-valued vari-
ables under heavy noise conditions, the common practice is
the approach where one smooths out the measurement results
with a type of filter: the Kalman filter and its variations being
among the most popular. As simple as it is, i.e. an easy-to-
implement recursive filter with very moderate computational
requirements, it allows one to smooth the measurement res-
ults, taking into account the a priori postulated motion model
for the measured variable and using up all the information con-
tained in the measurements supplied by the measuring device.

In practice, however, we often encounter situations when
the measured quantity is restricted by various constraints,
which are inescapable consequences of the underlying phys-
ics, for example, the measured vector might have a constant
norm invariant in time. Such constraints inherent in the prob-
lem represent additional information, which common filtering
techniques (and the Kalman filter in particular) fail to use. This
problem has attracted a lot of attention recently. Significant
progress has been achieved in the investigation of the state-of-
the-art constrained Kalman filter (see [12–18] and many oth-
ers). Still, such an approach can account for known constraints
of the type of equations or inequalities (and even these are best
treated in case they are linear/nonlinear constraints requiring
approximations of the Taylor expansion type), but it fails to
use the undefined constraints. For example, it can deal with
the situation of the constraint of the type ‖x‖= C where the
constant C is known, but it fails in such a constraint when C is
unknown and subject to determination.

Another well-known technique for combating measure-
ment noise is that of signal accumulation [19–21], exploited
in a multitude of engineering applications (Reed–Solomon
codes being one of the most famous examples). The basic
idea here is that if the measured quantity represents a sum
of a non-random signal of interest and a random white noise
(which, according to the central limit theorem, usually implied
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to be Gaussian), then the additive accumulation of measure-
ments leads to coherent signal accumulation and incoher-
ent noise accumulation, which increases the signal-to-noise
(SNR) ratio, which in turn leads to smaller measurement error.
In this way, if we combine N measurements, the signal rises
roughly N times, the noise rises

√
N times and the resulting

SNR rises
√
N times. This is a very general technique which

finds its way into very different applications, the most com-
mon of which is a matched filter technique, which is the same
approach in disguise. But as powerful as it is, it fails to account
for the inherent constraints a signal may be subject to.

The main contributions of the present manuscript are the
following.

• In addition to detection of an object possessing a magnetic
signature we calculate its position on a person’s body and its
magnetic signature itself which, in our case, is a magnetic
moment vector of the representing dipole. As shown in this
paper this set of data greatly enhances classification of the
object and helps to avoid most false alarms.

• We show how to employ the latter technique for the problem
of the measurement of the vector quantity subject to various
constraints.

• Finally, though we take as an example the problem of mag-
netic measurements under noise encountered in real-life
applications, the scope of the approach presented is in no
way limited by magnetometry alone but can be employed
for any linear system under suitable constraints.

The paper outline is as follows: section 1 describes the real-
life magnetometry problem in detail, laying out the approach
proposed; section 2 establishes the main equation system sub-
ject to solution; section 3 explains our approach to solving
it; section 4 contains the main existence and uniqueness the-
orem, stating the solution exists and describing a numerical
algorithm for finding it; section 5 presents the numerical data
obtained via computer simulation and contains a discussion of
the benefits of the approach proposed.

2. Real-life problem in magnetometry

When designing a system for detection of concealed small-
arms worn by people entering a public place, a common
approach is to employ magnetometry. A point magnet is char-
acterized by a vector of magnetic moment m, which is an
intrinsic property of the magnet. Its orientation represents the
orientation of the magnet itself and its norm does not depend
on anything and does not change in time, being a characteristic
feature of the magnet (i.e. its ‘magnetic force’). Determina-
tion of this magnetic force can help us to distinguish between
benign and hazardous objects, and its orientation can help to
determine its position on a human’s body (because if an elong-
ated object magnetized along its longitudinal axis swings in
sync with a part of the person—e.g. his arm or his leg—then
our confidence in the magnet’s position grows).

To start the process of zone inspection we need to know
whether any people are there. For this, 3D cameras (based
either on the time-of-flight principle, structured light approach

or stereo-pair design) are usually employed. They not only
give the system notice of the people’s presence in the inspec-
tion zone but measure people’s coordinates as well, which
gives us the number of people present and approximate where-
abouts of the magnets’ positions in the zone. But due to the
strong dependence of the magnet’s magnetic field on the mag-
net’s coordinates (1/r3 dependence on distance) this kind of
accuracy is clearly insufficient and subject to refinement.

Magnetic induction B produced by a magnet with the mag-
netic moment m in the point r relative to the magnet is given
by a well-known formula from magnetostatics [22]:

B(m) =
1
r3

[3〈m, r̂〉r̂−m] , r̂=
r
r
, r= ‖r‖. (1)

Here, and below, we also use 〈·, ·〉 for the standard dot product
between two vectors. We see that as the dependence of B on
the magnet’s coordinates is strongly nonlinear, its dependence
on m is linear and can be described by a linear operator A:
B= A∗(x−d)m where

A∗(x−d) =
1
r3

[3〈·, r̂〉r̂− I] , r= x−d. (2)

Here, the vectors x and d are the magnet’s and magnetometer’s
coordinates, respectively. This means that we deal with a linear
system here: at least as long as the measurement of a magnetic
moment m is concerned.

Having placed several magnetometers at the known points
at the boundary of the inspection zone we can measure mag-
netic induction in those points of space. This means that we
have a number of equations

A∗(x−d1)m= B1

A∗(x−d2)m= B2
...

A∗(x−dd)m= Bd,

(3)

where d is the number of detectors. If we denote

A(x) =


A∗(x−d1)
A∗(x−d2)

...
A∗(x−dd)

 ∈M3d×3, b =


B1

B2
...
Bd

 ∈ R3d

(4)

we can rewrite the system as a single multi-dimensional
equation

A(x)m= b

for a combined vector (x,m)⊤. We solve this system in a least-
squares sense, i.e. we find such a vector (x,m)⊤ such that the
value of the discrepancy

‖A(x)m−b‖2

is at a minimum. This problem is highly nonlinear in x due
to nonlinearity of the magnetic induction dependence on the
magnet’s coordinates and is quadratic in m, which allows us
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Figure 1. A block diagram of magnetic moment analysis.

to employ linear algebramethods to solve it inm and, hence, to
decrease the dimensionality of the problem left to a nonlinear
minimizer employed to find x. The solution of them-problem
(given the vector x) is well-known and is obtained via the
Moore–Penrose pseudo-inverse matrix:

m(x) =
(
A⊤(x)A(x)

)−1
A⊤(x)b (5)

which can be found using the standard QR-decomposition or
singular value decomposition (SVD) techniques.

Now, the problem with magnetic measurements is that we
cannot shield our measuring system from outside magnetic
interference and noise, of which there aremany, in contrast, for
example, with electric measurements (where a simple Faraday
cage will do). Thus, the problem of fighting the noise is of
utmost importance in this measurement scheme as well as in
many other industrial applications. To deal with the situation
we can employ the signal accumulation over time technique.

While a person under inspection passes through our system,
the measuring device may make measurements of the person’s
coordinates and magnetic fields generated by it multiple times
a second. Given a typical hiking speed of 1 m s−1, a length
of inspection zone of ∼3 m and a measuring frame rate of
tens of frames per second, it gives us a number of measure-
ments of the order of a hundred. If we measure the person’s
coordinates at each time frame via the optical device already
mentioned, then we know a person’s trajectory and, hence, a
magnet’s trajectory (provided a magnet is stationary in a per-
son’s reference frame, which is typically the case) up to an
unknown translation vector and suffice it to find a position of
a magnet at a single time frame only (e.g. the last frame)—
others will be found by applying the known trajectory shifts.
In fact, we apply a type of matched filter here. This means that
in this accumulation scheme, the dimensionality of the nonlin-
ear minimization problem does not increase and it remains 3D.

Figure 1 represents a schematic diagram of the analysis of
a magnetic moment. Here, we use independent data for mag-
netic induction and the trajectory of a person. We emphasize
that the minimization process is split into the explicitly solv-
able part related to m and nonlinear minimization in x. This

reduces the number of parameters for nonlinear minimization
to three.

The properties of the person’s magnet do not change over
time as the person passes through our system. If we make an
assumption that this means that the vectorm remains constant
over time, we can combine equation (4) for various time
frames in the large system of 3 dT equations where, as before,
d is the number of detectors and T is the number of available
time frames. The solution of this larger system remains exactly
the same as before. We just need to tweak the A∗ at each time
frame to account for the person’s movement (which we know
exactly via the optical subsystem). This is trivial because if
y1, . . . ,yT are the known positions of a fixed point on a per-
son’s body and x is a magnet’s position at the last time frame,
then the magnet’s position at an arbitrary time frame is clearly

xt = x+ yt− yT,and evidently xT = x.

Now, we notice that a person may put a dangerous item in
his arm or his leg and swing or rotate it intentionally while
on the move. This means that the m vector will not remain
constant as the person passes through; only the vector’s norm
(which is a magnet’s strength and, hence, the intrinsic prop-
erty of the item) will remain invariant over time. Invariance of
the m norm condition is additional information, which mani-
fests itself in a number of additional equations which we want
to account for. This brings us to the need to solve the signal
accumulation problem in case we have constraints of the type
of equations. As discussed in the introduction, the incorpora-
tion of any constraints into nonlinear minimization analysis is
hard and, to our knowledge, there are no results for the particu-
lar case of implicit constraints of the form ‖m‖= Cwhere the
constant C is unknown. The major advantage of our approach
is that the constraint can now be added to the minimization in
m part of the analysis (see figure 1) and still allow for the expli-
cit solution followed by the standard nonlinear minimization
in x.

One can argue that not only the direction but also the mag-
nitude of the magnetic field is variable. It is definitely true in
a general setting. Nevertheless, in arms detection applications
the magnetic noise present is usually a small addition of mag-
netic fields from weak sources, such as magnetic fields from
AC, flowing in wires inside modern buildings; radio waves
emitted by various modern wireless devices; magnetic fields
from power sources—electric washing machines, elevators,
etc—all of which are situated outside of our inspection zone.
We deem our inspection zone to be free of such sources of
magnetic noise (which is usually the case), and this means that
every interfering noise source (if any) is closer to magnetic
detectors (which are located on the border of the inspection
zone) than to the magnet of interest (which, by definition, is
always inside the inspection zone). Therefore, the influence of
noise on the magnet itself (which could in principle change its
magnetic force and, hence, the value of ‖m‖), is much weaker
than its influence on the detectors and can be neglected.

Moreover, the typical small-arms item is a ferromagnet
weighing several pounds. Even for a material with relatively
low coercivity (e.g. 0.16 kA m−1 for iron) it would take
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an enormous magnetic field to change its magnetic moment
vector norm—or a very long time to do so via a realistic
magnetic field. Both situations cannot occur on a timescale
of several seconds while a person passes the inspection zone
in a modern public place (e.g. an airport or a shopping mall).
Significant re-magnetization of a weapon would require quite
a substantial source of the magnetic field inside the inspec-
tion zone, and as such this source itself would be considered
an alarming object for the system. This makes the idealiza-
tion of the constant magnetic norm reasonable for the problem
and this is why we concentrate on combating the measurement
noise, assuming the estimated quantity—the ‖m‖ value—to be
(unknown) constant.

Recalling the formulation of the previous problem, we
reformulate this system in terms of the minimum search:
Find the minimum of the discrepancy

‖Am−b‖2

where the matrix A and vectors m and b are given by

A=


A1 O . . . O
O A2 . . . O
...

...
. . .

...
O O . . . AT

 ∈M3dT×3T,

m=


m1
m2
...

mT

 ∈ R3T, b =


b1
b2
...
bT

 ∈ R3dT (6)

given that

‖m1‖= ‖m2‖= . . .= ‖mT‖. (7)

This is a problem for a conditional extremum, which is solved
via the Lagrange multipliers method.

First, let us deal with the constraints (7). In these equations
we have T terms, so that we have T − 1 equality signs (i.e.
equations), and we can write them as:

‖m1‖= ‖mT‖
‖m2‖= ‖mT‖

...
‖mT−1‖= ‖mT‖,

(8)

or, which is the same,
g1(m) = ‖mT‖2 −‖m1‖2 = 0
g2(m) = ‖mT‖2 −‖m2‖2 = 0

...
gT−1(m) = ‖mT‖2 −‖mT−1‖2 = 0.

(9)

If we introduce the trivial notation for the scalar function of
the vector argument

f(x) = ‖x‖2,

for the multi-index

α= {α1,α2, . . . ,αu},

and for the projector operator depending on the multi-index

Pα :m 7→ (mα1 ,mα2 , . . . ,mαu)
⊤,

and if, as well, for any integer t denote

Pt = P{3(t−1)+1, 3(t−1)+2, 3(t−1)+3},

then our constraints are given by the relations

gt(m) = f(mT)− f(mt) = f(PTm)− f(Ptm),

for t= 1, . . . ,T− 1.
Therefore, our problem is reformulated as

Find the minimum of the function

L= ‖Am−b‖2 +
T−1∑
t=1

λt gt(m)

of 3T+T− 1 variables m, λ1,λ2, . . . ,λT−1.
Using our notation we transform the Lagrangian as:

L= f(Am−b)+
T−1∑
t=1

λt [ f(PTm)− f(Ptm)]

= f(Am−b)+
( T−1∑

t=1

λt

)
f(PTm)−

T−1∑
t=1

λt f(Ptm). (10)

As always, setting partial derivatives in λ1,λ2, . . . ,λT−1 to
zero gives us the constraining equation (9) (in these equations
we will substitute the solutionm(λ1,λ2, . . . ,λT−1) found with
the aim of determining the values of the Lagrange multipliers).
Now we will deal with finding the solution vector m.

3. Solving the Lagrange problem

Let us calculate the gradient1 of the Lagrangian (10). Making
use of a well-known relation

∂α‖x‖2 = ∂α(x⊤x) = 2x⊤∂αx,

we deduce that a gradient of a scalar function f(x) = ‖x‖2 is
given by

∇f(x) = 2x⊤∇x,

where as ∇x we denote a matrix made by row-gradients of
each of the vector’s x components (i.e. in essence, this is a
Jacobian of the x vector function). Thus

∇mL=2(Am−b)⊤∇m(Am)

+

(
T−1∑
t=1

λt

)
∇m f(PTm)−

T−1∑
t=1

λt∇m f(Ptm).

1 Recall that the gradient is a linear functional co-vector, i.e. it is a row-vector,
not a column-vector.
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But

∇m(Am) = A,

∇m f(Ptm) = 2(Ptm)⊤∇mPtm= 2(Ptm)⊤,

therefore

∇mL=2(Am−b)⊤A+ 2

(
T−1∑
t=1

λt

)
(PTm)⊤

− 2
T−1∑
t=1

λt (Ptm)⊤.

If we transpose the equation and set it to zero we arrive at:

A⊤(Am−b)+

(
T−1∑
t=1

λt

)
PTm−

T−1∑
t=1

λtPtm=O.

Using the block-diagonal structure of the A matrix we write
down these 3 T equations in terms of 3-components of the m
vector, i.e. in terms of mt vectors:

A⊤
1 A1m1 −λ1m1 = A⊤

1 b1
A⊤

2 A2m2 −λ2m2 = A⊤
2 b2

...
A⊤
T−1AT−1mT−1 −λT−1mT−1 = A⊤

T−1bT−1

A⊤
T ATmT+

(
T−1∑
t=1

λt

)
mT = A⊤

T bT.

Note that this system of equations has an asymmetry
between the first T − 1 equations and the last one. To
symmetrize it we introduce a new miscellaneous Lagrange
multiplier λT :

λT =−
T−1∑
t=1

λt. (11)

Then, the last equation takes the form analogous to the rest,
but we get an additional relation, which follows from (11):

A⊤
1 A1m1 −λ1m1 = A⊤

1 b1
A⊤

2 A2m2 −λ2m2 = A⊤
2 b2

...
A⊤
T ATmT−λTmT = A⊤

T bT
T∑
t=1
λt = 0.

(12)

This is the main system of equations, which is subject to
solution.

Note that equation (12) looks independent for different
mt in the same way as this was before, in a single-frame
method, i.e. it is as if we have ‘uncoupled’ them. However, the
coupling between them remains because Lagrange multipliers
λ1, . . . ,λT are bound by the last equation (12). Moreover, the
T − 1 constraining equation (9) should hold as well.

4. Problems of minimization

Note that the scheme of the solution remains the same: we find
the vector m as a function of the Lagrange multiplier’s vector
λ= (λ1, . . . ,λT)

⊤ (where λT is a function of other multipliers)
and substitute it into the constraining equation (9) to determine
λ1, . . . ,λT−1 (and, hence, λT ). However, this is a difficult task
as these equations cannot be solved analytically. Therefore, we
present a way to avoid solving it.

Constraining equation (9) means just that the vectors’ mt
norm value does not depend on t (which is, in fact, our ulti-
mate goal), but the value itself is not specified. If, however,
we could take an arbitrary value s for the norm squared and
solve every equation (12) (i.e. select the corresponding value
of the Lagrange multiplier λt(s)) againstmt in such a way that
‖mt(λt(s))‖2 = s, then equation (9) would hold automatically!
Admittedly, in this case the validity of the last equation of sys-
tem (12), i.e.

Λ(s)≡
T∑
t=1

λt(s) = 0.

is not guaranteed. But the function Λ = Λ(s) is a scalar func-
tion of the scalar argument s, and our task would come down to
numerically finding its root only, which is not hard to achieve
via any standard root-finding algorithm.

This is a short description of the approach. Now, we dis-
cuss it in more detail and prove the existence and uniqueness
theorem for the solution.

5. Existence and uniqueness theorem

Let us have a look at the first T equation (12). Take any of
them: (

A⊤
t At−λt

)
mt = A⊤

t bt, t= 1, . . . ,T.

We see that the vector mt(λ) for t= 1, . . . ,T (and its norm
together with it, of course) depends in fact only on a single
component of the λ vector, namely, the λt; therefore, we can
write the solution in the form:

mt(λt) =
(
A⊤
t At−λt

)−1
A⊤
t bt, t= 1, . . . ,T. (13)

Denote by 0< µ1
t ⩽ µ2

t ⩽ µ3
t the eigenvalues of the positive

semi-definite matrixA⊤
t At and by ψ

j
t corresponding orthonor-

mal eigenvectors. Then we have

‖mt(λt)‖2 =
3∑
j=1

|(ψ j
t )

⊤A⊤
t bt|2

|µ jt −λt|2
.

It is easy to see that the smooth function ‖mt(λt)‖2 tends
to 0 as λt →−∞ and is monotonically growing to +∞ as
λt approaches some νt > 0 from the left. Generically, νt = µ1

t
(when (ψ1

t )
⊤A⊤

t bt 6= 0). Otherwise, ν t can be equal to µ2
t or

µ3
t . We will call the set of parameters λ satisfying−∞< λt <
νt, t= 1, . . . ,T, the region of regularity.

6
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Theorem 5.1. The Lagrange system (9) and (12) admits the
unique solution with the value of λ in the region of regularity.

Proof. Due to smoothness and monotonicity, for any s> 0
there is a unique value of λ(s) in the region of regularity such
that 

‖m1(λ1(s))‖2 = s
‖m2(λ2(s))‖2 = s

...
‖mT(λT(s))‖2 = s.

(14)

Moreover, for the function

Λ(s) =
T∑
t=1

λt(s)

we have
lim
s→0+

Λ(s) =−∞ and

lim
s→+∞

Λ(s) =
T∑
t=1
νt > 0.

Obviously, Λ(s) is smooth and monotonically growing.
Thus, there is the unique value s∗ > 0 such thatΛ(s∗) = 0. The
value λ(s∗) and the corresponding vectors (13) solve our Lag-
range system (9) and (12). The solution is unique for λ in the
region of regularity.

6. Numerical results

To illustrate the proposed technique a numerical simulation
has been carried out. A single magnet with the magnetic
moment’s m0(t) norm of 1.3 A·m2 (and, correspondingly, its
norm squared that is equal to s0 = 1.69) is being moved along
a straight line during 50 frames. Them0 vector is being swung
sideways with an amplitude of 30◦ in a plane, orthogonal to the
trajectory. Themagnet’s magnetic induction is beingmeasured
by 20 3D magnetometers located around the inspection zone,
whose width is about 1 m. A random Gaussian-distributed 3D
noise vector with zero mean and a std of 10 nT is added to
each magnetometer’s measurement (noise vectors for differ-
ent magnetometers are independent).

For a typical value of a magnetic moment of 1 A·m2 the
value of the magnetic induction B at a distance of 1 m from
the magnet along the magnet’s polar line is 200 nT; therefore,
our noise value of 10 nT gives an SNR of the order of 20 or
26 dB, which is a realistic value in applications. If we decrease
the distance twofold then the magnetic induction will increase
eightfold, to 1600 nT, and vice versa; if we take twice the dis-
tance the induction will fall to 25.5 nT. Thus, the ‖B‖ varies as
the magnet being worn moves along the trajectory; therefore,
the SNR rises at trajectory points which are near to a given
magnetometer and falls in those points which are far away.
Thus, the notion of the SNR seems to be slightly superficial
here.

From our experience we can say that typically benign
objects (such as notebooks, magnetic clips, earphones, smart-
phones, etc) possess a magnetic moment value of less than

Figure 2. The relative squared norm of the magnetic moment
∥mt∥2/s0 for s0 = 1.69 (hazardous object) and a noise level 10 nT.

0.5 A·m2, and hazardous objects possess a value of over
1 A·m2 in general; therefore, we adopt the values of 0.3 A·m2

(benign object) and 1.3 A·m2 (hazardous object) for our
numerical example. To complete the picture we also include
the results for relatively large noise with a std of 50 nT.

We process the measurement data and calculate the result-
ing value of ‖mt‖2 for each time frame and show the estim-
ated square of the magnetic moment’s norm in relative units
(i.e. divided by the real value of s0; see figure 2). We do it in
several ways:

• First, we apply the traditional scheme by calculating themt

vector (and, hence, its norm) independently at each frame
according to equation (5). The resulting values of ‖mt‖2/s0
(shown as triangles) are not constant and change chaotically;

• Second, we apply our technique for finding the s∗ value by
solving system (9) and calculate the corresponding mt vec-
tors at each time frame. These vectors turn out to have the
same value of ‖mt‖2 = s∗, which is shown as circles in the
figure;

• Finally, to emphasize the importance of the relaxed con-
dition that ‖mt‖ is constant versus the stricter assumption
that the vector mt itself is constant, we included the results
for the fixed vector method. We accumulate all the meas-
urements and calculate a single magnetic moment vector
m, presuming it does not change over the trajectory. The
resulting constant value of the (incorrect) squared magnetic
moment norm, divided by s0, is represented by squares.

We see that as the single-frame estimation method provides
the non-constant vector norm, deviating wildly from the real
value, the presented method provides far better results: the
norm of the resulting vectors remains constant and is much
nearer to the real value. The fixed vector method provides
norm estimation, which significantly underestimates the value
as it anticipates the direction of the vector to be constant while
in reality it is not.

Figure 3 shows the same quantities for a seemingly benign
object with s0 = 0.09. Here, the fixed vector technique again
provides the underestimated value of s (see the squares in

7
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Figure 3. The relative squared norm of the magnetic moment
∥mt∥2/s0 for s0 = 0.09 (benign object) and a noise level 10 nT.

Figure 4. The relative squared norm of the magnetic moment
∥mt∥2/s0 for s0 = 1.69 (hazardous object) and a noise level 50 nT.

figure 3), and the apparent oscillations in relative units of the
single-frame plot (see the triangles in figure 3) seem to bemore
intense due to the lower value of the magnetic moment.

Figures 4 and 5 show the graphs of the relative squared
norm for the same object, but in the presence of the muchmore
severe noise of 50 nT instead of 10 nT. Here, by the dotted
line we also included the mean value of s for the one-frame
solutions (represented by triangles). We see that in the case of
severe noise, the simple mean tends to overestimate the true
value of s, which is detrimental from the point of view of the
false alarm rate.

In general, calculation of the mean value of s for a one-
frame solution can be performed as follows. We denote bym0

the true solution of the noiseless system Am0 = b0. Then, in
the presence of the noise δb we get m= A−1(b0 + δb). We
assume that the noise δb has a normal symmetric distribution
with zero mean and variance of each component equal to σ2.
Then, we have

E(‖m‖2) = ‖m0‖2 +E(‖A−1δb‖2).

Figure 5. The relative squared norm of the magnetic moment
∥mt∥2/s0 for s0 = 0.09 (benign object) and a noise level 50 nT.

Figure 6. Deviation from the true value of the magnetic moment
(∥m0(t)−mt∥2)/s0 for s0 = 1.69 (hazardous object) and a noise of
10 nT.

Let νj > 0, j = 1,2,3, be the eigenvalues of the positive
definite matrix A. Then, by the properties of the normal distri-
butions we get

E(‖m‖2) = ‖m0‖2 +

(
3∑
j=1

ν−2
j

)
σ2.

This calculation shows that such a mean value overes-
timates the real value of s0. The effect is stronger for lar-
ger noise or a relatively smaller signal, which may lead to a
false alarm. The same effect can be observed if one uses a
suboptimal measurement configuration, where each trajectory
point’s aperture is small (see the contribution from the eigen-
values of the matrix A). In practice, false alarming on benign
objects is equally undesirable behavior as is missing the signal
from a hazardous object. Our method shows itself to be better
suited for the task and much less overestimates the real value
of interest.

Figure 6 shows the graph of the square of the distance
between the real vector m0(t), which was put into the model,

8
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Figure 7. Deviation from the true value of the magnetic moment
(∥m0(t)−mt∥2)/s0 for s0 = 1.69 (hazardous object) and a noise of
50 nT.

Figure 8. Deviation from the true value of the magnetic moment
(∥m0(t)−mt∥2)/s0 for s0 = 0.09 (benign object) and a noise of
10 nT.

and the calculated vector mt in relative units for each time
frame, i.e. the (‖m0(t)−mt‖2)/s0 for s0 = 1.69 (a presum-
ably hazardous object). As before, the triangles represent the
standard one-framemethod and the circles are the newmethod
introduced in the present paper. Even though the main inform-
ation to be determined in the current setting is the norm of
the magnetic moment, it is still important to note for further
considerations that our method provides consistently better
approximation of the true magnetic moment vector as well.

Figure 7 shows the graph for the same object, but for a
higher noise level of 50 nT.

Figures 8 and 9 show the graph for the benign object with
s0 = 0.09 for the noise levels of 10 nT and 50 nT, respectively.

Figure 9. Deviation from the true value of the magnetic moment
(∥m0(t)−mt∥2)/s0 for s0 = 0.09 (benign object) and a noise of
50 nT.

7. Conclusion

In the present manuscript we introduced a new approach to
the problem of accumulation of the signal in the presence of
an implicit constraint of the form ‖x‖= C, where the constant
C is also to be determined. Theoretical analysis as well as the
theorem of existence and uniqueness of the solution are given
in the setting of the real-life magnetometry problem. Numer-
ical simulations show that our method is superior compared
to both the classical approach of a single-frame capturing
when there are no constraints in the problem and the stricter
approach when the magnetic moment vector itself is assumed
to be fixed. In addition, our approach is shown to be more
robust in the sense that it is less likely to trigger a false alarm
from benign objects when relatively high noise is present.
Finally, we believe that the method can be widely applied to
other problems where implicit constraint is the core part of the
construction.
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