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Abstract
One of the most significant and growing research fields in mechanical and civil engineering is
structural reliability analysis (SRA). A reliable and precise SRA usually has to deal with
complicated and numerically expensive problems. Artificial intelligence-based, and specifically,
Deep learning-based (DL) methods, have been applied to the SRA problems to reduce the
computational cost and to improve the accuracy of reliability estimation as well. This article
reviews the recent advances in using DL models in SRA problems. The review includes the
most common categories of DL-based methods used in SRA. More specifically, the application
of supervised methods, unsupervised methods, and hybrid DL methods in SRA are explained. In
this paper, the supervised methods for SRA are categorized as multi-layer perceptron,
convolutional neural networks, recurrent neural networks, long short-term memory,
Bidirectional LSTM and gated recurrent units. For the unsupervised methods, we have
investigated methods such as generative adversarial network, autoencoders, self-organizing
map, restricted Boltzmann machine, and deep belief network. We have made a comprehensive
survey of these methods in SRA. Aiming towards an efficient SRA, DL-based methods applied
for approximating the limit state function with first/second order reliability methods, Monte
Carlo simulation (MCS), or MCS with importance sampling. Accordingly, the current paper
focuses on the structure of different DL-based models and the applications of each DL method
in various SRA problems. This survey helps researchers in mechanical and civil engineering,
especially those who are engaged with structural and reliability analysis or dealing with quality
assurance problems.

Keywords: structural reliability analysis, response surface method, Monte Carlo simulation,
surrogate modelling, deep learning, unsupervised methods, supervised methods
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Abbreviations

AE Autoencoders
AI Artificial Intelligence
AL Active Learning
AL Active Learning
ANN Artificial Neural Network
Bi-LSTM Bidirectional-LSTM
CAE Contractive Autoencoder
CNN Convolutional Neural Networks
DAE Denoising Autoencoder
DBN Deep Belief Network
DL Deep Learning
DOE Design of Experiment
DRL Deep Reinforcement Learning
DTL Deep Transfer Learning
FEM Finite Element Method
FORM First Order Reliability Method
FOSM First Order Second Moment
GAN Generative Adversarial Network
GRU Gated recurrent unitsUnits
LSF Limit State Function
LSTM Long short-term memory
MCMC Markov Chain Monte Carlo
MCS Monte Carlo Simulation
MLP Multi-Layer Perceptron
MLP Multi-Layer Perceptron
MLS Moving Least Square
MPP Most Probable Point
MSE Minimum Square Error
NLO Nonlinear Oscillator
NN Neural Network
NPF Nonlinear Performance Function
PDF Probability Density Function
PF Performance Function
PoF Probability of Failure
RBF Radial Basis Function
RBM Restricted Boltzmann Machine
RNN Recurrent Neural Networks
RSM Response Surface Method
SAE Sparse Autoencoder
SOM Self-Organizing Map
SORM Second Order Reliability Method
SRA Structural Reliability Analysis
SVM Support Vector Machine
VAE Variational Autoencoder

1. Introduction

The term ‘reliability’ was primarily taken as repeatability. A
system was assumed reliable if the same test results were
achieved after repetition of the experiment. Thus far, this
definition has been enhanced and stated as: Reliability is the
‘probability of a system or component performing its intended
functions under specified operating conditions for a specified
period of time’ [1]. Under the stated definition, different SRA
methods have been developed so far. Regarding the defini-
tion of reliability, SRA methods use the lifetime probability
of structural response to find when it crosses the safe domain
of operation (or, in other words, failure criteria) to calculate
the probability of failure or reliability. Generally, the lifetime

probability of structural response can be calculated through
sampling methods. The initial samples can come from ana-
lytical calculations, FEM [2], or experimental measurements
[3]. The experimental data represents the structure’s response
and it can include different parameters such as the structural
strain that is measured using a strain gauge [3], or the vibration
data that is measured using accelerometers [3]. Accordingly,
the accuracy of the SRA is highly dependent on the sampling
or the response measurement methods. Therefore, advanced
and precise measurement techniques are necessary to achieve
accurate experimental data and reduce uncertainties [4].

Although advanced and improved measurement techniques
can reduce the uncertainties and improve the accuracy of
condition monitoring data, there is still a need for methods
to quantify the remaining uncertainties and take them into
account, especially for high-accuracy and reliable systems,
such as nuclear powerplants and transportation system [5].
As the reliability analysis deals with different uncertainties,
in such cases, SRA can play a constructive role in taking
the uncertainties into account and improving structural safety
in different situations [6]. Considering modelling or meas-
urement uncertainties, statistics appear in various reliability
analysis activities, such as sampling and DOEs. An accurate
reliability estimation method considering various uncertain-
ties from measurements to modelling can play a significant
role in improving the design and performance of mechanical
and structural systems [7–9]. An effective SRA can also help
with the justification of design for different working condi-
tions based on design and performance requirements [10, 11].
As the system becomes more complicated and safety is also of
concern, an accurate SRA can become a very time-consuming
task [5, 12], which makes it more critical to apply efficient
novel methods for the SRA.With the growth of computational
methods, the application of statistical theories in recognition
and prediction of patterns and machine learning (ML) meth-
ods were established. Afshari et al have presented a review of
ML-based SRAmethods in [13]. But recently, DL has quickly
developed as a leading technique of ML and captured out-
standing attention from scholars worldwide [14]. DL can be
considered a special kind of ML, which is upgraded to deal
with more complex problems automatically with fewer human
inputs. This paper reviews the applications of DL-based meth-
ods for SRA to investigate the justification of varying DL-
based approaches for a practical inclusive SRA.

Before reviewing the applications of DL methods in SRA,
it is helpful to understand the meaning of the terms reliab-
ility and structural reliability. Reliability is defined as ‘the
probability of a system or component, performing its intended
functions under specified operating conditions for a specified
period of time’ [1]. As stated in [13], calculating the failure
probability that is defined below in equation (1) is a key activ-
ity in most SRA problems,

Pf (t) = P [G [(x(t))]⩽ 0] =
ˆ

G[(x(t))]⩽0

fx(t) [x(t)]dx(t) (1)

where Pf (t) is the failure probability, fx(t) [x(t)] is the joint
PDF of the random variables vector, x(t), and G(x(t)) is the
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PF being used for reliability analysis, which is also recog-
nized as LSF [13]. There are well-establishedmethods to solve
common types of reliability equations. For instance, Given the
equation G(x) = 0, methods based on Taylor expansion, such
as FORM or SORM have been used to solve equation (1) ana-
lytically. However, they need some detailed knowledge about
the LSF, which usually comes with a high computational cost.
Another well-known SRA approach is MCS, which is also a
computationally expensive method [15]. Accordingly, in need
of more computationally efficient algorithms, especially for
complex systems, surrogate modelling is introduced to the
existing SRA methods for approximating the LSF in a more
effective way [13].

Surrogate models can be considered differentiable estim-
ations of the LSFs [1]. In recent decades, substantial pro-
gress in different ML methods has helped SRA methods with
finding surrogate models of the PF or the LSF or even the
reliability index [13]. However, ML-based techniques have
challenges with compromising the accuracy and computa-
tional time of the SRA. In such cases, new methods like
DL-based techniques have received increasing attention. DL-
based SRA methods follow a pretty similar structure to ML-
based methods but with slightly different algorithms. A signi-
ficant requirement for DL-based SRA methods is the higher
required training sample size as compared to ML-based meth-
ods. Therefore, researchers have also tried to apply DL-based
sampling methods to decrease the number of training samples
while keeping the accuracy to improve the model’s efficiency.
Accordingly, DL techniques are becoming increasingly pop-
ular, especially for nonlinear or high-dimensional problems
where computational efficiency is a challenge [13, 16–18].

DL-based methods usually consist of a set of connected
neurons, ordered in several layers between inputs and out-
puts, helping them learn complex functions more easily than
a single neuron or layer can. Each layer extracts some fea-
tures from its inputs, and each subsequent layer extracts fea-
tures from the previous layer’s outputs. In this sense, DL pulls
high-level latent features from lower-level features and data
[16]. The idea of the hierarchy of extracted features is a basis
for the superiority of DL-based methods. The depth of a DL
method refers to the number of hidden layers between the net-
work’s inputs and outputs. Thus far, DL-based methods have
been primarily used in problems with high-dimensional data
in which the system’s dimension is a significant barrier. For
example, in SRA problems, ML problems become exceed-
ingly difficult when the data dimensions are too high. This phe-
nomenon is known as the curse of dimensionality. The reason
behind that challenge is that the sum of the variables increases
exponentially as the number of dimensions increases in non-
linear or high-dimensional problems.

Furthermore, when equipped with convolutional layers,
DL-based methods are highly influential in handling high-
dimensional data sources. Figure 1 roughly shows the per-
formance comparison of DL and ML modelling considering
the number of samples required for solving the SRA prob-
lem. This comparison shows why DL-based methods in SRA
have received increasing attention for more complex problems

Figure 1. Performance comparison between DL-based and
ML-based algorithms for SRA versus the number of required
samples to maintain an accurate SRA.

when more samples are needed to maintain an accurate SRA
for complex structures.

Understanding when a DL-based method works well for
an SRA problem is an important task. In many SRA applic-
ations, we may need to deal with rare events’ probability,
which means a limited amount of training data is available.
Furthermore, the general modelling approach (such as linear,
nonlinear, nonparametric, etc) needs to be selected deliber-
ately, which can make challenges in using DL-based meth-
ods. Moreover, finding accurately labelled data may become
challenging via experiments or analysis. In such cases, DL-
based algorithms seem to be the most practical approaches
for the SRA. In figure 2, a general DL-based algorithm work-
flow to solve SRA problems has been shown, which involves
three steps: understanding and preprocessing the data, building
and training the DL model, and validation and interpretation.
Unlike the classical ML modelling, we see more automation
in step 2 of the DL model [19].

In this paper, we go through different DL techniques used
in SRA literature. We also present a classification of DL tech-
niques based on how they are used to solve various SRA prob-
lems. However, before exploring the details of the DL tech-
niques, it is helpful to review the main types of learning tasks
that are (i) supervised: a method that uses labelled training
data, and (ii) unsupervised: a method that analyses unlabelled
datasets, (iii) semi-supervised: a combination of supervised
and unsupervised methods. Therefore, to present our classi-
fication, we divide DL-based methods generally into three
major categories: deep networks for supervised, unsupervised
and hybrid learning, as shown in figure 3. In this paper, we
introduce those techniques that have been used to practically
solve SRA problems. We are also covering some novel works
that can also potentially be classified as ML-based techniques
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Figure 2. A DL-based algorithm workflow to solve SRA problems, which includes three stages.

Figure 3. Deep learning-based SRA methods can be divided into three major categories.

that are not covered in our previous publication on ML-based
methods for SRA problems [13].

The remaining part of this paper is structured as follows:
Supervised DL-based methods and their application for SRA
are reviewed in section 2. Section 3 presents a review of the
SRA methods using unsupervised methods. Section 4 surveys
the hybrid DL-based methods for SRA, followed by a discus-
sion and methods comparison in section 5. Finally, conclu-
sions are given in section 6.

2. Supervised methods

The labelled data are commonly achievable through exper-
iments or numerical/analytical analysis in SRA literat-
ure. Hence, supervised algorithms appear to be practical
approaches for many SRA problems. These methods can be
categorized into classification and regression methods. Clas-
sification approaches are mainly used for discrete output data,
and Regression algorithmsmostly deal with continuous output
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Figure 4. Supervised learning schematic process.

data [20]. Figure 4 shows the supervised learning process [13],
where ψ represents the function or distribution that will be
modelled. It should be noted that ψ is usually taken as the
LSF or the PF in the SRA problems. The inputs vector (fea-
tures vector) is represented by x ∈ Rd and d is the quantity
of features, and y is the estimated output. The set of input–
output pairs, designated by D, is obtained from the probab-
ility distribution of inputs, fx (x). The ith sample data pair is
denoted by the superscript (i), and H is a set of all prob-
able models, and the final hypothesis, h ∈ H, is designated
by the ML algorithm. The ML algorithm uses an optimiza-
tion technique to choose the optimum values of parameters
‘w’ regarding cost functions, such as least square error or
maximum likelihood. The optimization procedure is known
as ‘model training’ in the ML literature. The estimation of ψ
at each operating point, x, is the model’s output shown by ŷ.
The selection of the explained parameters depends on vari-
ous factors, such as the number of features in the input, the
size and dimension of the data, and prior knowledge about
the input/output distributions. For example, the computational
cost for some ML algorithms significantly rises with the num-
ber of features. Accordingly, ML algorithms should be justi-
fied to maintain accuracy and efficiency, resulting in different
approaches. MLP, CNN, LSTM, and GRU are the most used
supervised methods in the SRA studies, and they are presented
separately in subsections below.

2.1. MLP

MLP can be used for SRA in various engineering fields, such
as civil, mechanical, and aerospace engineering. TheMLP can
be used as a surrogate model for time-consuming and compu-
tationally expensive simulation-based methods, such as MCS,
for evaluating the reliability of structures. In SRA, the MLP
can be trained on a set of input-output pairs generated from
simulation-based methods to learn the relationship between
input variables (e.g. loads, material properties, geometries)
and output variables (e.g. stresses, strains, displacements).
The trained MLP can then be used to predict the output vari-
ables for new input variables, enabling efficient and fast eval-
uation of the structural reliability. The use of MLP in SRA has
several advantages over traditional simulation-based methods,

Figure 5. A typical N-layer MLP.

including reduced computational cost, faster convergence, and
improved accuracy. However, it is important to ensure that the
MLP is trained using a sufficiently large and representative
dataset to avoid overfitting and to validate the model’s accur-
acy before using it for real-world applications.

An MLP is an entirely connected ANN, as shown in
figure 5. A typical N-layer MLP. Weights connect the nodes
in two contiguous layers. The output of a node is defined as
follows:

y(l)i = f

 d∑
j=1

w(l)
ij y

(l−1)
j + b(l)i

 (2)

where l is the number of layers, d is the number of nodes, w(l)
ij

is the weight, b(l)i is the bias, and f(•) is an activation function.
As pointed out by Schmidhuber [14], it is not clear in the lit-

erature at which level shallow learning ends andDL begins. An
attempt to define shallow and deep NNs is presented in [21],
where it is said that deep architectures are composed of mul-
tiple levels of nonlinear operations. In this paper, we use sim-
pler criteria that shallow networks are those with just a single
hidden layer, while deep NNs are those with more than one
hidden layer [22, 23].

A large number of applications of MLP in the field of struc-
tural reliability have been presented in the literature, as can
be seen in our previous review paper [13]. However, most
employed shallow NNs with just one hidden layer [24–26].
Many recent publications have shown that deep NNs usu-
ally outperform shallow ones [22, 27]. Deep NN has a strong
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capacity for approximation relationship learning between two
data spaces. With more hidden layers, deep NNs can handle
more complex problems or multiple interactions between
parameters [28].

The number of hidden layers in deep MLP is not limited.
It depends on the architecture or complexity of the investig-
ated structure. It has been shown that using two hidden lay-
ers is generally sufficient to solve a complex SRA problem
[29, 30]. For MLP-based SRA, the input layer may consist of
the structure properties [31], design variables [23], and oper-
ational conditions [32]. In the output layer, the value of LSF
is generally chosen as the output [22, 33]. The PF [30], or the
reliability index [34] is also reported as the output.

Combinations of MLP with FORM, SORM, and MCS are
commonly used strategies for SRA. Section 1.1.1 summarizes
the literature on MLP-based FORM or SORM. MLP-based
MCS are presented in section 1.1.2.

2.1.1. MLP-based FORM or SORM. The basic idea under-
lying FORM or SORM is to estimate the LSF by its first or
second-order Taylor expansion at the design point. In the dir-
ect FORM and SORM, the derivatives usually require com-
plex calculations. When it comes to MLP in combination with
FORM or SORM, the responses and their derivatives can be
easily obtained by the chain partial differentiation rule [13]. It
has achieved great success in the shallow NNs for SRA [35].
Deep NNs-based FORM and SORM are also very popular for
SRA in recent years.

To reduce the time cost of calculating the structural
response of complex systems, Lehky and Somodikova util-
ized MLP with two hidden layers to approximate the ori-
ginal LSF [36]. First, a stratified Latin hypercube sampling
simulation method is used to select the training set prop-
erly. Then, the MLP is updated close to the failure region to
increase the accuracy. Then FORM is used to evaluate the
reliability. The method is employed in the reliability assess-
ment of three bridge structures, showing that the technique
is efficient whether the LSF is defined in explicit or impli-
cit form. Malekzadeh and Daei proposed a hybrid FORM-
sampling simulation method for efficient reliability evaluation
[31]. MLP approximates the LSF using two hidden layers.
It can overcome the obstacles in the differentiation of LSF,
especially when the LSF is nonlinear and non-differentiable.
The design point is determined step-by-step with the IS and
limiting the STD of the sampling density function. The pro-
posedmethod can assess structural reliability with few random
samples.

In addition, Wen et al adopted MLP with four hidden lay-
ers to approximate the joint PDF of the pipeline’s reliability
[33]. They investigated the influence of the ordering of training
samples on pipelines’ reliability prediction results. An optim-
ization of MLP was performed to find the best approximated
joint PDF. Then, the reliability was assessed by direct integ-
ration. Their method showed high efficiency and accuracy in
comparison with non-optimized MLP models and the MCS
method.

2.1.2. MLP-based MCS. MLP-based MCS is most pop-
ularly used in MLP-based SRA [37–40]. Jha and Li [41] intro-
duced the high dimensional model representation into MLP
to approximate implicit LSFs in SRA. The computational res-
ults show their method not only yields accurate results but also
reduces its computational efforts compared to directMCS. Lee
and Lee [34] developed an efficient sampling-based inverse
reliability analysis method combining MCS. MLP with two
hidden layers is used to train the relationship between the
realization of the performance distribution and the corres-
ponding true percentile value. Thus it can be applied to any
type of PF. A dimension reduction method is proposed to
eliminate the limitation of training data size. A comparative
study using various mathematical examples shows that the
method can obtain a more accurate percentile value estima-
tion. Li et al [42] presented a novel hierarchical neural hybrid
method to efficiently compute failure probabilities of chal-
lenging high-dimensional problems. Multi-fidelity surrogates
are constructed based on two-hidden layer MLP with different
levels of layers, so expensive high-fidelity surrogates are adap-
ted onlywhen the parameters are in the suspicious domain. Nie
et al proposed a framework for fatigue-induced SRA of steel
bridges based on four-hidden layer MLP and MCS [32]. The
traffic-characteristic and non-traffic-characteristic parameters
are taken as the inputs of the MLP, while the value of LSF is
chosen as the output. The effects of truck weight limits and
cracks are considered. It can quickly predict fatigue failure for
a steel bridge under truck weight limits.

Recently, AL has received extensive consideration. It can
be applied to train the surrogate models with a limited num-
ber of initial experimental samples and a small number of
newly added experimental points that approach the LSF sur-
face iteratively [23]. Gomes used deep MLP with AL for
LSF approximation in SRA [22]. The experimental design
is enriched by the k-means clustering method and a learning
function related to the misclassification probability. The com-
parison results show that the deep NNs with more than one
hidden layer required fewer calls to the LSF and achieved bet-
ter accuracy than the shallow ones. Xiang et al adopted the
weighted sampling method to select experimental points loc-
ated in the interface of the safety and failure MC populations
[43]. Uniformly distributed sample points can be selected from
theMC population, and the selected points get close to the LSS
iteratively. In each iteration, MLP with two hidden layers is
updated to predict the value of LSF. The proposed method can
achieve high accuracy with fewer calls of the LSF compared
with AK-MCS and IS. Bao et al developed an adaptive subset
searching-based MLP to solve the problem of optimal local
sampling in AL-based methods [23]. The MLP with two hid-
den layers is utilized to approximate the LSF. An adaptive con-
struction method is developed to regulate the size of each hid-
den layer. The method can obtain high-accuracy predictions
with fewer experimental points when calculating the failure
probability. Lieu et al built an approximate global model of
PF based on MLP with two hidden layers [30]. They proposed
an adaptive learning method by adding important points on the
boundary of LSF and their surrounding zones. A threshold is
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Table 1. Summary of applications of MLP (more than two layers) in SRA problems.

Reliability
method

Sampling
method

Hidden
layers Input Output Case study

Reference,
Year

MCS Active learning with
weighted sampling

2 Structure properties,
load

LSF Series system including
four branches, a
non-linear oscillator, a
cable-stayed bridge

[43], 2020

MCS Active learning with
important subsets

2 Structure properties,
load

LSF Modified series system,
a cable-stayed bridge

[23], 2021

MCS Active learning with
a learning function

2 Structure properties,
load

Performance
function

Truss structures [30], 2022

MCS Kernel density
estimation method

2 Morphing
parameters

Reliability
index

6D arm model [34], 2022

MCS Orthogonal design 6 Firmness coefficient,
traction speed, and
cutting depth

LSF Structure of shearer
cutting part

[37], 2022

MCS Random 2 Random variables in
partial differential
equations

LSF High-dimensional
problems

[42], 2019

MCS Random 2 Structure properties,
rotor speed

LSF A rotating disk, a
ten-bar truss structure

[41], 2017

MCS Active learning 2,3,4,5 Structure properties,
load

LSF 23-bar truss structure,
series system with four
branches,
two-Dimensional Truss
Structure

[22], 2020

MCS Random — Size parameters,
load, tensile strength

LSF Plexiglas plates with
holes

[38], 2020

MCS Random and the
orthogonal design

4 Traffic-characteristic
parameters and non-
traffic-characteristic
parameters

LSF Steel bridges [32], 2022

MCS Experimental data 3 Concrete strength,
lateral pressure

LSF Concrete under triaxial
compression

[40], 2019

Direct
integration

LHS 4 Structure properties,
defect properties

LSF Pipelines [33], 2019

FORM LHS 2 Strength properties,
load

LSF A pitched-roof frame, a
concrete slab bridge

[36], 2017

FORM Random 2 Structure properties,
load

LSF Truss structures,
two-floor two-span
concrete structure

[31], 2020

adapted to switch from a globally predicting model to a local
one for the approximation of LSF by eradicating previously
used unimportant and noise points. By comparison with AK-
MCS, IS + ANN, et al, the paradigm is more effective and
precise for the failure probability estimation with only a fewer
number of PF calls. Table 1 summarizes the reviewed studies
of the application of MLP in SRA problems.

Although deep NNs perform well, shallow ones are effect-
ive and sufficiently accurate in many fields. They are still pre-
valent and have been successfully used recently [44–46]. The
papers published after 2019 are included in this review though
one hidden layer is used.

The integrated use of MLP with FORM/SORM/MCS is
widely adopted. Jia andWu proposed an efficient SRAmethod
combining MLP and Laplace asymptotic integral [25]. MLP
with an AL function is employed to approximate the LSF near

the target design point. The AL function proceeds through the
optimization formulation without a candidate sample popula-
tion. The superiority of the proposed method is validated by
comparing it with existing Kriging and ANN-based methods.
Pradeep et al analysed the reliability of the embedded depth
of sheet pile based on a hybrid MLP with Various optim-
ization techniques [47]. They used the MLP to forecast the
embedment depth of a cantilever sheet pile wall consider-
ing the uncertainties of soil properties. And FORM was used
to predict the reliability. The results show that MLP with
teaching–learning-based optimization and MLP with imper-
ialist competitive Algorithm performed best during the train-
ing and testing. Tawfik et al developed an MLP-Based SORM
for the laminated composite plates in free vibration [48]. The
MLP is used to obtain the fundamental frequency of compos-
ite plates by considering the uncertainties of geometric and
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Table 2. Summary of applications of MLP with one hidden layer in SRA problems.

Reliability
method

Sampling
method Input Output Case study Reference, Year

FORM Random Soil properties Performance
function

Sheet pile walls [47], 2022

FORM — Structure properties, load Performance
function

A spatial structure [46], 2021

SORM Random Geometric and material
properties

Performance
function

Laminated composite plates [48], 2018

SORM Active learning Structure properties, load LSF An aero-engine turbine disk, a
ring-stiffened cylinder

[25], 2022

MCS Central composite
design

Physical and mechanical
properties of composite

Performance
function

Composite structures [26], 2022

Important
sampling

LHS Geometric and material
properties

LSF Variable stiffness Composite
laminate

[49], 2020

MCS Random Geometry sizes, material
properties and loads

Performance
function

A head pressure shell [45], 2021

MCS — Geometry parameters,
resistance parameters

LSF Steel four-bolt unstiffened
extended end-plate

[44], 2021

MCS Active learning Structure properties, load LSF A cantilever tube, an offshore
wind turbine jacket

[50], 2022

material properties. Hence, the time-consuming finite element
(FE) algorithm in the stochastic analysis is replaced. There-
fore, the proposed method is much faster compared with direct
MCS. Besides, it can take into consideration of the complex
ply thickness uncertainty. Mathew et al proposed an adaptive
Importance Sampling-based MLP model for variable stiffness
composite laminates, which leveraged the advantages of both
the MLP-based SORM and Importance sampling [49]. MLP
is trained to obtain the value of LSF with hybrid uncertain-
ties. The importance sampling density is centred around the
MPP estimated iteratively by SORM. The method is in close
agreement with ANN-based MCS and takes half the time.
Aiming to solve the complex and expensive damage analysis
of composite structures, Azizian and Almeida constructed an
efficient FE-based reliability method with MLP and central
composite design [26]. MLP is used to approximate the burst
failure pressure with uncertainties in the physical and mech-
anical properties. A strategy is presented using the Plackett–
Burmanmethod to choose the main uncertainty sources so that
the computational burden in non-deterministic analyses can be
alleviated. The results show that their methodworks efficiently
and more accurately than the commonly used response surface
methodology. Ren et al used the ensemble of surrogates with
ANN and Kriging to solve the challenge of reliability evalu-
ation with limited knowledge of the LSF [50]. Then merits of
both two models can be captured. The goodness of each sur-
rogate model is measured locally. The surrogate models are
updated by two proposed AL approaches. Compared with the
single surrogate model with AL methods (e.g. AK-MCS), the
proposed method is more effective in assessing the reliability
of high-dimension and rare event problems.

Wakjira et al [51] proposed models for predicting the shear
capacity of beams, considering critical variables. The so-called
extreme gradient boosting model showed the highest predic-
tion ability among the ML models they tested. In their study,

SRA is performed to calibrate the resistance reduction factors
to achieve target reliability for the proposed model. They
used an MLP-based model for predicting the shear capacity
of strengthened RC beams, considering all critical variables.
The results showed that their proposed MLP-based models
could be successfully used to predict the shear capacity of such
strengthened beams. Wakjira et al [52], also presented a data-
driven approach to determine beams’ load and flexural capa-
cities. Among their studied MLP-based models, the xgBoost
is the most accurate, with the highest coefficient of determ-
ination. A comparison made in their study of the perform-
ance of various existing analytical models revealed the super-
ior robustness and accuracy of their proposed model. Table 2
summarizes different studies usingMLPwith one hidden layer
in SRA.

2.2. CNN

CNN have been commonly adopted for a wide range of engin-
eering problems, especially in vision-based tools (image seg-
mentation and classification) [53]. Recently, CNNs were suc-
cessfully modified to be used for SRA, especially when there
are uncertainties in physical properties [53–55]. Recently,
CNNs have been mainly adopted in civil and mechanical
engineering as a method for structural health monitoring, such
as detecting surface cracks and structural faults [56, 57]. The
logic behind the CNN-based SRA is that CNNs can effect-
ively capture the topology of a structure and simulate a PF.
The CNN-based SRA method can take the structures’ random
responses directly as inputs and learn high-level features that
include information about the random variability in both spa-
tial distribution and intensity, which can be used for a com-
prehensive SRA. Moreover, a CNN can be trained on a set of
input-output pairs generated by FE analysis to learn the rela-
tionship between the input parameters and the output response.

8
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Figure 6. Illustration of a CNN-based SRA framework.

Figure 7. Illustration of a convolutional layer.

Figure 8. Illustration of a pooling layer.

The trained CNN can then be used to predict the response
of the structure under different loading conditions and uncer-
tainties, which can significantly reduce the computational cost
compared to traditional methods.

In this section, firstly, we briefly introduce the most com-
mon way of using CNNs as a metamodel for SRA, then the
most recent CNN-based SRA studies will be introduced. In
figure 6, the implementation procedure of a CNN-based SRA
method is shown.

For a CNN-based SRA framework, there are several essen-
tial network building blocks to be determined, which are
briefly introduced here: (1) Convolutional layer is the primary
building block of a CNN; a filter or kernel is usually an essen-
tial element that constitutes the convolutional layer as shown

in figure 7; (2) pooling layer can expand the field and collect
global information by reducing the resolution (figure 8). Ana-
lyses; (3) activation layer is applied to account for the system’s
nonlinearity.

Regarding the explained procedure for training a CNN-
based SRA model, the most significant challenge can be
the generation of a proper initial sample to be used for
the training. Next, the determination of loading and operat-
ing conditions and the use of the model to generate a real-
istic structural response can be determinative. In this sense,
Kamruzzaman et al [58] used a CNN-based method to calcu-
late the SRA indices via a data generation scheme to train the
CNN and calculate reliability indices. They developed a math-
ematical model to calculate the SRA via CNN-based MCS.
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TheCNN-based regression approach determines theminimum
load of sampled states without solving the stress distribution,
except in the training stage. Minimum loads are then used to
evaluate indices. In the end, their results show that their pro-
posed approach is computationally efficient (fast and accurate)
in calculating the most common indices for SRA.

Wang [53] used CNNs as the metamodels of the physics-
based simulation model of the SRA system. In their study,
the spatially variable soil properties and the external loads
of a geotechnical system are simultaneously considered in
the analysis. Their network configures uncertainties to form
a multi-channel ‘image’; then, the CNN is used to simul-
taneously learn high-level features that contain information
about the multiple uncertainties. Then the uncertainties are
taken into account to calculate the reliability. They have shown
with appropriate architecture and adequate training, the trained
CNNs can replace the computationally demanding physics-
based simulation model for MCS. They have also demon-
strated that the efficiently predicted failure probability value
agrees with the benchmark result obtained using direct MCS.

Wang et al [54], took a novel and computationally efficient
metamodelling technique that involves the use of CNNs to
perform random field FE analysis. Their trained CNN treats
random fields as images and can output FEM-predicted quant-
ities with learned high-level features that contain informa-
tion about the random variabilities in both spatial distribution
and intensity. After training the CNN with sufficient random
field samples, the CNN is used as a metamodel to replace the
expensive random field FE simulations for all subsequent cal-
culations. The validity of their proposed approach was illus-
trated using a synthetic excavation problem and an artificial
surface footing problem. Lee et al [59] developed an SRA
model for automobile parts using field data. They used CNN
in combination with LSTM and conducted experiments over
actual service data to predict the potential defects in estimating
the SRA. Ates and Gorguluarslan [60] used a two-stage net-
workmodel via CNN that incorporated a newway of loss func-
tions to reduce the number of structural disconnection cases
and reduce error to enhance the predictive performance of
DNNs for faults detection without numerous iterations. Their
validation results showed that their proposed two-stage frame-
work could improve network prediction ability compared to a
single network while significantly reducing compliance and
volume fraction errors. Lee et al [61] also used a CNN-based
model as an alternative to the finite element analysis (FEA).

Shi and Deng [62] studied the multiscale SRA of struc-
tures with geometrical uncertainty. The researchers created
and trained a CNN to establish a connection between geo-
metric uncertainties and the variability of structural responses
or performances. They compiled a dataset for the CNN train-
ing, which consisted of graphical samples accompanied by
stress components and strength characteristics. Additionally,
they utilized a technique to generate graphical samples that
incorporates the randomness of various factors such as fibre
shape, misalignment, arrangement, volume fraction, matrix
voids, and stacking sequences of the laminates. To assess

the reliability of their proposed method, the researchers con-
ducted a MCS. They also presented numerical examples to
demonstrate the effectiveness of their approach. A pretty sim-
ilar approach is also taken by Wang and Goh [55], where
they used CNN for the SRA of a slope in spatially variable
soil. They considered a random field as an image-like object
and used CNN to calculate regressions between the informa-
tion about the random variabilities and the slope’s factor of
safety. They compared their method with other approaches
and showed CNNs could successfully provide accurate regres-
sions between information about the random variabilities and
the slope’s factor of safety. Also, by comparing their pro-
posed CNN-based approach against other metamodel-based
approaches, the accuracy and efficiency of their method are
validated using the SRA of a multi-layered soil system.

Wang and Goh [63] compared the performance of two
stress models: a conventional ANN stress model that employs
hand-crafted feature extraction and a CNN stress model. They
provided an overview of the structures of each ANN stress
model and explained their functions in stress estimation. They
evaluated their runtime stress estimation method using the
three ANN stress models with varying layer configurations.
Through several examples, they demonstrated that the CNN-
based stress model outperformed the other models in terms of
stress estimation accuracy and computational overhead. Liu
and Jia [64] analysed three popular high-dimensional data-
driven fault diagnosis methods—SVM, CNN, and long- and
short-term memory NN to provide a sustainable development
idea that continuously explores multi-method integration and
comparison aimed at improving the calculation efficiency and
accuracy of SRA.

Generally, considering the reviewed CNN-based SRA
methods, the advantages of using CNNs for SRA include their
ability to handle high-dimensional input spaces, their ability
to capture complex relationships between input parameters
and output responses, and their ability to reduce computa-
tional costs. However, there are also some challenges associ-
ated with the use of CNNs, such as the need for a large amount
of training data, the difficulty of interpreting the models, and
the potential for overfitting.

2.3. RNN

RNNs are a type of DL algorithm that has been applied to
various fields, including time series analysis. In the context of
SRS, RNNs can be used to model the temporal behaviour of
structures under various loading conditions and uncertainties.
An RNN can recognize data’s sequential characteristics and
use patterns to predict the following likely scenario. Accord-
ingly, it also has the potential to estimate the future reliability
of structures in the upcoming operational times using histor-
ical data. As mentioned before, there are two general types
of ANNs, which are feedforward ANN and recurrent ANN.
A feedforward NN is an ANN where connections do not go
through a cycle (figure 9). On the other side, an RNN is a class
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Figure 9. An example of a feedforward neural network.

of ANNs where connections between nodes create a loop. One
of the essential activities for using RNNs is network training.

2.3.1. RNN training. There are various methods for the train-
ing of RNNs, such as BP, real-time recurrent learning, and
extended Kalman filter-based methods. In SRA studies, BPTT
has received more attention as it can be trained easily using
SuS. In RNNs, a common choice for the loss function is the
cross-entropy loss which is given by:

L(yl,y) =− 1
N

∑
n∈N

y\lnlogyn. (3)

In this formula, yl is the training examples quantity, y is the
network’s prediction and yl is the actual label. Considering the
RNN’s power for predicting systems’ behaviour, Hong et al
[65], introduced SVM learning algorithms to the RNNs to pre-
dict structural reliability. In addition, the parameter selection
of the SVM model is provided by genetic algorithms (GAs).
Their method is then used to evaluate the system reliability of
some structures, such as a ten-bar structure. They have shown
that the RNN also works properly when facing a shortage in
data history.

Das Chagasmoura et al [66] presented a comparative
analysis to evaluate the RNN-based SVM effectiveness
in forecasting time-to-failure and reliability of engineered
components based on time series data. They also invest-
igated their performance against other advanced ML-based
methods, such as the RBF, the traditional MLP model, and
the autoregressive-integrated-moving average, and they have
shown the computational efficiency of their method. Lee et al
[59], developed a failure and reliability prediction model for
automobile parts using historical data. They devised various
DL-based models to predict the number of failures and estim-
ate reliability in the presence of those failures using DL-
based methods. Their DL-based method is a sequence of the
1D CNN, RNN, and sequence to sequence (Seq2Seq). Fur-
ther, they applied various approaches to compare the effective-
ness of their proposed models. After comparisons, they have
shown that their proposed RNN model produces superior fail-
ure and reliability prediction performance in terms of accuracy
of detecting small PoFs.

Conducted a study that combined RNN and FEM to
evaluate the thermal cycling performance of a glass wafer-
level chip-scale package (G-WLCSP). They first developed a
detailed FEM for the G-WLCSP to determine the accumulated
plastic strain per cycle under thermal-cycling loading. Next,
they identified three critical input parameters to create a data-
set based on FEA. The RNN and gate-network LSTM archi-
tecture were then used to train the obtained dataset. To avoid
numerical overfitting, they controlled the network complexity
of the sequential NNmodel in their approach. TheRNN is used
to predict the model’s changes due to the stochastic behaviour
of the structure. The RNN’s inputs in their model are stiff-
ness, damping, and load. Martínez-García et al [67] developed
a methodology for measuring the degree of unpredictability in
dynamical systems with responses dependent on a history of
past states; they used this approach to assess the time-varying
reliability of their system. The validity of their model is veri-
fied with sensor data recorded from gas turbine structures. An
approach similar to [55] is also taken by Yuan et al [68]; they
used RNNs for solder joint reliability after fatigue loading.
Their research follows the AI-assisted simulation framework
and builds the non-sequential ANN and sequential RNN archi-
tectures to deal with the time-dependent and nonlinear char-
acteristics of the solder joint fatigue failure. Moreover, their
research applies the GA optimization to decrease the influence
of the initial guesses, including the weightings and bias of the
RNN architectures.

2.4. LSTM

LSTM is a type of RNN architecture that is designed to handle
the problem of vanishing and exploding gradients in traditional
RNNs. LSTMs are particularly useful for processing sequen-
tial data, such as time series data. They are able to selectively
remember or forget information over long time periods, mak-
ing them especially well-suited for tasks that require model-
ling long-term dependencies. One approach to SRA is to use
LSTM networks to model the behaviour of the structure and
predict its response under various conditions. For a lifetime
SRA, LSTM networks can be trained on data from sensors
or other monitoring devices that record the behaviour of the
structure over time. Then, the LSTM network can learn pat-
terns and relationships in the data and use this information
to make predictions about the future behaviour of the struc-
ture. Using the LSTM-based method, we can analyse sensor
data and other performance metrics to predict the remaining
useful life (RUL) of a structure and schedule maintenance or
repairs before a failure occurs. Another application of LSTM
in SRA is to model the behaviour of a structure under extreme
or rare events, such as earthquakes or hurricanes. LSTM can
be trained on historical data from similar circumstances to pre-
dict the structure’s response under these conditions, allowing
engineers to design structures that can withstand these events
and ensure the safety of the public.

The architecture of an LSTM includes a series of memory
cells, each of which can store information over a prolonged
period of time. The memory cells are controlled by gates,
which regulate the flow of information in and out of the cell.
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There are three types of gates in an LSTM: the input gate, the
output gate, and the forget gate. These gates allow the net-
work to selectively remember or forget information based on
the input and the current state of the network.

The mathematical formulation of the LSTM network for
SRA is similar to the standard formulation, with some modi-
fications to account for the specificities of the problem. Spe-
cifically, the input to the LSTM network is a sequence of load-
ing scenarios, and the output is a sequence of responses of the
structural system. The LSTM network is trained using a set of
historical loading-response pairs, and the goal is to learn the
conditional distribution of the response given the loading. For
the mathematical formulation of the LSTM network for SRA,
Let us consider a structural system that can be modelled by
a set of random variables. The LSTM network can be trained
using a set of input-output pairs (xi,yi) where xi is a realiza-
tion of the random variables and yi is a binary value indicating
whether the system has failed or not. Now, the mathematical
formulation of the LSTM network for SRA can be expressed
as follows:

At time step t, the LSTM network receives an input vector
and a hidden state ht−1. The LSTM network then computes the
following equations [69]:

First, the input and forget gates are computed using the cur-
rent input vector, denoted as xt, and the previous hidden state,
denoted as ht−1, along with learned weight matrices Wi, Wf

biases bf, bi and activation functions,

ft = σ (Wfxt +Ufht−1 + bf) (4)

it = σ (Wixt +Uiht−1 + bi) (5)

c̃t = tanh(Wcxt +Ucht−1 + bc) (6)

where σ is the sigmoid function, ⊙ is the element-wise mul-
tiplication, and W, U, and b are the weight matrices and bias
vectors to be learned during training. The candidate cell state,
C̃t, is then computed using the same input vector and hidden
state alongwith learnedweightmatrices and bias and the activ-
ation function,

C̃t= tanh(WCxt+UCht− 1+ bC) (7)

ct = ft⊙ ct−1 + it⊙ c̃t (8)

ot = σ (Woxt +Uoht−1 + bo) (9)

ht = ot⊙ tanh(ct) . (10)

The output of the LSTM network at time step t is given by:

yt = σ (Vht+ d) (11)

where V and d are the weight matrix and bias vector for the
output layer. During training, the LSTM network is optimized

Figure 10. Schematic of a LSTM network.

tominimize the binary cross-entropy loss function between the
predicted output yt and the true output ŷt:

L=− 1
N

N∑
i=1

[
y(i)t log

(
ŷ(i)t

)
+
(
1− y(i)t

)
log

(
1− ŷ(i)t

)]
.

(12)

Once the LSTMnetwork is trained, we can use it to estimate
the probability of failure Pf by evaluating the LSF g(X) at a
large number of samples from the joint PDF fX(x). Specifically,
we can use the LSTM network to predict the output yt for each
sample xi and count the number of samples for which yt < 0.
The estimated probability of failure is then given by:

Pf ≈
#i : yt (xi)< 0

N
(13)

where# is the number of samples for which the predicted out-
put is negative and N is the total number of samples. A schem-
atic of an LSTM network is presented in figure 10.

To deal with issues associated with gradient exploding
and vanishing for the training of RNN in SRA, LSTM has
gained tremendous success in making predictions based on
time-series data [17, 70, 71]. LSTM networks have also been
employed to learn the time-dependent behaviour of the sys-
tem response for the stochastic processes while fixing the ran-
dom variables. The benefit of constructing the LSTM models
is that they can accurately predict system responses given any
new random realizations of the stochastic processes. As a res-
ult, a set of augmented data can be collected based on mul-
tiple LSTM models. The Gaussian process regression tech-
nique is then adopted formodelling the time-dependent system
response. With specified stochastic processes and time instant,
GP models can be constructed to predict the system response.
By employing theMCS, the proposed approach can be utilized
to estimate time-dependent reliability.

Moreover, as the LSTM uses sequences of data, and its
popularity is for its ability to classify and process unknown
data and make decisions and predictions based on time series.
Regarding the mentioned benefits of LSTM for SRA of time-
varying systems, Zhang et al [72], used a deep LSTM network
for nonlinear structural response modelling. In their study,
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two input-output schemes (LSTM-s and LSTM-f) are presen-
ted to accurately predict both elastic and inelastic responses
of building structures in a data-driven fashion as opposed
to the classical physics-based nonlinear time history analysis
using numerical methods. They have also used an unsuper-
vised learning algorithm to cluster the seismic inputs for SRA
training enhancement. Their approach is then verified by both
numerical and experimental examples. Nguyen et al [73],
presented a probabilistic DL-based methodology for uncer-
tainty quantification of multi-component systems’ SRA and
RUL prediction. Their method combines a probabilistic model
and a deep RNN to predict the components’ life distributions.
Then, using the information about the system’s architecture,
the formulas to quantify system reliability or system-level-
RUL uncertainty are derived. They applied heterogeneous
monitoring data of components as the Lognorm-LSTM’s input
to predict the RUL distribution; the RUL estimation can then
be used for SRA.

Kundu et al [74] introduced an LSTM-based DL algorithm
to quantify the uncertainty in seismic response by accounting
for the stochastic nature of dynamic load and structural sys-
tem parameter uncertainty. They demonstrated the efficacy of
their proposed algorithm through two numerical examples and
one realistic structural engineering problem, using the results
of direct MCS as a benchmark. Their study showed that their
proposed LSTM-based SRA model had better prediction cap-
ability, as indicated by the accuracy matrices compared to the
results obtained through directMCS. Li andWang [75] presen-
ted a DL framework that utilized LSTM to enhance the time-
dependent SRA of dynamic systems. They employed multiple
LSTMs with local surrogate models and a feedforward NN
trained as a global surrogate model of dynamic systems based
on augmented data.

Zhou et al [76] used the LSTM to predict the fluctuation in
the urban land-subsidence sequence deformation. They used
the constructed multi-factorial LSTM model to predict the
subsequent ten periods of any time-series subsidence data in
SRA. They have shown that their prediction accuracy was
improved while maintaining the computational effort. Chen
et al [77] proposed a feature-based DLmethod for impact load
localization of a plate structure. They used two LSTM layers
and a BiLSTM layer with uniform distribution to learn the con-
nection between input and load in time steps. The BiLSTM
layers are then applied to learn hidden-level spatial features.
The completely connected layers are located at the end to loc-
alize the load, which is then used for the SRA. Zhang et al [78].
Then, combined with the slope displacement monitoring data,
a slope monitoring data prediction model based on LSTM is
constructed, and the main structural parameters of the LSTM
are optimized to predict the slope monitoring data. Finally, the
data prediction results are analysed, and the system’s reliabil-
ity is estimated.

2.4.1. Bi-LSTM. Bi-LSTM is a type of RNN that can be
trained on a time series of input-output pairs generated by FEA
or experimental data to learn the temporal behaviour of the
structure under different loading conditions and uncertainties.

The trained bi-LSTM can then be used to predict the response
of the structure at future timesteps. Bi-LSTMs are an exten-
sion of traditional LSTMs that can improve model perform-
ance on sequence classification problems. In problems where
all timesteps of the input sequence are available, Bi-LSTMs
train two instead of one LSTM on the input sequence. Bi-
LSTMs allow the network to process input sequences in both
forward and backward directions. In a Bi-LSTM, the input
sequence is processed by two separate LSTMs: one in the for-
ward direction and one in the backward direction. The outputs
of the two LSTMs are then combined to produce the final out-
put of the network. At each time step, the Bi-LSTM updates
its hidden state by considering the current input as well as the
hidden state from the previous time step in both the forward
and backward directions. The output at each time step is then
computed based on the current hidden state. The final output of
the network is obtained by feeding the concatenated outputs of
the forward and backward LSTMs through a fully connected
layer.

The basic Bi-LSTM formulation is similar to the LSTM
formulation, but with the addition of a backward hidden layer.
The inputs are processed in both the forward and backward dir-
ections, and the outputs from both directions are concatenated
at each time step. The equations for the forward and backward
hidden layers are as follows [69]:

Forward LSTM:

ft = σ
(
W f
f xt+U f

fh
f
t−1 + b ff

)
(14)

it = σ
(
W f
i xt+U f

ih
f
t−1 + b fi

)
(15)

Ct = tanh
(
W f
Cxt+U f

Ch
f
t−1 + b fC

)
(16)

ot = σ
(
W f
oxt+U f

oh
f
t−1 + b fo

)
(17)

h ft = ot ∗ tanh(Ct)+ ft ∗ h ft−1 + it ∗ tanh(Ct) . (18)

Backward LSTM:

ft = σ
(
Wb
f xt+Ub

f h
b
t−1 + bbf

)
(19)

it = σ
(
Wb
i xt+Ub

i h
b
t−1 + bbi

)
(20)

Ct = tanh
(
Wb
Cxt+Ub

Ch
b
t−1 + bbC

)
(21)

ot = σ
(
Wb
o xt+Ub

oh
b
t−1 + bbo

)
(22)

hbt = ot ∗ tanh(Ct)+ ft ∗ hbt−1 + it ∗ tanh(Ct) . (23)

Concatenation:

ht =
[
h ft ;h

b
t

]
. (24)
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Considering the superiority of Bi-LSTM to capture com-
plex relationships between input parameters and output
responses, and their ability to reduce computational costs, Das
Chagasmoura et al [66] presented a deep RNN to identify the
external load, which consists of two LSTM layers, a time-
distributed fully connected layer and a Bi-LSTM layer. The
effectiveness of their technique is investigated by vibration
signals acquired from a nonlinear plate. They have claimed
that their proposed approach is the only DL-based method
in SRA that has been used to identify impact loads. After
their work, other researchers tried to enhance their results. For
example, Chen et al [77] proposed a feature learning-based
method for impact load localization plate structures. They also
used a Bi-LSTM and two LSTM layers to learn the relation-
ship between inputs and output. The deep convolutional-RNN
is then used to learn high-hidden-level spatial and temporal
features. Their study provided a considerable improvement in
the work done in [66] and paved the way for future Bu-LSTM-
based SRA methods.

2.5. GRU

The GRU is a type of RNN that has been designed to lever-
age sequential connections between nodes to perform ML
tasks related tomemory and clustering. Its applications include
speech recognition as well as SRA, where it can be used
to detect potential points of failure by identifying out-of-
bound samples. With its ability to filter and cluster data effect-
ively, the GRU has the potential to be highly effective in
SRA, especially when dealing with noisy data. Compared to
LSTM, GRUs have a simpler architecture and fewer paramet-
ers, which makes them more computationally efficient. GRUs
can also be used for SRA, similar to LSTM. In that sense, the
formulation of GRUs for SRA is similar to LSTM, with some
modifications to the equations. The GRU network can be used
to approximate the LSF as follows [79]:

At time step t, the GRU network receives an input vector
xt = [x1,t,x2,t, . . . ,xn,t] and a hidden state ht−1. The GRU net-
work then computes the following equations:

zt = σ (Wzxt+Uzht−1 + bz) (25)

rt = σ (Wrxt+Urht−1 + br) (26)

h̃t= tanh(Whxt+Ur (rt ∗ ht− 1)+ bh) (27)

ht = (1− zt)⊙ ht−1 + zt⊙ h̃t (28)

where σ is the sigmoid function, ⊙ is the element-wise mul-
tiplication, and W, U, and b are the weight matrices and bias
vectors to be learned during training. Similar to LSTM, the
output of the GRU network at time step t is given by:

yt = σ (Vht+ d) (29)

where V and d are the weight matrix and bias vector for the
output layer. The GRU network is also optimized to minimize

the binary cross-entropy loss function (equation (12)). Once
the GRU network is trained, we can use it to estimate the PoF
by evaluating the LSF at a large number of samples from the
joint PDF fX (x). Specifically, we can use the GRU network
to predict the output for each sample and count the number of
samples for which yt < 0. The estimated PoF is then calculated
using equation (13).

Regarding the explained GRUmethodology for SRA, Yang
et al [80] The researchers employed GRU and the Nadam
algorithm to develop a forecasting model and identify the
underlying patterns in field observations. In their proposed
method, they first trained the GRU-based forecasting model
using field data from previous and current stages. They then
used the current stage field data as input to predict the deform-
ation response in the next stage using the trained GRU-based
forecasting model. This process was repeated until the excava-
tion was completed, and the resulting forecast model was util-
ized for deformation estimation, which was then employed in
SRA. Lu et al [81], focused on the SRA after selecting faults.
They proposed a model using an AE-GRU, the AE extracts the
important features from the raw data and the GRU chooses the
data to perform the SRA.

Truong et al [82] applied a one-dimensional convolutional
GRU (CGRU) by combining a 1D CNN and a GRU for real-
time SRA based on time-series signals measured from acceler-
ometers. In their framework, the one-dimensional CNN (1D-
CNN) is applied for feature extraction and for dimensionality
reduction. The computational time of their proposed method
for training 1D-CGRU models for SRA is also compared with
that of the sequential implementation. Truong et al [83] also
proposed a new DL framework using an AE-convolutional
GRU (A-CGRU) for SRA using noisy data. In their approach,
the AE component is used for noise removal, and the out-
put of the AE is then fed into the convolutional component
to automatically determine the important features of the reli-
ability analysis. The latent features extracted from the convo-
lutional component are fed into the GRU to learn to predict
structural health. The performance of A-CGRU was then val-
idated through various damage scenarios in a two-story planar
frame structure and a four-story planar frame structure.

Xiang et al [84] proposed a method to extract multidirec-
tional Spatio-temporal features of data for wind turbine SRA
based on CNN and bidirectional GRU. Firstly, they distributed
the data for cleaning and deleting the abnormal data to improve
its validity. Then, the inputs are selected through the Pear-
son correlation coefficient, and they are transformed into high-
dimensional features using CNN. Finally, these features are
fed into the BiGRU network to construct a model for deflec-
tion prediction, which is then used for SRA. Zeng et al [85],
also proposed a spatial prediction method based on GRU with
Kriging estimation. Spatial-dependent DL, spatial constraint
weights and related structural information are used in their
study to complete the prediction of spatial distribution. In their
study, Seismic information is used as the spatial constraint
of GRU. Compared with the traditional Kriging method and
ML-based method, the prediction accuracy (R2 = 95.071%)
of their proposed method is improved by 8.642% and 3.034%
in the field data. Liu et al [86], The researchers proposed a
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novel approach for short-term building load probability dens-
ity forecasting, which employed Correlation Coefficient fea-
ture selection and CGRU regression. In their method, they
initially selected an optimal feature set and determined the
value-at-risk by fitting the Copula model to create indicator
variables. Next, they utilized the data obtained from the fea-
ture selection stage as input to the CGRU regression model for
building load forecasting. Lastly, they fitted the building load
probability density distribution using kernel density estima-
tion (KDE). The resulting forecasted performance was sub-
sequently utilized to compute the structural reliability. Zhang
et al [87] also proposed a time-variant uncertain structural
response analysis method based on RNN using GRU com-
bined with ensemble learning. They have shown their method
has a high computational efficiency while ensuring calculation
accuracy.

3. Unsupervised methods

Unsupervised learning is a type of algorithm that learns pat-
terns from untagged data; in other words, unsupervised learn-
ing refers to the use of AI algorithms to identify patterns in
data sets containing data points that are neither classified nor
labelled. GANs, AE, SOM,RBMs, andDBN are themost pop-
ular unsupervised methods being used for SRA purposes, and
they have been reviewed in this section.

3.1. GAN

GANs, as a DL method, have recently shown promise in the
field of SRA. The basic idea behind GANs is to train two NNs
simultaneously, one called the generator and the other called
the discriminator. The generator network is trained to generate
new data that is similar to the real data, while the discriminator
network is trained to distinguish between the real data and the
generated data. For SRA, GANs can be used to generate syn-
thetic data that is representative of the real-world data, allow-
ing for more accurate modelling and analysis. For example,
GANs can be used to generate synthetic sensor data that mim-
ics the behaviour of real sensors in a given environment. This
synthetic data can be used to augment real-world data sets and
provide more diverse and representative training data for DL
models. GANs can also be used for anomaly detection in struc-
tural health monitoring. By training the discriminator network
to identify normal behaviour patterns, the generator network
can be used to generate synthetic data that deviates from the
norm. This can help identify anomalies and potential problems
in the structure before they become serious issues.

As typical models of DL, for given training data, generative
models are usually utilized to generate new samples from the
same distribution. Specifically, GAN is one of the widely used
generative models, which was proposed by Ian Goodfellow in
2014 [88], and designed to generate real-like samples through
an adversarial game. AGANmodel consists of a generator and
a discriminator. The generator aims at mapping latent space
variables which are collected from a prior distribution into

data space, and the discriminator is designed to distinguish the
authenticity of samples. A structure of GAN is presented in
figure 11.

Specifically, the generator Gmaps the latent variable z col-
lected from an explicit prior distribution p(z) into new samples
G(z), while the discriminator D distinguishes an input sample
fromG(z) (fake data) or training data x (real data). The object-
ive function of this game is expressed as (1), where E denotes
expectation, and pdata (x) and p(z) denote distributions of x
and z. D outputs a value to evaluate the probability that the
input of the discriminator is x. The objective function aims at
getting the maximum value when the real data is fed to the
model, while it also tries to minimize the value by optimizing
G(z). Therefore, the process is adversarial. GAN can be trained
using alternating stochastic gradient descent (SGD):

Min
G

max
D

V(D,G) = Ex∼pdata(x) [log(D(x))]

+Ez∼p(z) [log(1−D(G(z)))] . (30)

The GAN has become one of the hottest topics in AI and
ML, and several variants have been developed in recent years
Pan et al [89]. The typical GAN models include conditional
generative adversarial nets (CGAN) [90], semi-supervised
GAN [91], deep convolution GANs (DCGANs) [92], and
Wasserstein GAN [5]. In reliability analysis, imbalanced data
and high-dimensional cases may occur, which hinders fur-
ther study. Therefore, as a famous generative model, GAN
and its variants have also been utilized for reliability ana-
lysis as sampling methods for their merit of generating real-
like samples to expand a sample set and learning a low-
dimensional representation following a prior distribution. But
except for CGAN, the same application of other variants has
not been published yet, therefore, the theoretical details of
them are not introduced here, which can be found in references
[3–5]. For CGAN, label ywas added as a condition to the input
of the generator and discriminator. Then the input of the gen-
erator becomes noise and label, while the input of the discrim-
inator becomes a real sample and the label y or the generated
sample and the label y. The objective function of CGAN is
presented as:

Min
G

max
D

V(D,G) = Ex∼pdata(x) [log(D(x|y))]

+Ez∼p(z) [log(1−D(G(z|y)))] . (31)

Up to now, only several GAN-based and CGAN-based
models related to reliability analysis have been described as
follows [93–95]. In [96], the main idea of their study is to
find the latent relations between gear reliability and paramet-
ers for different types of gears, which is also called reliability
classification (RC), and data-driven approaches like ML and
DL methods based on the training of existing gear data were
used to explore the relation between gear reliability and para-
meters by investigating implicit characteristics of the existing
gear data rather than by equations. However, complicated cal-
culations and great classification errors of coupled parameters
with insufficient data hinder the RC of gear safety. Aiming at
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Figure 11. A structure of GAN.

expanding the sample set and improving the accuracy of RC,
Li et al explored adding a bounded layer between the gener-
ator and discriminator to construct a bounded-GAN model,
which was designed to involve a noise variable as input and
forged instances as output and as a sampling method to pro-
duce more gear instances. Specifically, the bounded layer is
used to restrict generated data in a required domain related
to reliability. Three bounded layers (Full-constraint bounded
layer, partial-constraint bounded layer, and multiconstraint
bounded layer) are designed to bound generated data in terms
of different data characteristics. Bengio et al [97] pointed out
that the topology optimization problem can be worked out
by solving a rare event simulation problem in reliability ana-
lysis. Subset simulation (SS) is an effective way to efficient
simulation of rare events in reliability analysis but has dif-
ficulty in simulating samples from high-dimensional space.
Therefore, GAN is utilized to establish an SS-based and GAN-
guided algorithm for merit in learning and sampling from
high-dimensional distributions. Specifically, GANwas trained
as a sampling method by existing failure samples from a distri-
bution obtained from the (k − 1) SS level and generated more
failure samples from the same distribution. Ultimately it helps
identify the optimal topology within the SS framework. Li and
Wang [98] aimed at dealing with the problem of data imbal-
ance associated with prognostics and health management data-
sets and proposed a novel CGAN-based reliable RUL estima-
tion framework, in which CGAN is used as a sampling method
to generate multi-variate fault data from noise variables to
solve data imbalance, and the whole framework is validated
by C-MAPSS. A review of the application of GAN in SRA
problems is presented in table 3.

Overall, regarding the reviewed articles, the use of GANs in
SRA has the potential to improve the accuracy and reliability
of predictive models by providing more diverse and represent-
ative training data, and by enabling more effective anomaly
detection. However, there are still challenges to be addressed,
such as ensuring the quality and diversity of the generated data
and addressing issues related to the interpretability and trans-
parency of the models.

3.2. AE

AE are a type of NN that can be used for unsupervised learning
tasks, such as data compression and dimensionality reduction.
They consist of an encoder network that maps the input data to
a lower-dimensional latent space representation, and a decoder
network that maps the latent space representation back to the
original input space. In the context of SRA, AE can be used for

Table 3. Applications of GAN-based models in reliability analysis.

Approach
Reliability
method Systems

Reference,
Year

GAN-based
model

MCL scheme
(Mean
covariance
labelling)

Gears of test
platforms in
Qingshan industry

[96], 2019

SS (Subset
simulation)

2D bi-component
periodic structure
with square lattice

[97], 2021

CGAN-based
model

DGRU (Deep
gated recurrent
unit network)

The dataset was
generated using
software developed
by NASA called
Commercial
Modular
Aero-Propulsion
System Simulation
(C-MAPSS).

[98], 2021

a variety of tasks. For example, they can be used for anomaly
detection by training the AE on normal operating conditions
and then using it to detect deviations from this normal beha-
viour. AE can also be used for data compression and dimen-
sionality reduction, which can be particularly useful for high-
dimensional sensor data. Another potential application of AE
in SRA is generating synthetic data (same as the use of GAN
in SRA) that is similar to the real data.

AE [96] is a typical three-layer NN, which was proposed
by Hinton in 1986 to demonstrate that backpropagation (BP)
allows the NN to discover the internal representation of a raw
signal. A structure of AE is presented in figure 12. The three
layers are the input layer, hidden layer, and output layer, where
the input layer and the output layer have the same dimension,
both are m-dimensional, and the hidden layer has a dimen-
sion of r. The encoding process is from the input layer to the
hidden layer, while the decoding process is from the hidden
layer to the output layer. Let f and g denote the encoding
and the decoding functions, respectively; then we can have
equations (32) and (33) as follows, where W1,W2,b1 and b2

are weight matrixes and biases, sf and sg are activation func-
tions. Specifically, sf is usually sigmoid while sg is sigmoid or
identity function. Since W1 is the transpose of W2, the para-
meter set of AE is θ =

{
W1,b1,b2

}
.

z= f(x) = sf
(
W1x+ b1

)
(32)
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Figure 12. A structure of AE.

x̂= g(z) = sg
(
W2z+ b2

)
. (33)

The output data x̂= (x̂1, x̂2, . . . , x̂m) can be regarded as a
reconstruction of the input data X= (x1,x2, . . . ,xm) of the
input layer. The AE can train the parameters of the NN by
the BP algorithm. When error between x̂ and x is acceptable,
the training of AE will be stopped, then the latent variable
vector z= (z1,z2, · · · ,zr) can be used to reconstruct x through
the decoder. To quantify the reconstructive error, L(x, x̂) is
defined, and the specific definition depends on sg. When sg
is an identity function, L(x, x̂) should be equation (34) while it
is sigmoid, L(x, x̂) should be equation (35), where i = 0 refers
to bias.

L(x, x̂) = ∥x− x̂∥2 (34)

L(x, x̂) =
m∑
i=0

[xilogx̂i+(1− xi) log(1− x̂i)] . (35)

For all training samples S=
{
xi
}N
i=1

, the cost function of
AE is presented in equation (36). The training can be stopped,
and all parameters in θ will be obtained by minimizing J(θ)
through the gradient descent method.

J(θ) =
∑
x∈S

L(x,g( f(x))) . (36)

Moreover, Hinton and Salakhutdinov developed a deep AE
model in 2006, which evolves from a single layer into deep
layers and enables the dimensionality of data and nonlinear
transformation. Based on the above models, denoising AEs
(DAE, 2008), stacked denoising AEs (SDAE, 2010), sparse
AE (SAE, 2011), stacked convolutional AEs (SCAE, 2011),
and variational AE (VAE, 2013) are proposed subsequently
[97].

Among them, DAE and SDAE have the same basic idea.
For instance, x is stochastically corrupted by noise to x̃ as
the input of the encoder, then get latent variables z via ‘f ’(x̃)
and reconstruct x via decoder g(z), obtaining reconstruction x̂.
Reconstruction error is measured by loss L(x, x̂). Differently,

SDAE consists of several DAEs, in which the resulting rep-
resentation after training a first-level DAE is used to train a
second-level DAE to learn a second-level encoding function,
and the procedure can be repeated. For SAE, the neuron num-
ber of the hidden layer is overcomplete, which means it can be
larger than that of other layers, but only a few neurons can be
activated via adding a Kullback–Leibler divergence and pen-
alty factor to the cost function. SCAE combines the idea of AE
and convolutional calculation to extract features and recon-
struct the raw signal, and max pooling is used for sparsity con-
straint instead of adding an extra item to the cost function. On
the other hand, the output of the encoder in VAE is two vectors
denoting the mean value and standard deviation of a Gaussian
distribution, which are used to obtain a latent variable vector.
Then the latent variable vector can be regarded as variables
collected from the distribution of the raw signal.

For reliability analysis, surrogates like SVM, Kriging,
RSMs, and ANNs are often used as substitutes for extensive
computational resources to evaluate the LSFs. But most of the
methods suffer from the curse of dimensionality. Therefore,
AE and some of its typical variants are used as dimension
reduction and sampling methods.

3.2.1. AE-based reliability analysis. Li andWang [98] aimed
at investigating the high-dimensional reliability analysis, in
which an AE is used to reduce the dimensionality of the high-
dimensional input space and obtain low-dimensional latent
variables. Besides, a distance-based iterative sampling strategy
is developed and the Gaussian process regression is utilized to
capture the LSF for reliability analysis. Hou et al [71] pro-
posed a double-error reconstruction strategy to enhance the
capability of feature extraction via integrating an AE and a
deep convolutional GAN, from which the extracted features
are extracted as input of the LSTM and FNN, and the sequen-
tial information are obtained for predicting the RUL of a tur-
bofan engine, which plays a crucial role in its reliability assess-
ment. The results are validated on four datasets of a turbofan
engine from C-MAPSS produced and provided by NASA.
Comparative analysis indicates that the DCGAN-based AE
scheme has an excellent performance in feature extraction and
prediction problems.

3.2.2. VAE-based reliability analysis. The VAE is a special
AE, which tries to learn the parameters of Gaussians, from
which samples are collected to reconstruct the input signal of
VAE. Wen and Gao [99] used the reconstruction error of vari-
ational AE (VAE) as the health indicator (HI), and a sliding
window was employed to obtain HI points which will be used
as input of the KDE model, where the threshold is obtained by
setting the confidence level as 99.9%, then get the reliability
assessment of the ball screw at an early stage under constant
working conditions.

3.2.3. SAE-based reliability analysis. Zhang et al [100]
aimed at addressing the insufficient labelled training data
for ball screws and recognizing the degradation under vari-
ous operating conditions. In their study, stacked AEs (SAEs)
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Table 4. Applications of AE-based models in reliability analysis.

Approach
Sampling
method

Reliability
method Systems

Reference,
Year

VAE-based VAE KDE (kernel density
estimation)

Ball screw of a machine tool [103], 2018

AE-based DIS (Distance-based
iterative sampling)

GP 20D/40D mathematical examples
A truss structure

[104], 2019

DCGAN-based AE(For
feature extraction)

LTSM + FNN(For RUL) Four datasets of a turbofan engine
from C-MAPSS

[105], 2020

SAE-based SAE (For feature
extraction)

SVM(For degradation
recognition)

Ball screws [106], 2020

SAE-LSTM(For feature
extraction)

PF(Probabilistic
forecasting)

Engines [107], 2021

Random sampling HMM IES (Integrated Energy System) [108], 2021
CAE-based CAE GP A 3 DoF delta robot [109], 2021

with different activation functions are trained via filtered
source instances and used as feature extractors to the target
domain. Finally, an SVM is utilized for the final degrada-
tion recognition. Zhang and Zhang [101] established a data-
driven, condition-based maintenance framework to improve
the evaluation reliability of an engine’s deterioration. In the
study, a SAE LSTM model is constructed to extract state
features, while probabilistic forecasting is used for mainten-
ance decisions. Chi et al [102] explored analysing the real-
time reliability of integrated energy systems (IESs). In their
study, a SAE model is utilized to simulate the dynamic beha-
viour instead of using the traditional mechanism-based simu-
lation model. Finally, the reliability assessment is performed
by estimating the probability distribution of each functional
state of the target IES.

3.2.4. CAE-based reliability analysis. Fathi et al [103] con-
sidered the case that run-to-failure data is not available and
adopted AE to predict when maintenance is required based on
the signal sequence distribution and anomaly detection. There-
after, a sigmoid function is utilized to predict the abnormal
conditional indicator, and the RUL can be calculated by GP.
Table 4 summarizes the application of AE-based methods in
SRA.

Overall, AE are a useful tool for SRA as they can be used
for data compression, anomaly detection, and data generation.
However, like all ML techniques, they require careful tuning
and validation to ensure that they provide accurate and reliable
results.

3.3. SOM

SOM are a type of ANN that can be used for unsupervised
learning tasks, such as data clustering and visualization. SOMs
are particularly use dimensionality reduction that can be use-
ful for analysing high-dimensional datasets, such as those that
arise in SRA. For example, SOMs can be used to cluster sim-
ilar data points together, which can help identify patterns and
anomalies and calculate the PoF. Sensor data or FEM results
can be fed into a SOM to identify patterns and anomalies in

the data for SRA. SOMs can also be used for dimensionality
reduction, which can be useful for reducing the computational
burden of analysing large data sets or when dealing with large
sample points in SRA. By reducing the dimensionality of the
data, SOMs can help improve the efficiency of predictive mod-
els, such as classifiers or regression models.

In a SOM, the discretized input space of the training
samples is called a map. It is different from other ANNs as
SOM applies competitive learning and not error-minimization
learning (like BP with gradient descent). Furthermore, the
SOM uses a neighbourhood function to keep the topology
structure of the input space to decrease data by creating an
organized representation and helping to discover the data cor-
relation. The SOM has recently been applied to different
problems, including the SRA, especially for high-dimensional
problems or seismic analysis.

SOMs consist of two primary layers, the input layer and the
output layer, also called a feature map. A well-organized SOM
can mix multi-modal input vectors and find relations between
them in a 2-dimensional plane. Therefore, SOM can cluster
unlabelled data or categorize labelled data by labelling the out-
put units during the learning process. For example, in an SRA
problem, it can relate LSF to the generated discretized sample
points. Unlike other ANs, SOM does not use activation func-
tions after the hidden layers, and weights pass to the output
layer directly (figure 13).

The following steps can be taken to use SOMs for SRA:

(1) Collect the structural response data: this can include stress
or strain data from FEA, experimental data, or other
sources.

(2) Normalize the data: normalize the data to ensure that all
variables are on the same scale. This can be done by sub-
tracting the mean and dividing by the standard deviation.

(3) Define the SOM architecture: decide on the size and shape
of the SOM grid. The size of the grid will depend on the
size of the dataset and the level of detail desired in the
analysis.

(4) Train the SOM: use an algorithm to train the SOM
using the normalized structural response data. The SOM
will learn to represent the high-dimensional data in a
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Figure 13. Illustration of a simple SOM.

low-dimensional space, while preserving the topological
relationships between the data points.

(5) Visualize the SOM: once the SOM is trained, it can be
visualized to identify patterns in the data. This can help
to identify clusters of similar responses, potential failure
modes, or structural vulnerabilities.

(6) Analyse the results: interpret the results of the SOM ana-
lysis to gain insights into the structural behaviour and
identify areas for further analysis or design improvements.

For training the SOM, The Kohonen algorithm is one of the
most famousmethods and it can bemathematically formulated
as follows for SRA [104]:

Let X be a matrix of normalized structural response data,
where each row represents a data point and each column rep-
resents a variable; and Let W be a matrix of SOM weights,
where each row represents a neuron and each column rep-
resents a variable; and Let d(i, j) be the Euclidean distance
between the input vector xi and the weight vector wj, defined
as:

d(i, j) = ||xi−wj|| (37)

where ||.|| denotes the Euclidean norm. The steps of the
Kohonen algorithm can then be described as follows:

(1) Initialization: initialize the SOM weights randomly.
(2) Input selection: select an input vector xi from X.
(3) Winner determination: find the winning neuron j that has

the closest weight vector to xi, defined:

j = Argmin{d(i, j)} (38)

(4) Weight update: update the weights of the winning neuron
j and its neighbours, using a learning rate η and a neigh-
bourhood function h(i, j):

w(new)
j = w(old)

j + ηh(i, j)
(
xi−w(old)

j

)
(39)

where w(new)
j and w(old)

j are the new and old weight vectors
for neuron j, respectively, and h(i, j) is the neighbourhood
function that determines the influence of the input vector
xi on the weight vector of neuron j. The neighbourhood

function h(i, j) is usually defined as a Gaussian function
centred at the winning neuron j, with a standard deviation
that decreases over time:

h(i, j) = exp

(
−
|ri− rj|2

2σ2

)
(40)

where ri and rj are the positions of neurons i and j in the
SOM grid, and σ is a parameter that controls the size of
the neighbourhood.

(5) Learning rate and neighbourhood function update:
decrease the learning rate η and the standard deviation
σ over time, according to a predefined schedule.

(6) Repeat steps (2)–(5) for all input vectors in X.
(7) Stopping criterion: stop the training when a stopping cri-

terion is reached, such as a maximum number of iterations
or a minimum change in the SOM weights.

This formulation of the Kohonen algorithm provides a way
to update the SOMweights based on the input data, while pre-
serving the topological relationships between the neurons in
the SOM grid.

As mentioned, SOMs are performing well for high-
dimensional problems. Thus, Chen et al [105], used it to per-
form the analysis of aircraft data that contains structural fail-
ures, which is becoming increasingly important in aircraft
maintenance. They presented a systematic methodology to
construct a reliability prediction model for aircraft reliabil-
ity estimation. They utilized the SOM technique to map a set
of n-dimensional vectors to a two-dimensional topographic
map and used to combine the aircraft parts’ failure data into
a sequence model based on the time-to-failure data. The time-
to-failure is then used for reliability analysis. The effective-
ness of their method is then illustrated by the Mean Time
Between Failures (MTBF). Chinnam [106] provides an SRA
approach by monitoring some degradation measures. They
used finite-duration impulse responseMLPNNs for modelling
degradation measures; then, they applied SOM for modelling
degradation variation. They tried their method for SRA dur-
ing in-process monitoring of the condition of a drilling head,
using the torque and thrust signals. Their experimental results
show that their introduced method is effective in modelling the
degradation characteristics of the monitored equipment and
predicting conditional and unconditional performance reliab-
ilities as they degrade with time.

The SOM is also good for understanding failure patterns
when dealing with extensive data. Kohonen [106] showed how
the SOM, can be used to construct a Markov model using state
assignment to a process which can be used for the SRA of dif-
ferent time-varying systems. Li et al [107], proposed a two-
stage approach for solving SRA problems. In their direction,
a SOM, with the capability of preserving the topology of the
data, is applied to classify the optimal solutions into several
clusters with similar properties. Then, within each cluster, the
data envelopment analysis is performed, by comparing the rel-
ative efficiency of those solutions, to determine the final rep-
resentative solutions for the overall problem. Chen et al [108],
used the SOM to combine the generated sample as scattered
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Figure 14. Diagram of an RBM with four hidden units and three
visible units.

data into a sequence model based on the time-to-failure data
extracted from the repair registers; they used this method to
investigate the SRA of airborne equipment. Their method’s
effectiveness is then illustrated by comparing the results of
MTBF that are experimentally calculated.

Overall, SOMs are a useful tool for SRA as they can be used
for data clustering, visualization, and dimensionality reduc-
tion. However, like all ML techniques, they require careful
tuning and validation to ensure that they provide accurate and
reliable results.

3.4. RBM

RBMs are a type of unsupervised NNS that can be used for
tasks such as dimensionality reduction, data compression, and
feature learning. RBMs are particularly useful for analysing
large, high-dimensional datasets, which can be common in
SRA. RBMs can also be used for feature extraction, where
they learn to represent the input data in a lower-dimensional
feature space that captures the essential characteristics of the
data. FEM analysis results or the sensor data can be collec-
ted from a structure over time, and this data can be fed into
an RBM to create a compressed representation of the data that
captures the essential features. This compressed representa-
tion can then be used as input to a predictive model, such as a
classifier or regression model, to predict the likelihood of fail-
ure or other structural performance indicators. RBMs can also
be used for data augmentation, where synthetic data is gen-
erated by sampling from the RBM to create new data points
that are similar to the original data. This can be useful for
increasing the size of the dataset and improving the robustness
of SRA predictive models. The RBM structure is presented
in figure 14 and its formulation for SRA can be presented as
follows [109]:

Let X be a matrix of binary indicators of the presence or
absence of failure modes, where each row represents a sample

and each column represents a failure mode. Let W be a mat-
rix of weights connecting the visible layer to the hidden layer,
where each row represents a hidden neuron and each column
represents a visible neuron. Let b and be the vectors of biases
for the visible neurons and hidden neurons respectively. The
energy function of the RBM to be minimized is defined as:

E(v,h) =−
m∑
i=1

n∑
j=1

wijvihj−
m∑
i=1

bivi−
n∑

j=1

cjhj (41)

where v is a vector of visible neuron states, h is a vector of
hidden neuron states, m is the number of visible neurons, n
is the number of hidden neurons, wij is the weight connecting
visible neuron i to hidden neuron j, bi is the bias for visible
neuron i, and cj is the bias for hidden neuron j. The joint PDF
of the visible and hidden neurons is given by:

p(v,h) =
1
Z
exp(−E(v,h)) (42)

where Z is the normalization constant. Using the above joint
PDF, The PDF of the visible neurons can be calculated as:

p(v) =
∑
h

p(v,h) . (43)

The conditional probability distribution of the hidden neur-
ons given the visible neurons is given by:

p(h|v) =
n∏

j=1

p(hj|v) (44)

where

p(hj = 1|v) = σ

(
m∑
i=1

wijvi+ cj

)
. (45)

Training the RBM involves maximizing the log-likelihood
of the data, which is equivalent to minimizing the negative log-
likelihood. The gradient of the negative log-likelihood with
respect to the weights and biases is used to update the para-
meters using SGD or a related optimization algorithm.

Regarding the explained RBMs methodology, Tamilselvan
and Wang [110], developed a reliability assessment method
that employs a hierarchical structure with multiple RBMs that
works through a layer-by-layer successive learning process.
They used their approach to classify the health state of systems
based on the failure definition, and the classified method is
then used for SRA. They also compared their methodwith four
other techniques to demonstrate the efficacy of their proposed
approach. Zhao et al [111], proposed a DL-based method
using SCADA (supervisory control and data acquisition) data
of wind turbines. In their research, first, a component deep
AE network model using multiple RBM was developed, then
a reconstruction error was calculated using the network input
and output values, which were defined as an index to reflect
the component reliability. The calculated reliability index may
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have an extreme distribution that can result in inaccuracies.
Therefore, an adaptive threshold determined by the extreme
value theory was also utilized in their work to well-tune the
failure criteria.

Wang et al [112] used DBNs to detect multiple faults and
assess their reliability; they used sensor data to construct fre-
quency domain and time-frequency domain training and test-
ing samples. Then, the constructed models are fed into DBNs
to classify the structures based on their reliability status. Then
using RBM, the DBNs automatically learns the reliability-
related features. Shao et al [113], defined a feature index based
on locally linear embedding to quantify structural perform-
ance degradation and then used a continuous DBN based on a
series of trained continuous RBMs to model vibration signals.
Finally, they optimized the critical parameters of the continu-
ous DBN with a GA to adapt to the signal characteristics for
SRA. Their results demonstrate that their proposed method is
superior in stability and accuracy to the traditional methods.
Ma et al [114] applied a data-driven approach for SRA based
on discriminativeDBNs and ant colony optimization. Discrim-
inative DBN uses a deep architecture to combine the bene-
fits of DBNs and the discriminative ability of the BP strategy.
The network works through, layer-by-layer training with mul-
tiple RBMs working together, which keeps the information
well when embedding features from high-dimensional to low-
dimensional spaces. Two case studies were studied in their
research, and the performance of their model was also com-
pared with the SVM, and it is concluded that their proposed
method is promising for SRA.

Li et al [115] proposed a deep NN based on unsupervised
learning to detect wind turbine structure’s failures. First, they
applied a regular AE network with multiple RBMs and pre-
trained it using unlabelled data from wind turbines. After that,
the trained network is transformed into a NNmodel, where the
network parameters are adjusted using minimal amounts of
labelled data. An adaptive threshold based on extreme value
theory is explained in their study as the criterion of anom-
aly judgment to deal with changes and disturbances of wind
speed and probably reduce false alarms. Their NN model
showed a good performance in mining data characteristics
and decreasing measurement error. Lastly, two wind turbine
failure cases are investigated to demonstrate the validity and
accuracy of their proposed methodology. Overall, RBMs are
a useful tool for SRA as they can be used for anomaly detec-
tion, feature extraction, data compression, and data generation.
However, like all ML techniques, they require careful tuning
and validation to ensure that they provide accurate and reliable
results.

3.5. DBN

DBNs are a type of unsupervised ANNs that can be used to
perform SRA via modelling the relationship between input
variables (such as material properties, geometry, and loading
conditions) and the output variable (probability of failure) in
a non-linear and high-dimensional space. To train a DBN for
SRA, usually a large dataset of input-output pairs is required.

Figure 15. An exemplary DBN architecture.

This can be obtained through simulations or experiments. The
DBN is trained using a variant of the BP algorithm, called con-
trastive divergence, which is specifically designed for train-
ing RBMs. Once the DBN is trained, it can be used to predict
the probability of failure for new input data. One advantage
of DBNs is their ability to handle high-dimensional and non-
linear input spaces, which are common in SRA. Additionally,
DBNs can capture complex dependencies between input vari-
ables and can perform feature extraction, reducing the dimen-
sionality of the input space. The observation that DBNs can be
trained one layer at a time led to one of the first effective DL
algorithms. Overall, DBNs have many attractive implementa-
tions and uses in real-life applications. As DBNs can capture
a hierarchical representation of input data based on their deep
structure, they permit the detection of deep patterns, which
allows for reasoning abilities and the capture of the differences
between normal and erroneous data, which is a key activity for
SRA.

An example of DBN architecture is presented in figure 15
and the formulation of the DBN for SRA can be presented as
follows:

Let X be a matrix of binary indicators of the presence or
absence of failure modes, where each row represents a sample
and each column represents a failure mode. Let θ(l) be the set
of parameters for layer l, including the weights and biases. Let
z(l) be the vector of activations for layer l, and let h(l) be the
vector of hidden units for layer l. The energy function of the
DBN is defined as [116]:

E(x,h) =−
L−1∑
l=1

nl∑
i=1

nl+1∑
j=1

w(l)
ij h

(l)
i h

(l+1)
j −

L∑
l=1

nl∑
i=1

b(l)i xi

−
L−1∑
l=1

nl∑
i=1

c(l)i h
(l)
i (46)

where x is a vector of input states, h is a vector of hidden unit
states, L is the number of layers in the network, nl is the number
of units in layer l, w(l)

ij is the weight connecting unit i in layer

l to unit j in layer l + 1, b(l)i is the bias for unit i in layer l

connected to the input layer, and c(l)i is the bias for unit i in
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layer l connected to the hidden layer. The joint PDF of the
visible units is given by:

p(x,h) =
1
Z
exp(−E(x,h)) (47)

where Z is the normalization constant. The PDF of the DBN
is defined as:

p(x) =
∑
h

p(x,h) (48)

and the conditional probability distribution of the hidden units
given the visible units is given by:

p(h|x) =
L∏
l=1

p
(
h(l)|x

)
(49)

where:

p
(
h(l)i = 1|x

)
= σ

nl−1∑
j=1

w(l−1)
ij h(l−1)

j + c(l)i

 (50)

and σ (x) = 1
1+exp(−x) is the sigmoid function. Then the condi-

tional PDF of the visible units given the hidden units is given
by:

p(x|h) =
L∏
l=1

p
(
x|h(l)

)
. (51)

As can be seen from the equations, DBN are very similar
to RBMs and similarly they have been used for SRA. Shao
et al [113], used continuous DBN to model vibration sig-
nals. Their method, called continuous DBN with locally lin-
ear embedding, is proposed for the SRA of faulty systems.
In their method, the feature index is defined based on locally
linear embedding to quantify structural performance degrada-
tion; then, continuous DBN is constructed based on a series
of trained continuous RBMs to model vibration signals for
SRA. Lu et al [117], proposed a novel method for conduct-
ing SRA of cable-supported bridges subjected to stochastic
traffic loads, utilizing DBNs. They derivedmathematical mod-
els accounting for structural nonlinearities and high-order stat-
ically indeterminate characteristics. A computational frame-
work was presented to illustrate the steps involved in system
reliability evaluation using DBNs. They then conducted a case
study on a prototype suspension bridge, utilizing site-specific
traffic monitoring data, to investigate the system reliability
under stochastic traffic loading. The numerical results demon-
strated that DBNs provide an accurate approximation of the
mechanical behaviour, accounting for structural nonlinearities
and different system behaviours. This approach can be con-
sidered as a meta-model for performing accurate SRA.

Zhu et al [118], introduced a novel approach to enhance
the reliability and robustness of DBNs by proposing a boot-
strap aggregated DBN. Their method involved using boot-
strap re-sampling with replacement on the original model-
ling data to generate multiple replications. A DBN model

was developed for each replication of the original modelling
data, and individual models were combined to form a compre-
hensive model. They demonstrated the effectiveness of their
approach by applying it to the modelling of a conic water tank.
The results of their application demonstrated that their pro-
posed models provided more reliable estimation and predic-
tion compared to single DBN models. Ma et al [114], applied
a discriminative DBN and ant colony optimization to pre-
dict the reliability. Discriminative DBN works through greedy
layer-by-layer training with multiple stacked RBMs, which
preserves information well when embedding features from
high-dimensional space to low-dimensional space. There-
fore their method is used for dimension reduction with min-
imum loss in accuracy. In their study, by optimization, the
structure and the discriminative DBN model is determined
without prior knowledge, and the performance is enhanced.
The performance of their model is also compared with SVMs,
and it is concluded that their proposed method is promising
in the field of prognostics. In another study by Che et al
[119], the SRA of complex systems with failure propagation
is investigated using DBNs. The DBN in their research is
applied to extract features between health monitoring data and
the PF.

In the study by Fang et al [120], a framework for study-
ing the structural performance of cold-formed steel chan-
nel sections with edge-stiffened/un-stiffened web holes under
axial compression is developed using DBN. Elastoplastic FEA
is used to generate a total of 50 000 data points for training
the DBN, which includes initial geometric imperfections and
residual stresses. To evaluate the accuracy of the DBN pre-
dictions, a comparison is made against 23 experimental res-
ults, and it is observed that the DBN predictions are con-
servative by 3% for columns with un-stiffened web holes
and 8% for columns with edge-stiffened web holes. Based
on the DBN prediction data, a comprehensive SRA is con-
ducted, which shows that the proposed equations can accur-
ately predict the enhanced and reduced axial capacity of
CFS channel sections with edge-stiffened/un-stiffened web
holes.

Haris et al [121] presented a combination of DBN with
Bayesian Optimization and HyperBand to predict the reli-
ability. Their proposed method can be used for SRA pro-
posed by predicting the degradation curves using the data
of the initial working cycles. Pan et al [122] introduced a
performance degradation assessment method based on DBNs
and SOM. Minimum quantization error is defined as a reli-
ability index to detect faults. After HI construction, an
improved particle filtering optimized by fruit fly optimiza-
tion algorithm is employed to perform the SRA for a gear-
box. The effectiveness of their algorithm is validated by using
simulated and experimental vibration signals obtained through
highly accelerated life tests. Li and Tang [123] presented
an SRA model based on a Bayesian belief network (BBN).
In their model, a BBN is used to represent the randomness
of SRA variables to estimate the failure probability after
accidents.
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Pan et al [124] presented a fault recognition method to
be used for further SRA based on an improved DBN using
the sampling method of free energy in persistent contrastive
divergence (FEPCD). A systematic methodology based on
multi-domain feature extraction is used to describe the charac-
teristic fault information. Their results illustrate that improved
FEPCD shows better results in training sampling, compared
with other DL methods such as deep Boltzmann machine and
SAE, and shallow intelligent algorithms like BP NN and sup-
port vector. Yu [125] proposed a DBN and Dempster–Shafer
Theory (DBN-DS). DS made a correct decision to delete from
DBNwhen the model outputted an incorrect result. It is shown
in this study that the DBN-DS is more efficient than KNN,
MLP, SVM and DBN.

Overall, DBNs show promise for SRA and can provide
accurate and efficient predictions of the PoF for complex struc-
tures. The basic architecture of a DBN consists of multiple
layers of RBMs, which are a type of unsupervised learning
algorithm. The input layer receives the input variables, and
each subsequent layer learns increasingly complex represent-
ations of the input. The output layer produces the PoF. How-
ever, the training of DBNs can be computationally intensive
and requires large amounts of data.

4. Hybrid DL and other methods

In addition to the above-discussed DL-based methods, DL
algorithms can be combined together to cover some shortcom-
ings and perform more efficiently. A hybrid DL algorithm is
an approach that combines multiple DL techniques, such as
CNNs, RNNs, and/or GANs, to solve complex problems. The
goal of a hybrid DL algorithm is to leverage the strengths
of each technique to improve the overall performance of the
model. For example, a hybrid DL algorithm could use a
CNN for feature extraction from time series data, followed
by an RNN for sequence modelling of the extracted fea-
tures. Another example is using GANs for generating syn-
thetic data that can be used to augment a limited dataset, which
can improve the generalization performance of a DL model.
Hybrid DL algorithms can also include non-DL techniques,
such as decision trees or SVMs, to combine the strengths
of both deep and shallow learning methods. For example, a
hybrid model that combines an SVM with a deep ANN can
improve the interpretability and generalization performance of
the model. Some of the most used hybrid methods for SRA
and some other popular methods, such as DTL and DRL, are
discussed in this chapter.

4.1. Hybrid CNN-LSTM

A hybrid CNN-LSTM is a DL architecture can combine
the strengths of CNNs and LSTMs to analyse SRA. CNNs
are good at extracting spatial features from input data, such
as images or time-series data, while LSTMs are good at

modelling temporal dependencies in sequences of data. By
combining these two techniques, a hybrid CNN-LSTM can
better model the complex relationships between structural
inputs and the probability of failure. A hybrid CNN-LSTM
can take in input data such as material properties, geometry,
and loading conditions, and predict the PoF. The input data
can be in the form of images or time-series data, depending on
the type of SRA being performed. For example, if the goal is
to analyse the fatigue life reliability of a structure under vari-
able loading conditions, time-series data can be used as input
to the hybrid CNN-LSTM. The CNN component can extract
features from the loading history, while the LSTM compon-
ent can model the temporal dependencies between the loading
conditions and the fatigue life. The hybrid CNN-LSTM can be
trained using a large dataset of input-output pairs, which can be
obtained through FEM-based simulations or experiments. The
model is trained to minimize the difference between the pre-
dicted PoF and the actual PoF. Once the hybrid CNN-LSTM
is trained, it can be used to predict the PoF for new input
data.

Integration of a generative or discriminative model fol-
lowed by a non-DL classifier can help with increasing the
accuracy and efficiency of some DL-based methods. In this
regard, a CNN-LSTM model is a combination of CNN lay-
ers that extract the feature from input data and LSTMs lay-
ers to provide sequence prediction. The CNN-LSTM is gen-
erally used for activity recognition and image labelling, and
in SRA, it is used for monitoring and behaviour prediction
of structures with highly non-linear behaviour or stochastic
systems.

Using a hybrid CNN-LSTM, Chen et al [77] proposed a
hybrid method in which its first part is designed to repres-
ent impact load via a 1D CNN, and the other part is designed
to localize impact load, using LSTM. Their results show that
their proposed method can accurately determine and localize
the impact load of complex structures. Abboush et al [126]
developed hardware in the loop-based real-time SRA frame-
work to generate faulty data without altering the original sys-
tem model. In addition, a combination of CNN and LSTM is
employed to build the model structure. They used eight types
of sensor faults to cover the most common potential faults in
the signals. In The end, as a case study, a gasoline engine sys-
tem model is used to demonstrate the capabilities and advant-
ages of their proposedmethod and to verify the performance of
themodel. Zhan et al [127] propose an SRAbased on a life pre-
diction scheme combining DL-based HIs and a relevance vec-
tor machine. First, both one-dimensional time-series informa-
tion and two-dimensional time-frequency maps are input into
a hybrid deep-learning structure network consisting of CNN
and LSTM to construct HIs. Then, the prediction results and
confidence interval are calculated by a new RVM enhanced
by a polynomial regression model. Their method is verified
by the public PRONOSTIA datasets, and the accuracy and
efficiency of their method are then demonstrated. Zhao et al
[128] developed an accurate method to estimate SRA via some
indicators. They used the learning abilities of CNN and LSTM
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Figure 16. Schematic structure of deep reinforcement learning (DRL).

networks to detect the early damage in structures. The SRA is
then assessed by applying the beat excitation and capturing the
response of the structure.

Overall, a hybrid CNN-LSTM is a powerful tool for SRA.
It can handle high-dimensional and non-linear input spaces,
model complex temporal dependencies, and provide accurate
predictions of the probability of failure.

4.2. Reinforcement learning (RL)

RL is a type of DL that is concerned with decision-making
in environments where an agent takes actions to maximize a
cumulative reward signal. For SRA, RL can be used to formu-
late the problem as a Markov decision process (MDP), where
the agent takes actions that affect the state of the structure and
receives a reward based on the resulting state. The state can be
represented by input variables such asmaterial properties, geo-
metry, and loading conditions, and the reward can be based on
the PoF or some other measure of performance. The RL agent
learns a policy, which is a mapping from states to actions, that
maximizes the cumulative reward over time. The policy can be
represented by an ANN, such as a Deep Q-Network, that takes
in the state as input and outputs the optimal action. To train the
RL agent, a simulation or experimental model of the structure
is used to generate training data. The agent interacts with the
model by taking actions and receiving rewards, and the policy
is updated using a variant of the Q-learning algorithm. The
trained policy can then be applied to real-world structures to
evaluate the reliability. One advantage of using RL for SRA is
its ability to handle complex, non-linear problems with high-
dimensional input spaces. RL can also adapt to changes in the
environment, such as changes in the loading conditions or the
material properties of the structure.

RL uses the ideas of an environment and an agent to solve
decision-making problems. The agent can make a series of
actions; each can result in possible rewards (feedback) ‘pos-
itive’ for good sequences of actions that result in a ‘good’
state and ‘negative’ for bad sequences of actions that res-
ult in a ‘bad’ state. Deep reinforcement learning (DRL or
deep RL) integrates NNs with a RL architecture to allow

the agents learn actions in a virtual environment, as shown
in figure 16.

Regarding the mentioned characteristics of DRL, Xiang
et al [129] proposed a DRL-based sampling method for
SRA. In their study, they proposed a sampling framework
for SRA based on DRL. The sampling space and existing
samples are transformed into an array that serves as the state
in DRL, and a deep NN is designed as the agent to select
new experimental points. A reward function is also proposed
to guide the selection of points along the LSF. Two numer-
ical examples were presented to demonstrate the effectiveness
of their SRA sampling approach. Yang et al [130], invest-
igated an optimal condition-based maintenance strategy for
redundant systems with arbitrary structures using improved
RL. They considered failure and economic dependences and
dynamically made decisions on imperfect repair and replace-
ment of failed components. An efficient solution method of a
dynamic maintenance strategy was proposed using improved
DRL with re-learning and pre-learning processes. Numerical
studies showed that the proposed method is effective in redu-
cing maintenance cost and searching for the optimal strategy
for redundant systems.

Guan et al [131] proposed a DRL-based method to search
for main failure modes of a structure. The DRL-based method
is used for failure modes searching. First, the failure levels and
the selected components of a structure are transformed into
the states and actions in the DRL. Second, a DNN is estab-
lished to monitor the failure levels and select failure com-
ponents. Finally, a new reward function is designed to guide
the network to learn the failure component selection policy.
Azar et al [132] proposed a hybrid maintenance decision sup-
port system for SRA considering CM data. They developed a
model augmented with semi-supervised ML approaches and
DRL to find an optimal maintenance policy for structures sub-
ject to stochastic degradations with a focus on cost minimiza-
tion. Their developed model can infer and fuse high-volume
data sources adaptively and autonomously to recommend
optimal maintenance decisions based on the system’s reliabil-
ity. Solhmirzaei et al [133] presented a data-driven ML frame-
work for SRA of an ultra-high-performance concrete (UHPC)
beam. They used a database of 360 tests on UHPC beams with
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different geometries, properties and loading. This database
was then investigated using different ML algorithms, includ-
ing SVM, ANN, k-nearest neighbour, to identify critical para-
meters governing failure pattern and shear capacity of UHPC
beams. The outcome of their analysis is a computational-based
DL framework that can identify the failure modes and per-
form a thorough SRA. Their results infer that their proposed
data-driven ML method effectively predicts the reliability of
UHPCbeamswith varying reinforcement detailing and config-
urations. Dabiri et al [134] predicted the displacement ductility
ratio of concrete joints using ANN-DRL and regression-based
methods. They tookmaterial properties and corresponding ret-
rofitting techniques as input variables for predicting the output
parameter, that is, displacement ductility ratio, which is used
for the SRA.

However, one limitation of using RL for SRA is the require-
ment for a simulation or experimental model of the structure,
which can be time-consuming and expensive to develop. Addi-
tionally, RL may not be well-suited for problems where the
optimal solution is not well-defined, such as cases where there
are multiple competing objectives. In summary, RL can be
used for SRA by formulating the problem as an MDP and
training an agent to learn an optimal policy that maximizes the
cumulative reward. While there are limitations to using RL for
this application, it has the potential to improve the design and
maintenance of structures in a variety of settings.

4.3. Hybrid AE and SVM

A hybrid AE and SVM architecture consists of two main com-
ponents: an AE for dimensionality reduction and an SVM for
classification. This combination benefits the strengths of both
techniques to analyse the SRA of complex systems. The AE
component is trained to learn a low-dimensional representa-
tion of the input data that captures its most important features.
This is accomplished by training the AE to encode the input
data into a lower-dimensional latent space and then decode it
back into the original input space. The trained AE can then be
used to transform the input data into a compressed representa-
tion that is easier to analyse. Then, the SVM can be trained to
classify the input data as either safe or failed based on the com-
pressed representation obtained from the AE. The hybrid AE-
SVM model can be trained using a dataset of labelled input–
output pairs, where the input data corresponds to the structural
properties of a system, and the output is a binary label indicat-
ing whether the system is safe or not. The model is trained
to minimize the classification error, which is the difference
between the predicted and actual labels.

The classical SVM method has restrictions on large-scale
applications. This model uses a sparse AE to improve the per-
formance. Badem et al [135] presented a training approach
named hybrid artificial bee colony-based training strategy
(HABCbTS) to tune the parameters of a DNN structure, which
includes one or more AE layers cascaded to a softmax clas-
sification layer. In their strategy, a derivative-free optimiza-
tion algorithm is combined with a derivative-based algorithm,
‘L-BFGS’, which is used in the HABCbTS. Kraljevski et al

[136] investigated the use of SVM and reconstruction AE
for anomaly assessment with different feature analyses. They
were able to train accurate classifiers which had a considerable
safety margin and an acceptable precision in quantitative ana-
lysis of damage severity. Cui et al [137] proposed a feature dis-
tance SAE (FD-SAE) for rolling bearing fault diagnosis. They
applied a linear SVM to classify standard data and faulty data,
and then the proposed FD-SAE is used for fault classification.
They have claimed that their combination of SVM and FD-
SAE has a simple structure and little computational complex-
ity. Finally, they verified their method for the reliability ana-
lysis of the rolling bearing data set of Case Western Reserve
University. Nguyen et al [138], introduced a method for reli-
ability prediction from raw acoustic emission data to predict
the concrete structure’s failure before. Their prediction result
shows an improvement in comparison with a similar scheme
but without the hit removal process and other methods, such
as the GRU-RNN and the simple RNN.

Regarding the reviewed studies, one advantage of the
hybrid AE-SVM approach is its ability to handle high-
dimensional input spaces and non-linear relationships between
input features. The AE component can reduce the dimension-
ality of the input data, which can help to alleviate the curse
of dimensionality and improve the performance of the SVM
classifier. However, one limitation of the hybrid AE-SVM
approach is the requirement for labelled training data, which
can be time-consuming and expensive to obtain. Additionally,
the performance of the model may be sensitive to the choice
of hyperparameters, such as the number of neurons in the AE
or the kernel function used in the SVM.

4.4. DTL

DTL is a technique that involves transferring knowledge
learned in one domain to another related domain. In SRA,DTL
can be used to leverage knowledge learned from tasks, such as
analysing similar structures, to improve the accuracy and effi-
ciency of SRA for a new structure. The basic idea of DTL is
to use a pre-trained ANN as a feature extractor to extract high-
level features from the input data. These features are then fed
into a classifier to predict the PoF or other relevant metrics
for SRA. The pre-trained ANN can be trained on a dataset of
similar structures to learn generic features that are transferable
to the new task of SRA. The pre-trained network can then be
fine-tuned on a smaller dataset of the target structure to learn
task-specific features that are tailored to the new domain. One
approach to DTL for SRA is to use a CNN as the pre-trained
feature extractor. The CNN can be trained on a large dataset
of images or other high-dimensional data, and then the last
few layers can be replaced with a new classifier that is spe-
cific to the target structure. Another approach is to use a RNN
or LSTM as the pre-trained feature extractor. DTL can also
help to reduce the amount of labelled training data required
to achieve high performance in the new domain. The need for
a considerable volume of labelled data is a barrier to easily
using DTL, particularly in the SRAwhere creating large-scale,
high-quality datasets requires a great computational effort or
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Figure 17. A general structure of the deep transfer learning process,
where knowledge from the pre-trained model is transferred into the
new DL model.

laborious experiments. As a result, DTL can help in addressing
this issue as it allows to train DNN with sparse data [139].

Figure 17 shows a general DTL structure.
DTL can be classified into four categories [140]: (i)

instances-based DTL that utilizes instances in the source
domain, (ii) mapping-based DTL that maps instances from
source and target domains into a new space with improved
similarity, (iii) network-based DTL that reuses the source
domain pre-trained network, and (iv) adversarial based DTL
that is used to find transferable features. Here is an example of
the mathematical formulation of DTL for SRA:

Let X be an input feature vector, y be the corresponding out-
put, andD be the dataset, and let fθ denote a NNwith paramet-
ers θ. The DTL objective is to learn a model fθ ′ with paramet-
ers θ ′ that is able to transfer knowledge from a source domain
Ds to a target domain Dt. This is achieved by minimizing the
following loss function [140]:

min
θ ′

1
|Dt|

∑
(x,y)∈Dt

l( fθ ′ (x) ,y)+λ ·DKL (ps||pt) (52)

where l is a loss function such as mean squared error, DKL is
the Kullback–Leibler divergence, ps is the distribution of the
source data, pt is the distribution of the target data, and λ is a
hyperparameter that controls the importance of the KL diver-
gence term. The KL divergence term encourages the learned
model to have similar output distributions between the source
and target domains, which helps transfer knowledge between
the two domains. The overall objective is to find the paramet-
ers θ ′ that minimize the loss function over the target domain.
Note that this is just one example of the mathematical formu-
lation for DTL for SRA. Depending on the specific approach
being used, the formulation may differ.

Regarding the explanation above, different approaches
have been taken to use DTL for SRA. Shao et al [141] presen-
ted a Lamb wave-based DTL network for SRA via damage

classification of plate-type structures. A 1D-CNN is employed
in their research to find the damage characteristics of complex
Lamb wave signals with multiple modes and multiple bound-
ary reflections. Then a fine-tuned transfer learning concept is
adopted to share partial structures and weight values among
different classificationmodels, which is used to relate the dam-
age level to the reliability of the structure. An experiment has
been conducted in their study to verify the SRA model. Their
experimental results show that the accuracy of the proposed
model is greater than 99%, which verifies the reliability of
theirmethod proposed technique. Zhang et al [142] used a field
inspection images dataset labelled with four types of concrete
damage (crack, pop-out, spalling, and exposed rebar) to detect
concrete bridge surface damage. They introduced a transfer
learningmethod with fully pre-trained weights from a geomet-
rically similar dataset to increase the accuracy of their model.

Gong et al [143] developed a DTL model for aeronautics
composite materials’ (ACMs) defect detection to ensure their
high reliability. They used DTL to accurately extract features
for the inclusion of defects in x-ray images of ACMs, whose
samples are scarce and then used those features to assess
the reliability. Haciefendioglu et al [144] employed DTL to
determine the likelihood of failures in wooden structures. Pre-
trained models were used to customize and initialize network
weights in their study, and a separate set of images was used
in their study to examine the robustness of their models.

Guan et al [131] used a pre-trained network to generate
the initial structure for a new material via a naive approach.
They have claimed that significant improvements in the train-
ing accuracy and learning convergence are attained as the
new transferred models are shown to outperform the analytical
methods in predicting the volume fraction effects. Zheng et al
[145] applied a transfer learning network with a new structure,
which is optimized by an optimal fusion method of dropout
layer four and L2 regularization. They have shown their pro-
posed TL network has low computation cost, high accuracy
and strong diagnosis ability. Mao et al [146] presented a DTL
method, named structured domain adversarial NN, for SRA
based on the data collected under different working conditions.
They defined a new loss function for aligning the collected data
of various working conditions. They also introduced a related-
ness matrix and a regularizer with symmetry constraint on that
matrix to capture the intrinsic similarity structure among mul-
tiple reliability degradation sources.

One of the key benefits of using a hybrid DL algorithm
is that it can lead to better performance than using a single
DL technique. For instance, CNNs are often used for image
recognition, but they may struggle with identifying specific
objects in an image. By combining CNNs with RNNs, which
are good at sequential learning, a hybrid DL algorithm can
improve the performance of image recognition systems. In
summary, hybrid DL algorithms combine multiple DL tech-
niques and other ML methods to improve the overall perform-
ance of the model. This approach can lead to more accurate
predictions, better generalization performance, and improved
interpretability.

However, one limitation of DTL is that it requires a large
pre-trained NN, which can be computationally expensive to
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Figure 18. Number of the published DL-based SRA studies in recent years (extracted from the current paper’s references list).

train and store. Additionally, the performance of the model
may be sensitive to the choice of pre-trained network and the
degree to which the pre-trained features are relevant to the
new domain. In summary, DTL is a powerful technique for
SRA that leverages knowledge learned from related tasks and
structures to improve accuracy and efficiency. It can be used
with CNNs, RNNs, or LSTMs as pre-trained feature extract-
ors and can help to reduce the amount of labelled training data
required.

5. Performance comparison of DL-based SRA
methods

The most popular DL-based structural reliability methods are
reviewed in the previous sections. These approaches include
supervised, unsupervised and hybrid methods. The growing
quantity of studies on each technique is shown in figure 18.
This figure signifies the papers reviewed in the current paper.
The trends show the growing attention to DL-based methods
for reliability analysis. This section compares different stud-
ied methods for some standard SRA problems in the reviewed
literature.

The key struggle in developing novel DL-based models is
formed around lowering the computational effort when enhan-
cing the accuracy of PoF estimation. Therefore, the accuracy
and efficiency of the methods can be taken as the leading per-
formance measures in most studies, and we have used them in
this survey as well. The efficiency of the method is taken as
the number of calls for calculating the LSF and the method’s
accuracy is taken as the average estimation error when calcu-
lating the PoF.

5.1. Comparison of methods

Performing a fair comparison of methods requires the same
algorithms, the same problems and the same computational

power. Thus, it is not easy to compare the methods when
only relying on the literature. However, some researchers have
studied similar examples with different methods, which can
provide rough comparison. In this sense, here we take three
frequent sample problems addressed in DL-based SRA liter-
ature to compare different methods.

5.2. A highly NLO

The highly NLO problem with explicit LSF is a well-
addressed problem in SRA studies [14, 18, 21, 57, 67, 140,
147]. An schematic of a non-linear oscillator is shown in
figure 19. Its LSF is usually as follows in equation (17),

G(C1,C2,M,R,T1,F1) = 3R−
∣∣∣∣ 2F1

Mω2
0

sin

(
ω0T1
2

)∣∣∣∣ (53)

where ω0 =
√

C1+C2
m , T1 is the duration of the experiment,

M is the oscillator’s mass, F1 is the loading pulse and C1,C2

are the springs’ coefficient, and finally R is the oscillator’s
displacement.

In the mentioned references, MLP, RNN, LSTM, and DTL-
based approaches are compared. The best estimation of the
PoF obtained using RNN is reported in [67] with a 0.02%
error and 103 calls. The best accuracy from LSTM method
is given in [75] with a 1.16% error and 88 calls. Among the
reviewed DRL methods, the applied DRL in [131] presents
the best accuracy with an error of less than 0.7%. Table 5 sum-
marizes the efficiency and accuracy of various methods for the
NLO problem in terms of the average values of the PoF estim-
ation error and number of calls.

5.3. A ten-bar planar truss structure

Other frequently studied SRA problems are truss structures
with implicit LSFs. A ten-bar planar truss (figure 20) was stud-
ied by MLP, RNN, CNN, and DTL methods in [21, 44, 55,
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Table 5. Efficiency and accuracy of results for the highly nonlinear
oscillator.

Method
Avg. estimation
error of Pf (%)

Avg. number
of calls

Adaptive MLP [23] 0.02 103
Sequential sampling
MLP [31]

0.12 88.6

LSTM [148] 1.16 29.4
DTL [147] 2.24 46
AE [81] 4.23 121
RL [87] 8.01 68
DRL [149] 0.7 197

Table 6. Efficiency and accuracy of results for ten-bar planar truss
structure.

Method
Avg. error
of Pf (%)

Avg. number
of calls

MLP 9 300
MLP [22, 54] 12 500
CNN [54] 3.01 700
RNN [67] 7.69 100
DTL [143] 3.1 313

Figure 19. Schematic of a non-linear oscillator system.

77, 142, 144–146]. Although some details in the SRA prob-
lem may vary amongst those studies, the estimation accuracy
and computational cost are valuable for comparison measures.
Table 6 shows the accuracy and efficiency results of the ten-bar
truss SRA. From this table, DTL offers a high accuracy when
maintaining an acceptable efficiency. And MLPs are leading
high computational efforts without any improvement in terms
of accuracy.

5.4. A 23-bar planar truss structure

The second truss problem is a 23-bar truss, which shows
a problem with a small PoF; its schematic is illustrated in
figure 21. This problem is studied in [30, 54, 150, 151], where
MLP, RNN, CNN and LSTM methods are used. Table 7 com-
pares the efficiency and accuracy of different models for SRA
of a 23-bar truss structure. From those studies, it is understood

Figure 20. Schematic of a ten-bar truss structure.

Table 7. Efficiency and accuracy of results for 23-bar planar truss
structure.

Method
Avg. error
of Pf (%)

Avg. number
of calls

MLP 14.33 250
RNN 13.23 400
CNN 6.84 54.2
LSTM 1.1 66

that the LSTM-based approaches present an acceptable accur-
acy and the RNNs need a high computational cost to maintain
the same accuracy.

It is valuable to mention that this comparison also requires
subtle attention to the SRA problem details. For example, it is
mentioned in [13, 22] that altering a constant parameter of the
PF can change the failure function significantly, affecting the
final results’ efficiency and accuracy.

6. Future trends

Here we have reviewed papers that have used different DL-
based methods for various SRA problems. Based on the
reviewed articles in this manuscript, several topics can show
increasing demand and form the future trend of SRA stud-
ies. Improving surrogate models’ formulation and optimizing
the number of sample points are two topics that have received
attention as they can help reduce computational time. Studying
high-dimensional problems and time-varying reliability and
the methods capable of performing real-time SRA are other
areas of research in the SRAfield that require more attention in
the future. Towards those topics, new ML/DL-based methods
may also need to be developed. In this section, we go through
the mentioned trends more deeply.

6.1. Surrogate models’ formulation

As mentioned, regarding computational power growth, DL-
based methods have attracted more attention for the formu-
lation of surrogate models in SRA. For example, in the MLP
area, the deep MLP with two or more hidden layers exhibits
high performance than the shallow MLP or even some other
surrogate models. It can allow for more elaborate adaptations
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Figure 21. Schematic of a 23-bar truss structure.

to the problem by adjusting its architecture, for example, the
number of hidden layers, the number of hidden neurons and
the activation functions. It would be interesting to study the
role of different layers so as to reduce the number of LSF
calls or make it more flexible to adapt various types of LSFs
[22]. Besides, DL combined with other methods has shown
great potential in saving computational time. Hybrid mod-
els, or ensembles, have become a research focus in recent
years.

For now, high-dimensional LSFs often occur in the reli-
ability analysis of many engineering scenarios, which pro-
poses a challenge for researchers. For the merit of construct-
ing a low-dimensional latent space in an auto-supervised way,
AE is mainly utilized to reduce the dimensionality to allevi-
ate the curse of dimensionality in reliability analysis. How-
ever, in the whole procedure of reliability analysis, this work
is usually an early step and also needs large-scale training data.
In future work, how to optimize the entire architecture based
on AE for reliability analysis to improve the accuracy and
reduce computational costs need further investigation. Also,
GAN has the merit of generating real-like data from random
noise variables andmaking the distribution of the real-like data
more similar to that of the real data. Therefore, it is mainly
used as a sampling method for reliability analysis to learn
and sample from high-dimensional distributions or expand the
sample set. In future work, the performance of GAN as a novel
sampling method for reliability analysis needs more valida-
tion in different high-dimensional scenarios of engineering
applications.

6.2. High-dimensional problems

One of the main difficulties in structural reliability prob-
lems is to deal with SRA problems of high-dimension sys-
tems. The reviewed studies reveal that the accurateness of
some techniques is strongly related to the dimension of SRA
inputs. In this regard, researchers are more devoted to study-
ing this issue to apply methods to enhance the accuracy, effi-
ciency, and robustness of the method in dealing with high-
dimensional SRA problems. In general, DTL and DRL have
shown good performance when dealing with inputs with high
dimensions [139], which is desirable for complicated sys-
tems’ SRA in the future. Moreover, enhanced versions of other
methods can deliver comparable or superior accuracy. For
instance, the new MLP-based method in [22] has achieved
outstanding accuracy in SRA of a high-dimensional structural
system.

6.3. Time-varying and real-time SRA

An important trend in the future of structural reliability
problems is time-varying SRA. One of the key challenges
of time-varying SRA is the required computational effort.
Recent updates of the LSTM method (such [108, 110, 114])
and MLP-based methods such as [44] have been proposed
to estimate time-varying PoF. The combination of some
approaches has also offered good performance for time-
varying SRA. Another future trend is the simultaneous applic-
ation of some time-varying reliability analysis methods with
DL-based approaches together. For example, the use of
DL methods and the probability density evolution method
has presented an excellent result for time-varying reliability
analysis [149].

Those techniques that can perform real-time or online SRA
[22] considering uncertainties from different sources [143],
structures with multiple failure modes, and SRA problems
with spatially varying parameters (such as [150]), are some
other new fields of study in the structural reliability field
that can be investigated and be upgraded in the next years.
Moreover, automation in data annotation is a trend which
shows increasing demand regarding the increasing amount of
data analysis power. Nevertheless, data annotation techniques,
such as tagging and categorization of large-scale raw data,
are essential for constructing discriminative DL-based mod-
els. A method capable of intelligent data annotation, mainly
for large-scale datasets, can be more efficient and minimize
human dependency, saving a lot of time and money. There-
fore, an effective data examination and annotation method
or designing an efficient unsupervised DL-based method can
be one of the main research areas of study in the upcom-
ing years in the field of DL-based SRA. Moreover, DL-based
models may become valueless or low-accuracy if the data is
corrupt, such as sparsity in the data, low-quality (e.g. high
noise), ambiguous values, imbalance values, immaterial fea-
tures, inconsistency of data, insufficient data, and so on. There-
fore, DL-based models also need to familiarise themselves
with such growing issues in data collection to become effective
for real-time applications.

6.4. Other possible methods for future SRA

As mentioned, regarding the emerging development of DL
techniques, DL-based SRA has also made significant progress
in recent years. In this sense, there are novel SL-basedmethods
that have the potential to be used in SRA to shape its develop-
ment in the coming years, here we list some of those methods:
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Multi-modal data fusion: many SRA tasks require integ-
rating data from multiple sources, such as sensors, images,
and numerical simulations. In the future, DL models that
can effectively fuse multi-modal data are likely to become
more common, enabling more accurate and comprehensive
analyses.

Graph NNs (GNNs): GNNs are a type of DL model that
can operate on graph-structured data, such as the connectiv-
ity between components in a complex system. GNNs have
shown great promise in various domains, and they are likely
to become more widely used in SRA as the complexity of sys-
tems increases.

Explainable AI: as DL models become more complex,
there is an increasing need for techniques that can help explain
their decisions. Explainable AI techniques, such as attention
mechanisms and decision trees, are likely to becomemore pre-
valent in SRA to help identify critical factors for SRA.

Adversarial attacks: adversarial attacks are a type of DL
algorithm in which an attacker machine deliberately manipu-
lates the input data to cause a DL model to misclassify it. As
DL models become more widely used in critical applications,
such as SRA, there is an increasing need to develop models
that are resilient to adversarial attacks.

Self-supervised learning: self-supervised learning is a
type of DL that uses unsupervised methods to learn from data
without explicit labels. This approach is becomingmore popu-
lar in various domains and is likely to be used in SRA to reduce
the need for labelled training data.

Edge computing: many SRA tasks require real-time or
near-real-time analysis of data from sensors or other sources.
Edge computing, which involves performing computations at
the edge of a network, is likely to become more widely used
in SRA to enable faster and more efficient analysis of data.

In summary, DL-based SRA is likely to see continued
growth and innovation in the coming years, with trends
towards novel DL algorithms. These advances are likely to
improve the accuracy, efficiency, and effectiveness of SRA,
enabling safer and more reliable structures.

7. Conclusions

This article particularized on the trending methods and ideas
in the DL-based methods in SRA. The reviewed studies in this
survey cover the studies on structural reliability since intro-
ducing the concept of AI into this field with a focus on more
recent works. Considering current trends in mechanical and
civil engineering, it is evident that the need for cost-effective
and light-weight structures has encouraged researchers to look
for methods to increase SRA’s accuracy. Although ML-based
techniques have been applied to achieve this goal, they do
not perform well when dealing with high-dimensional and
nonlinear problems. Accordingly, DL-based methods have
been introduced to SRA problems to deal with the com-
plexity and nonlinearity of structures. In this paper, various
deep-learning-based methods are categorized into three major
sections that are supervised, unsupervised and hybrid methods
and have been reviewed. The review reveals that the principal

shared advantage of DL-based models is increasing accuracy
while maintaining the computational cost within an acceptable
margin.

In this paper, we have presented a taxonomy for DL-based
SRA methods. In our review study, we have considered deep
networks for supervised, unsupervised, and hybrid learning
that can be used to solve various real-world issues according to
the nature of the problems. Our comparative study has revealed
that on average Hybrid methods such as DTL and RL can
provide the least average number of calls for high-dimensional
problems, and their estimation error also falls under 5% for
most of the applications, while they are not very computa-
tionally efficient for a less complicated system. When deal-
ing with systems with lower dimensions and less uncertainty,
supervisedmethods such asMLP has usually provided aminor
estimation error (under 1%) with an acceptable average num-
ber of calls. Unsupervised methods need a proper amount of
training data to deliver proper accuracy. For example, AE
have shown an estimation error of under 5% for SRA when
having an average number of calls of around one hundred.
Regarding the reviewed studies in this article, it is understood
that the developing need for fast and accurate SRA methods,
apparently future SRA methods should align with the use of
different AI-based approaches as well as the combination of
other methods with ML/DL-based techniques. Furthermore,
physics-informed DL techniques integrate data and mathem-
atical physics models, even in partially understood, uncertain
and high-dimensional contexts, which has shown a growing
interest in recent years.
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[144] Haciefendioglu K, Başaga H B, Bulut M C and Kartal M E
2022 Automatic damage detection on traditional wooden
structures with deep learning-based image classification
method Drv. Ind. 73 163–76

[145] Zheng Z, Fu J, Lu C and Zhu Y 2021 Research on rolling
bearing fault diagnosis of small dataset based on a new
optimal transfer learning network Measurement
177 109285

[146] Mao W, Liu Y, Ding L, Safian A and Liang X 2021 A new
structured domain adversarial neural network for transfer
fault diagnosis of rolling bearings under different working
conditions IEEE Trans. Instrum. Meas. 70 1–13

[147] Liu Z, Wu C T and Koishi M 2019 Transfer learning of deep
material network for seamless structure–property
predictions Comput. Mech. 64 451–65

[148] Thoppil N M, Vasu V and Rao C S P 2022 Bayesian
optimization LSTM/bi-LSTM network with
self-optimized structure and hyperparameters for
remaining useful life estimation of lathe spindle unit J.
Comput. Inf. Sci. Eng. 22 1–12

[149] Rivera Torres P J, Gershenson García C, Sánchez Puig M F
and Kanaan Izquierdo S 2022 Reinforcement learning
with probabilistic Boolean network models of smart grid
devices Complexity 2022 1–15

[150] Yang S, Yu X and Zhou Y 2020 LSTM and GRU neural
network performance comparison study: taking yelp
review dataset as an example 2020 Int. Workshop on
Electronic Communication and Artificial Intelligence
(IWECAI) pp 98–101

[151] Gao M, Shi G and Li S 2018 Online prediction of ship
behavior with automatic identification system sensor data
using bidirectional long short-term memory recurrent
neural network Sensors 18 4211

34

https://doi.org/10.1016/j.aci.2018.01.004
https://doi.org/10.1016/j.aci.2018.01.004
https://doi.org/10.3390/app10228049
https://doi.org/10.3390/app10228049
https://doi.org/10.3934/ElectrEng.2020.3.287
https://doi.org/10.3934/ElectrEng.2020.3.287
https://doi.org/10.14429/dsj.69.12145
https://doi.org/10.14429/dsj.69.12145
https://doi.org/10.1016/j.tws.2021.108076
https://doi.org/10.1016/j.tws.2021.108076
https://doi.org/10.1016/j.apenergy.2021.116541
https://doi.org/10.1016/j.apenergy.2021.116541
https://doi.org/10.1016/j.renene.2020.01.042
https://doi.org/10.1016/j.renene.2020.01.042
https://doi.org/10.1016/j.oceaneng.2018.10.047
https://doi.org/10.1016/j.oceaneng.2018.10.047
https://doi.org/10.1177/10775463221085856
https://doi.org/10.1088/1757-899X/1043/3/032057
https://doi.org/10.1088/1757-899X/1043/3/032057
https://doi.org/10.3390/s22114066
https://doi.org/10.3390/s22114066
https://doi.org/10.1155/2021/8815241
https://doi.org/10.1155/2021/8815241
https://doi.org/10.1109/TIM.2020.3005113
https://doi.org/10.1109/TIM.2020.3005113
https://doi.org/10.1016/j.ress.2020.106901
https://doi.org/10.1016/j.ress.2020.106901
https://doi.org/10.1016/j.ress.2022.108643
https://doi.org/10.1016/j.ress.2022.108643
https://doi.org/10.1016/j.ress.2021.108258
https://doi.org/10.1016/j.ress.2021.108258
https://doi.org/10.1016/j.ress.2022.108405
https://doi.org/10.1016/j.ress.2022.108405
https://doi.org/10.1016/j.engstruct.2020.111221
https://doi.org/10.1016/j.engstruct.2020.111221
https://doi.org/10.1016/j.istruc.2021.12.083
https://doi.org/10.1016/j.istruc.2021.12.083
https://doi.org/10.1016/j.neucom.2017.05.061
https://doi.org/10.1016/j.neucom.2017.05.061
https://doi.org/10.1109/JSEN.2021.3062941
https://doi.org/10.1109/JSEN.2021.3062941
https://doi.org/10.1109/JSEN.2020.3030910
https://doi.org/10.1109/JSEN.2020.3030910
https://doi.org/10.3390/s21227761
https://doi.org/10.3390/s21227761
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1088/1361-665X/ac726f
https://doi.org/10.1088/1361-665X/ac726f
https://doi.org/10.1111/mice.12500
https://doi.org/10.1111/mice.12500
https://doi.org/10.1016/j.compstruct.2020.112681
https://doi.org/10.1016/j.compstruct.2020.112681
https://doi.org/10.5552/drvind.2022.2108
https://doi.org/10.5552/drvind.2022.2108
https://doi.org/10.1016/j.measurement.2021.109285
https://doi.org/10.1016/j.measurement.2021.109285
https://doi.org/10.1109/TIM.2020.3038596
https://doi.org/10.1109/TIM.2020.3038596
https://doi.org/10.1007/s00466-019-01704-4
https://doi.org/10.1007/s00466-019-01704-4
https://doi.org/10.1155/2022/3652441
https://doi.org/10.1155/2022/3652441
https://doi.org/10.3390/s18124211
https://doi.org/10.3390/s18124211

	Deep learning-based methods in structural reliability analysis: a review
	1. Introduction
	2. Supervised methods
	2.1. MLP
	2.1.1. MLP-based FORM or SORM.
	2.1.2. MLP-based MCS.

	2.2. CNN
	2.3. RNN
	2.3.1. RNN training.

	2.4. LSTM
	2.4.1. Bi-LSTM.

	2.5. GRU

	3. Unsupervised methods
	3.1. GAN
	3.2. AE
	3.2.1. AE-based reliability analysis.
	3.2.2. VAE-based reliability analysis.
	3.2.3. SAE-based reliability analysis.
	3.2.4. CAE-based reliability analysis.

	3.3. SOM
	3.4. RBM
	3.5. DBN

	4. Hybrid DL and other methods
	4.1. Hybrid CNN-LSTM
	4.2. Reinforcement learning (RL)
	4.3. Hybrid AE and SVM
	4.4. DTL

	5. Performance comparison of DL-based SRA methods
	5.1. Comparison of methods
	5.2. A highly NLO
	5.3. A ten-bar planar truss structure
	5.4. A 23-bar planar truss structure

	6. Future trends
	6.1. Surrogate models' formulation
	6.2. High-dimensional problems
	6.3. Time-varying and real-time SRA
	6.4. Other possible methods for future SRA

	7. Conclusions
	References


