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Abstract
Selective LASER Melting (SLM) popularity is increasing because of its ability to quickly
produce components with acceptable quality. The SLM process parameters, such as LASER
power and scan speed, play a significant role in assuring the quality of customized SLM
products. Therefore, the process parameters must be tuned appropriately to achieve high-quality
customized products. Most existing methods for adjusting the SLM’s parameters use multiple
inputs and one or two outputs to develop a model for achieving their desired quality. However,
the number of the model’s input and output parameters to be considered can be increased to
achieve a more comprehensive model. Furthermore, energy consumption is also a factor that
should be considered when adjusting input parameters. This paper presents a multi-inputs-multi-
outputs (MIMO) artificial neural network model to predict the SLM product qualities. We also
try to combine training data from different sources to achieve a more general model that can be
used in real applications by industries. The model inputs are LASER power, scan speed, overlap
rate, and hatch distance. Moreover, four critical product quality measures: relative density,
hardness, tensile strength, and porosity, are used as the model’s outputs. After finding a proper
model, an energy optimization method is developed using the genetic algorithm in this paper.
The objective of the optimization is to minimize the energy consumption of SLM manufacturing
with a less compromised output quality. The results of this study can be used in the industry to
decrease energy consumption while maintaining the required quality.

Keywords: additive manufacturing, selective LASER melting, artificial neural network,
genetic algorithm, energy consumption optimization
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1. Introduction

Additive manufacturing (AM) connects melted materials to
produce items from a computer-aided design (CAD) model
[1]. AM technologies are rapidly growing due to their man-
ufacturing speed and flexibility [2]. Selective LASER melting
(SLM) is one of the most popular AMmethods for fabricating
metal parts with high precision and acceptable surface finish
[3]. The SLM product quality depends on the values of input
parameters such as LASER power, scan speed, overlap rate,
and hatch distance. Accordingly, fine-tuning those parameters
can help achieve a customized design with desired quality and
high precision. Failure to tune those parameters properly can
result in unacceptable product quality. Besides, in AM techno-
logies, especially SLM printing, energy consumption is higher
than in traditional manufacturing processes such as casting [4].
High energy consumption in SLM printing is not desired for
modern manufacturing when green technologies are getting
more attention [5, 6]. Therefore, it is also essential to prop-
erly select manufacturing parameters such as LASER power
to minimize power consumption.

Many researchers have tried investigating the AMprocess’s
output quality to improve the final product’s quality [7, 8].
Some studies have used experimental observations to investig-
ate the relationship between the SLM printers’ input and out-
put parameters. For example, Majeed et al investigated the
influence of heat treatment on the product’s relative dens-
ity and porosity [9]. Their research aims to investigate the
impact of process settings and heat treatments on the densi-
fication and porosity of AlSi10Mg parts manufactured using
SLM. Peng et al studied how process parameters, including
LASER power, scan speed, and overlap rate affected part qual-
ity, electrical energy consumption, and energy effectiveness
[10]. Some other researchers have used analytical [11, 12]
and finite element models (FEM) [13, 14] to simulate the
3D printing process and predict the printer’s output quality.
Simulation-based methods are not always feasible, especially
when it is not straightforward to develop an analytical/FEM
simulation model of the AM process [15]. In such cases, stat-
istical methods, such as response surface (RS) regression, have
been used in the literature [16–18]. Most of the mentioned
studies face problems in providing an accurate model when
facing complicated systems (for example, nonlinear systems)
or when multiple quality factors are desired to be predicted
through the output quality prediction process.

Machine learning (ML)-based methods have been used to
develop a quality prediction model for SLM printers [19, 20].
Specifically, knowing that the artificial neural network (ANN)
model is a well-known prediction tool for identifying complex
relationships between input and output results, it has received
an increasing demand in the field of modeling AM process
during the recent decade [21]. Moreover, when the relation-
ships of the input–output parameters are not well understood
via physics-based models, this approach has shown an accept-
able performance in predicting the output parameters [22].
Chowdhury et al studied the application of an ANN model
to predict thermal deformation in manufactured parts in the

Table 1. Environmental impact of traditional manufacturing versus
AM.

Process
Energy use

(Kg CO2 per part)
Virgin

materials use

Traditional Casting 4.3 2
Injection molding 0.003 0.01

SLM SLM 0.085 0.006
BJ 13.15 0.67

AM process [23]. They claimed that the ANN model resul-
ted in a significant improvement in part accuracy. Ding et al
used an ANNmodel to predict the dimension of a weld bead in
arc-welding-based AM for aluminum alloy. Using this model,
they found the optimal operational parameters for the welding
process [24, 25]. Mehrpouya et al applied the ANN models to
predict the influence of the operational parameters in various
LASER materials processing for metals and polymers [26].
In a particular study, they have developed a prediction model
using ANN for optimizing the operational parameters in the
AM using NiTi alloy. The model showed an excellent agree-
ment between the predicted values and the experimental data
[27].

Another important aspect of SLM technology is its energy
consumption. SLM manufacturing, as a modern manufactur-
ing method, is supposed to be a cleaner procedure as com-
pared to traditional methods. They use less raw material and
less coolant material; however, their energy usage and emis-
sion exceed the traditional manufacturing processes, as shown
in table 1 [4]. Many researchers used the energy consump-
tion rate to analyze AM energy consumption characteristics.
Sreenivasan et al developed an energy consumption rate for
evaluating SLM’s sustainability from three perspectives [28].
Meteyer et al presented the SLM process energy and mater-
ial consumption model and life cycle inventory data for life
cycle energy consumption analysis [29]. Baumers and Mar-
tin (2012) proposed a method for analyzing the shape com-
plexity of AM practically while also considering construction
time, energy flows, and costs [30]. Nelson et al investigated the
SLM process and created a one-dimensional thermal model
to predict the amount of LASER energy needed to melt the
3D printer raw material [31]. They investigated how LASER
scan speed, LASER power, powder size, and powder bed tem-
perature affected the growth of melted layers, among other
parameters. Yardimci et al investigated the two main parts of
the SLM process: melting and extruding the molten mater-
ial and deposition and solidification of the extruded mater-
ial on the part platform and estimated the energy transfer
engaged in the second part [32]. They created analytical and
numerical models to solve the energy equation and tested them
on a test example. Bellini et al analyzed the flow dynamics
in an FDM machine’s liquefier [33]. They examined three
approaches: the power law for Newtonian fluids, a transfer
function, and experimental results for calculating the force
and power required to extrude the molten material through the
liquefier.
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A very important aspect of the quality prediction model
in AM-based products is the ability to control process para-
meters to minimize energy consumption while producing the
AM product. Huang et al also presented a framework for
assessing the overall changes in life cycle primary energy
and greenhouse gas emissions related to SLM technologies
using a predictive modeling framework [34]. Burkhart and
Aurich provided a methodology for predicting AM’s envir-
onmental impact during the life cycle of the equipment [35].
To reduce energy consumption, some researchers have optim-
ized the AM process parameters. Griffiths et al proposed a
waste weight, part weight, energy consumption, and produc-
tion time-based part optimization experimental design method
for AM [36]. The results suggest that the desired response
can be obtained by optimizing AM manufacturing paramet-
ers and balancing output responses such as waste and produc-
tion time [36]. Peng et al investigated how to reduce power
consumptionwhilemaintaining quality by configuring process
parameters. The results showed that employing SLM to man-
ufacture parts may save 27.8% of the power while maintain-
ing quality requirements [10]. Qin et al applied data-driven
modeling of AM energy consumption and suggested a new
deep learning-driven particle swarm optimization (DLD-PSO)
method to maximize AM energy usage. They discovered that
DLD-PSO is superior to classical particle swarm optimiza-
tion because it has a faster convergence time and uses less
energy [37]. Ma et al proposed a quantitative energy consump-
tion prediction model based on energy units and optimized the
energy using the genetic algorithm (GA) for optimal process
parameters [38].

Regarding the reviewed literature, producing an AM
product from a customized design, i.e. custom output qual-
ities while minimizing energy consumption, need to be fur-
ther studied. In this sense, this study aims to develop a MIMO
quality prediction model for an SLM printer using an optim-
ized neural network to predict four qualitymeasures given four
inputs, which helps the manufacturers achieve their custom
designs with required qualities through fine-tuning the input
parameters of the 3D printer (LASER power, scan speed, over-
lap rate, and hatch distance). In addition, the study suggests a
method to optimize energy consumption with minimum com-
promising product quality measures (that are relative density,
hardness, tensile strength, and porosity). The proposed predic-
tion model and optimization are not limited to SLM, and they
can also extend to deal with other AM applications. This paper
is extracted from a master’s thesis stored at the University of
Manitoba’s Institutional Repository [39].

This paper is organized as follows. Section 2 introduces
the AM process to be modeled, materials used for printing,
important parameters and how they have been measured, and
also the description of the datasets. Section 3 presents the
methodology used for the proposed quality prediction mod-
eling. The accuracy and validity of the proposed prediction
modeling are discussed, followed by a sensitivity analysis.
Section 3 introduces the proposed method for energy con-
sumption optimization. The parameters considered for the
optimization model are discussed. The inputs and outputs of

the GA and their roles in solving the optimization model are
presented. Concluding remarks are presented in section 5.

2. Introduction of the SLM printer and datasets

SLM is one of the most popular AM methods for fabricating
metal parts with high precision, density, and surface finish [3,
7]. In addition, due to certain metallurgical circumstances dur-
ing the SLM process, such as fast solidification, directional
heat flux, and temperature gradient, SLM fabricated parts have
higher tensile strength, hardness, and density than tradition-
ally manufactured objects, allowing ultrafine microstructures
to form inside the final pieces by using different alloys [40].

Solid components, honeycomb structures, porous struc-
tures, thin-walled parts, and other types of parts can be made
with SLM in a variety of materials, including titanium alloys,
steel, and nickel alloys [5–7]. Aluminum alloys have sparked
much interest in the SLM technique. AlSi10Mg is a classic
cast alloy that is commonly used in die-casting. The automot-
ive and aerospace industries widely use this alloy because of
its excellent strength, weldability, hardenability, and mechan-
ical qualities [41]. The LASER melts the alloy powder layer-
by-layer to prepare a high-quality product until the model is
completed.

The chamber of an SLM machine is filled with metal
powder. Then a coater blade spreads the metal powder in thin
layers across the substrate or builds a plate. A high-powered
LASER then selectively melts the powdered material to fuse a
2D slice of the part. One layer’s height then lowers the build
plate, and the roller delicately spreads another coating of new
powder across the surface. The process repeats until the part
is complete. The entire procedure that takes place inside the
machine in a controlled environment is shown in figure 1. The
part can then be removed from the machine once it is com-
pleted. First, SLM pieces must be removed from the build
plate, which accomplishes with a bandsaw often. The supports
must be removed then. It can be time-consuming and challen-
ging because the support material is the same as the part mater-
ial. In addition, the sintered pieces have a rough surface finish
that may require post-processing, depending on the needs. It
is common for machine parts to achieve acceptable tolerances
and finish fine features, surfaces, and holes.

There are many parameters to be tuned during an SLM
process and several output parameters to consider for output
quality assessment. We have considered four inputs which are
LASER power, scan speed, overlap rate, and hatch distance,
and four critical outputs, which are relative density, hardness,
tensile strength, and porosity, as the model’s training data. In
the next two sections, these parameters are explained in detail.

2.1. Input parameters

As mentioned, there are various parameters to be tuned for
running an SLM process. Those parameters are most critical
and can significantly change the output quality. It is import-
ant to know the process parameters and understand their role
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Figure 1. Schematic diagram of the selective LASER melting process.

in the SLM process so that in the model training and energy
optimization, we can consider the required limitations for
each parameter. We take four important parameters as our
model’s inputs. Those four parameters that are LASER power,
scan speed, scan speed, and hatch distance, are explained as
follows.

2.1.1. LASER power. LASER power is an important para-
meter reflecting the energy absorption of powder in the melt-
ing process. When the power is not tuned properly high, the
powder melts irregularly, resulting in unfused defects and
pores in the product. On the other hand, when the LASER
power becomes too high, the extra heat cannot be transferred
in time, resulting in the easy occurrence of over-burning [42].

2.1.2. Scan speed. During the SLM sintering process, a
higher scan speed results in a smaller size of the molten pool,
which leads to a change in the flow of the molten pool and
a changing the final quality. At the same time, the droplets
in the molten pool are easy to splash, and the microstructure,
un-fused defects, and gas holes are easy to occur in the micro-
structures when an unsuitable scanning speed is used for the
printing process. Therefore, in order to achieve a uniform and
dense solidified structure, a proper scan speed is vital.

2.1.3. Hatch distance. The hatch distance strongly influ-
ences the surface quality and relative density of the SLM parts.
The distance between the centers of one beam and the cen-
ter of the following beam is used to measure it. The distance
between the hatches is related to the rate of production. If it is
high, the LASERwill take less time to scan the layer. However,

if it is low, many scannings will be required to complete the
entire layer. Therefore, a smaller hatch distance is required for
making a thin layer. To have a large hatch distance, a large
LASER spot size is required. Otherwise, there remains a gap
between two consecutive scans resulting in porous products.
Higher LASER power is required to provide the necessary
LASER energy for processingwithmore significant spot sizes.
It means that the maximum hatch distance obtained in a given
SLM system is limited [43]. Because the parts are created
layer-by-layer, and each layer is manufactured track-by-track,
the hatch spacing determines the final density and building
speed [4, 5]. After comparing the other process parameters,
increasing the hatch distance resulted in a higher building
speed. However, increasing the hatch distance further results
in defective materials melting and excessive porosity. As a res-
ult, research efforts are focused on establishing the impact of
hatch distance and the melting/solidification method to obtain
optimum SLM-processed components [44].

2.1.4. Overlap rate. The overlap rate is represented by a per-
centage, and it indicates the areas influenced by repeated melt-
ing with the LASER beam and the hatch distance. The local
heat input caused by the high-energy LASER beam leads to
a high-temperature gradient during the SLM process, which
causes high residual stresses and undesired thermal deforma-
tions. It even leads to failure to manufacture some parts [45].
The island scanning strategy proved to be a helpful method for
reducing residual stress due to the decreased scanning length
[6]. However, an overlap region between the islands ensured
the close metallurgical bonding of the materials between the
islands. The existence of the overlap region can be seen to have
a significant influence on parts fabricated by SLM. Previous
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research showed a vital effect on selective LASER melted
characteristics such as surface quality and forming defects
[46]. The hatch distance controls the overlap rate of the fol-
lowing tracks, and due to the different overlaps, some sections
were irradiated by repeated LASER scans and melted twice.
The overlap is required to avoid porosity creation at the scan’s
boundaries [45].

Besides fine-tuning the mentioned parameters, the utilized
SLM powder material is also essential for producing a good
product. The final product can suffer different defects such as
porosity, voids, powder residue blocking channels, contamin-
ation, cracking, deformations, etc. Therefore, product output
parameters testing is essential to ensure defect-free parts and
meet the production requirements. The output quality paramet-
ers that are used in this study are described in the next section.

2.2. Output parameters

Manufacturers usually opt for several output quality factors to
test the AM product’s quality. In this study, we have mainly
focused on relative density, hardness, tensile strength, and
porosity to measure the properties of products, as those para-
meters can properly represent the intended quality in most
situations [9]. Understanding those parameters is also import-
ant as we must use the output quality parameters in the future
to define an effective objective function for energy optimiza-
tion with a minimum trade-off of the final quality.

2.2.1. Relative density. The ratio of a product’s density to
the density of a reference substance is known as relative dens-
ity. It has generally been estimated with respect to water. It is a
term that’s often used in modern science to establish whether a
specific product substance is denser than a reference product.
For instance, if the relative density is less than one, the mater-
ial is less dense, but if the relative density is equal, then the
two substances have equal mass. The characteristics of poros-
ity, irregular shape, and fragility result in a high possibility of
grain crushing, which further affects the stress–strain behavior
and strength of the product. Wang et al address the influence
of relative density on the particle breakage of non-uniform
grading coral sand by 45 one-dimensional compression tests
[47]. Majeed et al aim to study the effect of process paramet-
ers and heat treatments such as T4 (solution heat treatment)
and T6 (artificial aging) on the densification and porosity of
AlSi10Mg parts built by SLM to increase the densification and
reduce the porosity of the manufactured products [9].

2.2.2. Hardness. Hardness is the capability of a product to
resist deformation, which is tested by a standard test, which
measures the resistance of the surface to indentation. The most
common hardness tests are the shape or kind of indent, the size,
and the amount of load applied. The hardness numbers are
on an arbitrary, non-dimensioned scale, with higher numbers
denoting harder surfaces [48]. Hardness testing is frequently
the most effective method of ensuring that parts will survive
and work as intended. As a result, hardness testing is now
an essential aspect of the quality assurance process. To fulfill

high-performance requirements, producing fasteners for the
aerospace and automotive industries requires a greater focus
on quality and material selection. Hardness testing is typically
the best way of ensuring that components will function suc-
cessfully in their intended application.

2.2.3. Tensile strength. Tensile testing is commonly used
to assess the mechanical properties of metals and alloys. The
tensile test gives a fundamental understanding of how metals
and alloys respond to mechanical loads. When stressed to fail-
ure in a tensile test, most structural metals and alloys fracture
via ductile processes. Coalescence or a combination of micro-
voids forms the fracture surface. The coalescence process is
influenced by strain rate, test temperature, and microstructure,
and under certain conditions (lower temperature, for example),
the fracture may change from ductile to brittle processes. Such
transitions may limit the alloy’s utility and may be detected by
strength measurements [49]. Therefore, the tensile test may
require interpretation, and interpretation requires a knowledge
of the factors that influence the test results.

2.2.4. Porosity. According to ASTM definitions, there are
two types of porosity. Apparent porosity refers to porous
defects that occur accidentally in a well-prepared structure
and on the AM product’s surface. The porosity typically con-
trols the physical properties, such as size, dimensions, shape,
and architecture, manufactured by a controlled fabrication pro-
cess. In recent years, the effect of porous defects on essential
mechanical properties like stiffness, strength, and toughness
has been extensively studied computationally and experiment-
ally in AMproducts [50]. Pores can be found in AM-processed
products at three critical locations: the excessively rough sur-
face, the sub-surface, and amid deposited layers. The AM pro-
cess determines the quantity and distribution of air pores in
AM-produced products. The mechanical performance of parts
produced by powder bed (PBF) and filament extrusion-based
AM techniques is mainly affected by porosity. As a result,
porosity significantly impacts printed products’ quality and
reliability, and eliminating or minimizing these adverse effects
becomes very important in real-life implementations [51].

2.3. Datasets used for model training

A proper dataset is an important factor in any ML-based mod-
eling problem. This research focused on building a quality
prediction model and an energy consumption optimization
framework for SLM manufacturing, as metal printing AM
technologies are expensive and time-consuming. Thus, there
are not much data available in the literature to represent the
change in output quality parameters versus the changes in
input parameters. As there is not much data available for SLM
in the existing studies, we have put two different datasets
together to develop the prediction model. We have used the
best available dataset with the maximum measured inputs and
outputs in the existing literature. In this research, sets of four
inputs and four outputs were reported from the SLM experi-
ment done by Majeed et al and Peng et al [9, 10]. Both these
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Table 2. Processing parameters and quality performances of the SLM-processed AlSi10Mg samples.

LASER power Scan speed Overlap rate Hatch distance Relative density Hardness Tensile strength Porosity

320 600 0.25 102.4 0.9739 119 455 2.61
320 600 0.35 88.7 0.9802 130.8 443.33 1.98
320 750 0.25 93.1 0.9774 124.4 448.33 2.26
360 600 0.25 111 0.9688 127.2 431.67 3.12
360 600 0.3 103.6 0.979 135.2 436.67 2.1
360 600 0.35 96.2 0.9725 116.4 441.67 2.75
360 750 0.25 98 0.9732 129.8 430 2.68
360 750 0.3 91.4 0.9817 123.2 441.67 1.83
360 900 0.25 88.9 0.9736 119 420 2.64
360 900 0.3 83 0.9799 127.2 431.67 2.01
400 600 0.25 116.4 0.9559 118.6 420 4.41
400 600 0.35 100.9 0.9812 139.2 438.33 1.88
400 750 0.25 104.7 0.9722 124.8 430 2.78
400 750 0.3 97.7 0.9763 127.4 431.67 2.37
400 900 0.25 94.1 0.9795 125.4 352.2 2.05
400 900 0.3 87.8 0.9651 113.2 383.11 3.49
400 900 0.35 81.5 0.9758 118.4 408.18 2.42
320 750 0.35 80.7 0.9777 127.8 445 2.23
320 900 0.25 81.8 0.9817 127.6 443.33 1.83
320 900 0.3 76.3 0.9784 127.8 446.67 2.16
360 750 0.35 84.9 0.9734 128.8 445 2.66
400 600 0.3 108.6 0.9791 131 445 2.09
320 600 0.3 95.5 0.9801 123.2 450 1.99
320 750 0.3 86.9 0.9737 123.2 443.33 2.63
320 900 0.35 70.9 0.9813 122.6 450 1.87
360 900 0.35 77.1 0.9795 122 446.67 2.05
400 750 0.35 90.7 0.9694 120.8 443.03 3.06

studies used the same experimental and acquisition system.
Majeed et al investigated the influence of heat treatment on
the product’s relative density and porosity [9]. The purpose
of their research is to investigate the impact of processing
settings and heat treatments like T4 (solution heat treatment)
and T6 (artificial ageing) on the densification and porosity of
AlSi10Mg parts manufactured using SLM. Peng et al studied
how process parameters, including LASER power, scan speed,
and overlap rate affected part quality, electrical energy con-
sumption, and energy effectiveness [10]. Merging the repor-
ted measurements in [9] and [10] provided us with the most
extensive available data in the literature to perform our mod-
eling. As all the settings in those two studies are the same, we
directly combined the data without any changes. Moreover, to
ensure our model is as inclusive as possible, we have included
data from both datasets in training, validation and testing.
Combining measured data from those two mentioned studies
provides us with twenty-seven experiments to be used for the
model development. We will optimize an ANN model to fit
these data best.

The experimental data used in this study are presented in
table 2. The data includes twenty-seven experiments where
four inputs and four outputs were measured in SLM experi-
ments done by Majeed et al and Peng et al [9, 10]. We have
merged the experimental results in those two studies as they
have used exactly the same experimental settings. It is noted
that although we have merged the data from those two pub-
lished studies to enhance the accuracy of our model, more

data is needed to increase the ANN reliability and accuracy
for generic applications. As it can be seen from the table,
and based on the explanation of the dataset, the LASER
power range is selected between 320–400 Watts. This range
is chosen as higher LASER powers may burn the products,
and lower power may cause miss-melting, which reduces the
quality. Moreover, the scan speed range is chosen to be 600–
900mms−1 to avoid splashes or gas holes. The overlap range
is also selected to be in the range of 0.25–0.35 to make sure of
removing the space between two scanning. For the Hatch dis-
tance, as it can directly affect product density and surface qual-
ity, a wide range is considered in the experiments. Also, for the
outputs, Archimedes’ principle is used to measure the relat-
ive density. Tensile strength is measured using Instron elec-
tromechanical universal testing machine, and a Leco AMH
43 automatic hardness tester is used for the hardness meas-
urement. The porosity of the samples is also measured using
Archimedes’ method and microscopic analysis of samples.

In the next section, the dataset introduced in table 2. Will
be used to find a multi-input multi-output model for the SLM
process.

3. AM part quality prediction

This section presents the model works correctly and interprets
the developed model repeatedly. The model developed in this
chapter will be used to optimize energy consumption.
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3.1. Methodology

The relationship between the process input parameters and
output quality measures can be complicated and nonlinear; in
such cases, ANN has shown an acceptable performance, and
it is being used in this research. Moreover, ANN is often used
when the relationship between the variables is uncertain, as
in the SLM process [11]. In order to use the ANN efficiently,
different NN structure optimization, have been used such as
Scikit, Pytorch Lightning, and Keras Tuner. For example,
Scikit provides a number of different NN approaches for data
preprocessing, feature selection, and model selection. PyT-
orch Lightning provides a high-level interface for building and
training complex deep NN models, with built-in features for
distributed training, and Keras Tuner offers a variety of optim-
ization techniques, including random search, hyperband, and
Bayesian optimization, to help find the best set of hyperpara-
meters for a given neural network architecture. In this study,
we optimize the number of ANN’s hidden layers and the num-
ber of neurons in each hidden layer using the GA. The GA
can offer advantages when searching a large space of potential
NN architectures, or when trying to find a globally optimal or
near-optimal solution.

The ANN comprises many interconnected neurons
arranged in layers (input layer, hidden layers, output layer).
The ANN-based model used in this study consists of twenty-
seven data points represented by {X,Y}, where xi is the input
vector representing four parameters that are LASER power,
scan speed, overlap rate, and hatch distance, and yi is the
output vector representing four output parameters that are
LASER power, scan speed, overlap rate, and hatch distance.

The hidden layer is implemented with a sigmoid activation
function given below,

f(x) =
1

1+ exp[−(b1j +
∑

ω1
jixi)]

(1)

where b1j represents the bias at the hidden layer and ω
1
ji denotes

the weight connecting the j-th hidden neuron with the i-th
input.

The neurons receive information from the neurons in the
previous layer and produce the output with the activation func-
tion. Each connection between two adjacent layers has an asso-
ciated weight, representing its relative importance to other
connections. Additionally, a bias term with a trainable value
is attached to the nodes of hidden layers and output layer and
serves as an intercept term. Finally, the output layer uses a lin-
ear function, as in equation (2),

f(x) = bs +
∑

ωs
j xi (2)

where bs is the bias of the output neuron and ωs
j represents the

weight connecting the j-th hidden neuron to the output. In this
study, samples are divided into three groups, 70% for train-
ing, 15% for validation, and 15% for testing. Significant dif-
ferences in the values of the four investigated process paramet-
ers of the inputs and the four output quality factors can be seen
in table 2. This large difference in the range of those paramet-
ers can result in an imbalance in the connection weights and

can decrease the model’s accuracy. For example, the range of
LASER power is 320–400 W, whereas the overlap rate range
is 0.25–0.35. These differences will affect the neural network
accuracy. Therefore, all inputs and outputs are normalized in
the range [0, 1] to improve the model’s accuracy.

After normalization, a backpropagation algorithm called
gradient descent with momentum is used to solve the ANN
model. The values of weights and bias terms were updated
with the following equations [52]:

m0 = 0 (3)

mk+1 = γmk+ η× ∂E
∂ωk

(4)

ωk+1 = ωk−mk+1 (5)

where k denotes the iteration number, mk+1 and mk refer to
the momentum terms while ωk+1 and ωk refer to the connec-
tions weights in two successive iterations k+ 1 and k, γ means
the momentum factor, η gives the learning rate, and E rep-
resents the loss function. The iterative process stops when the
predetermined maximum number of iterations is reached or
satisfies the accuracy requirement. The training process optim-
izes the values of the weights and bias terms of the ANN
model.

Moreover, in this study, to make a more accurate model
with less error for different datasets, the number of hidden
layers and the number of neurons in each hidden layer are
also optimized using a GA. The optimization algorithm has
two decision variables which are hidden layers and the number
of neurons in each hidden layer. To obtain the proper values
for these parameters, the GA’s objective function is the mean
squared error (MSE) as represented in equation (6). The MSE
represents the ANN’s prediction accuracy,

MSE=
1
m

m∑
i=1

(yi− ŷi) (6)

where yi represents the target output, ŷi denotes the output pre-
dicted by the model, and m is the size of the dataset.

The steps of GA-based optimized ANN for developing the
quality prediction model are as follows:

Step 1 Generate the initial population. In this research, the
population is represented as a set of hidden layers and
the number of neurons in each hidden layer.

Step 2 Create the ANN model and calculates the objective
function (equation (6)).

Step 3 Check the stopping criteria. In this study, the stopping
criterion is 1000 generations and 1000 maximum stall
generation. Additionally, the average relative change
in the best MSE value over maximum stall generations
needs to be less than or equal to 1 × 10−6.

Step 4 Generate new populations if the stopping criteria are
not met. (There are three fundamental operations
involved in generating new populations using GA that
are selection, crossover, and mutation [53]).
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Figure 2. The ANN structure used for the quality prediction model (including two layers of ten and eight neurons).

Step 5 Replace the old population (hidden layers and number
of neurons in each hidden layer) with the best offspring
population for the next generation.

Figure 2 represents the final ANN setting resulting from the
abovementioned optimization framework.

3.2. Prediction modeling results

The quality prediction model results and performance analysis
are presented in this section. The GA optimization involves
four decision variables, namely x1,x2,x3 and x4. The first three
variables, x1,x2, and x3 represent the number of neurons of
the hidden layers 1, 2, and 3, respectively, while x4 repres-
ents the number of hidden layers (x4 has a range of 1–3 in
our algorithm; so maximum, there are three hidden layers).
The initial population is randomly generated within the search
space domain (for example, [7, 5, 6, 3] is the initial population
for generating figure 3). If the fourth variable, x4 equals three,
all other variables, x1,x2 and x3, are used in the algorithm,
whereas for x4 less than three, some other variables are neg-
lected in the algorithm (e.g. x4 = 1 means there is only one
hidden layer, and only x1 is used to represent the number of
neurons of that hidden layer, and x2 and x3 are ignored in the
algorithm).

The objective function, MSE given in equation (6), is cal-
culated by the neural network for each population, and the
resulting MSE value represents the population’s prediction
accuracy. The lower the MSE value, the higher the predic-
tion accuracy, and it is used to determine a population’s sur-
vival and ability to create offspring for the next generation. In

Table 3. Function parameters of GA.

Parameters Value

Maximum generation 10 000
Maximum stall generation 5000
Population size 100
Crossover fraction 0.9
Function tolerance 1e-6

each generation, the set of hidden layers and the number of
neurons in each hidden layer with the best prediction accuracy
are chosen using the universal stochastic sampling selection
method. The crossover process involves creating a new set of
populations for the next generation by crossing the inform-
ation of the old population, where a set of hidden layers and
neurons switch their values to create a new population set. The
mutation process involves applying a uniform mutation oper-
ator to create small random changes in the hidden layers and
neurons and generate a new population. The old population is
replaced with the best offspring population for the next gener-
ation, and the weights are chosen using the Bayesian regular-
ization backpropagation algorithm. The main GA parameters
used in our optimization are presented in table 3.

The explained loop continues until the stopping criterion is
met and the fitness reaches to a minimum desired value. When
running the GA, the best and mean fitness values are important
indicators of the algorithm’s performance and convergence.
The best fitness value represents the fitness of the best solution
found so far during the GA’s execution. This value indicates
the quality of the best solution in the current population and
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Figure 3. The convergence of the genetic algorithm for the best mean squared error (black circles).

how well it satisfies the fitness function. As the algorithm pro-
gresses, the best fitness value should improve over time, and
ideally, it should converge to the global optimum of the prob-
lem being solved. The mean fitness value represents the aver-
age fitness of all the solutions in the current population. This
value gives an indication of the overall quality of the pop-
ulation and how well it satisfies the fitness function. As the
algorithm progresses, the mean fitness value should improve
over time, reflecting the evolution of the population towards
better solutions. In general, a GA is considered to have con-
verged when the best fitness value no longer improves signific-
antly over several generations or when it reaches a predefined
threshold. At the same time, the mean fitness value should also
converge toward a stable value that is close to the optimal fit-
ness value. The convergence of both the best and mean fitness
values indicates that the GA has found a good solution to the
problem being solved. The performance of our optimization
process can be found in figure 3 where after 350 generations,
the best fitness does not improve significantly and the mean
fitness value becomes stable. Moreover, to illustrate how the
decision variables (number of neurons and the number of lay-
ers) evolve with iterations, the evolution of decision variables
with iterations of the GA is presented in table 4. After 350 gen-
erations, the decision variables do not change anymore, which
is the optimal solution.

As mentioned in the methodology section, the data set used
for the ANN is divided into three groups (training, testing, and
validation). The model provided the error of each group. The
MSE of each group is shown in table 5. The overall error rep-
resents the model’s prediction accuracy using the whole data
set.

Table 4. Evolution of the decision variables and their
corresponding fitness value (MSE) versus iteration number in the
applied GA algorithm.

Iteration # Generated population MSE

1 [2,10,5,3] 0.29
50 [4, , ,1] 0.014
100 [9,5,5,3] 0.014
150 [2,10„ 2] 0.013
200 [10,9,1,3] 0.013
250 [10,3„ 2] 0.012
300 [10,8„ 2] 0.012
350 [10,8„ 2] 0.012
400 [10,8„ 2] 0.012
450 [10,8„ 2] 0.012

Table 5. MSE of gradient descent with momentum (GDM)
backpropagation.

Training Testing Validation Overall

MSE 0.007 0.021 0.010 0.012

In order to compare the performance of our proposed
algorithm, with some other well-known NN architectures, a
comparison of our method’s accuracy and seven other ML
algorithms is also presented in the appendix. Moreover, in this
study, to validate the model’s prediction accuracy, we have
conducted overfitting and regression analysis. The results of
the ANN model were compared with the experimental data.
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Figure 4. The ANN prediction accuracy for different experiments.

Figure 5. Performance testing plot.

Figure 4 provides the prediction trends of the samples for rel-
ative density, hardness, tensile strength, and porosity. The x-
axis of the plot shows the sample number, and the y-axis rep-
resents the four product quality measures. Figure 4 shows the
predicted results from the model fit closely with the experi-
mental results.

Moreover, figure 5 shows the performance progress of the
ANN training algorithm. The plot specifies the iteration dur-
ing which the validation performance was at its lowest. If the
test curve had climbed significantly before the validation curve

increased, then it is possible that some overfitting might have
occurred. Overfitting happens when a model is very accurate
on the training data but will most likely be inaccurate on the
testing data. Generally, when overfitting happens, the model
learns the noise in the training data instead of the actual rela-
tionships between variables. Figure 5, does not reveal obvious
overfitting, showing the model’s acceptable performance.

Finally, toward investigating our model’s validity, figure 6
shows the regression analysis of the ANN model. The follow-
ing regression plots display the network outputs with respect
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Figure 6. Regression analysis of training (blue), validation (green), test (red), and overall (black).

to targets for training, validation, test, and overall sets. The
targets are represented by the dashed lines in each plot. The
solid line represents the best-fit linear regression line between
outputs and targets. The R-value represents the relationship
between the outputs and the targets. If R = 1, the outputs
and targets have a perfect linear connection. There is no linear
relationship between outputs and targets if R is close to zero.
The training data indicates a decent fit for the trained model.
Moreover, R values are high in the validation and test results.
Therefore, the validation and test data also have a decent fit.
Besides, The R-value for the whole data is 0.94107, which
reflects a good fitting of the model.

Moreover, in order to better evaluate the performance of
the trained ANN, the mean absolute error (MAE), and mean
bias error (MBE) are calculated. MAE is usually used to cal-
culate the errors’ average magnitude where their sign is not
considered. Low values of MAE demonstrates a better predic-
tion accuracy for the model. MBE is also determined using the
target output and the network’s output when the signs of the
error are also considered. The MBA is usually used to eval-
uate the average model bias which can show if the data is
overestimated or underestimated. Too high (positive) and too
low MBE values (negative) should be avoided. Equations (7)

and (8) are presenting the formulations for calculating MAE
and MBE respectively [54, 55],

MAE=
1
N

N∑
i=1

|ŷi− yi| (7)

MBE=
1
N

N∑
i=1

(ŷi− yi) . (8)

In the above equations, ŷi and yi are the ANNoutput and tar-
get output respectively. The calculatedMAE for the developed
model is 0.076 and the calculated MBE is 0.009 both showing
an acceptable model performance. The MBE also shows that
the fitting is almost normal and there is no significant overfit-
ting or underfitting in the model. Moreover, to check the valid-
ity of the GA solution, we have used multiple runs with differ-
ent initial conditions and parameters to check the consistency
of the obtained solutions. After this check, the same solution
is obtained repeatedly, which can be an indication of reach-
ing a global optimum. Next, in order to better understand the
developedmodel and to better interpret the information we can
get from the model, a sensitivity analysis is presented.
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Figure 7. Sensitivity analysis using connection weights.

3.3. Sensitivity analysis

Sensitivity analysis is usually used to determine the input
variables’ contribution and their importance in manufactur-
ing. Two algorithms called connection weights and Garson’s
Algorithm have shown an acceptable performance for the AM
applications [56], and they are also used in our study. Those
algorithms are briefly explained in this section, followed by
their results for our model.

3.3.1. Garson’s algorithm. Garson’s algorithm is an
algorithm being proposed for partitioning the ANN weights
to determine the relative importance of each input variable in
the network. Garson’s algorithm measures the impact of the
coefficient based on input-hidden (W) and hidden-output (V)
connection weights of the ANN, and the i-th input factor of
k-th output sensitivity coefficient. In Garson’s algorithm, p
(p = 1, 2, …, P) represents the sensitivity coefficient calcu-
lated with the p-th input sample value, as shown in the formula
below [57],

Spk(i) =

m∑
j=1

(
wijvjk/

n∑
i=1

wij

)
n∑

i=1

(
m∑
j=1

(
wijvjk/

n∑
i=1

wij

)) (9)

where, i, j, k, respectively, refer to the input layer, hidden layer,
and output layer of neurons; wij are the connection weights
between the input layer and the hidden layer neuron, simil-
arly wjk is the connection weights between the hidden layer
and output layer neurons, n is the total number of input layer
neurons, m is the total number of hidden layer neurons.

3.3.2. Connection weights method. The connection weight
method uses the following equation [56]:

Inputx =
n∑

y=1

WxyVyz (10)

where wxy refers to the input-hidden connection weight and
vyz is the hidden-output layer connection weight. As can be
seen from Garson’s method and connection weights method,
the weights calculated in the ANN model are being used in
both algorithms to find the importance of the input parameters.
Figures 7 and 8 presents the results of connection weights and
Garson’s Algorithm respectively. The bar chart indicates the
impact of the input parameters, and the pie chart presents the
percentage of the impact of each input for production. Both
algorithms confirm that the scan speed is the most import-
ant input parameter in the SLM process and hatch distance
became the second-best parameter. The sensitivity analysis
results enable AM users to make decisions regarding their
engineering needs and decide on the specifications of the AM
machines they are going to use.

In this section, a prediction model based on four inputs and
four outputs is developed. In the next section, the developed
model will be used to optimize the energy consumption of the
modeled SLM printer.

4. Energy consumption optimization

This chapter presents an energy consumption optimization
model. First, the optimization model’s details, such as the
objective function, constraints, and decision variables, are
described. Then, the results obtained from the optimization
process are presented and discussed.

4.1. Objective function

Multiple energy consumption models have been developed
using some process parameters such as LASER power and
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Figure 8. Sensitivity analysis using Garson’s algorithm.

Table 6. Different functions to calculate SLM energy consumption.

Function Reference

E= P
v Gu and Shen [58]

E= P
vH Nelson et al [59]

E= P
vD

a Beal et al [60]

E= P
vHt Starr et al [61]

E= P
vDt

b Ciurana et al [62]
a D: the LASER spot diameter.
b t: layer thickness during a single scan.

scan speed. Some of the most common models to represent
energy consumption are presented in table 6. Where in table 6,
LASER power, scan speed, and hatch distance are represented
by P, v, and H, respectively. The energy is denoted by E.

From the equations represented in table 6, it is seen that
among different parameters used for representing energy con-
sumption, LASER power, scan speed, and hatch distance are
more common. Despite the equations represented in table 6,
researchers are still exploring more parameters to efficiently
control product qualities and energy consumption. Among
the available energy consumption models based on process
parameters, Peng et al [10] presented one of the most com-
prehensive published energy consumption models. They have
developed a power acquisition system using NI data acquis-
ition and LEM voltage and current sensors [10]. The total
energy consumed in their assessed SLMprocess includes coat-
ing energy and building energy. The coating energy is affected
by the number of layers, which is determined by build height
and layer thickness. Building energy is responsible for the
behavior of grain growth and the quality of the fabricated parts.
The energy consumption model developed by Peng et al is as
follows:

E=
106(PL +PA)

n · t · h · v · ρp
(11)

where PL represents the LASER power, PA denotes auxiliary
LASER power that is a constant (2423 W), n is the number
of working LASER that is 2, and ρp means density. In this
study, we are using the model presented in equation (11), as
it includes more process parameters and has been validated
experimentally. Peng et al reported the lowest energy con-
sumption of 352.4 MJ Kg-1 in their studies, but they did not
present any optimization methods for energy consumption.

4.2. Decision variables

In our optimization problem, the SLM process input paramet-
ers that are introduced in sections 2 and 3 are the decision
variables. The variables are chosen here based on the sens-
itivity analysis performed in the previous section and their
importance and effects on energy consumption. LASER power
is the primary source of energy consumption. More LASER
power means more energy usage. Scanning speed plays a vital
role in product quality. A slow scanning speed results in the
powder melting properly, which will build a good product
at the cost of increased energy consumption. Hatch distance
plays a vital role in the surface roughness and relative density
of the product. However, if the hatch distance is set high, the
LASER needs less time to scan the layer, resulting in reduced
energy consumption.

4.3. Constraints

As mentioned, SLM is a multi-layers manufacturing process,
and processing parameters’ range of variation for the multiple
layers can be selected based on well-connected tracks in a
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single layer. In single-track fabrication, excellent consolida-
tion is characterized when the range of LASER power is 320–
400 W, and the scan speed is 600–900 mm s−1. The single-
track surface becomes unstable when the scan speed exceeds
1100 mm s−1 or the LASER power becomes less than 300 W.
Better energy efficiency for a single track implies generating
a continuous regular straight line with lower LASER power
and higher scan speed. However, it may result in unstable
and inconsistent tracks at a certain level because the powders
cannot consume enough energy to melt entirely, causing the
balling effect. The hatch distances of stable single tracks range
from 70.9 mm to 116.4 mm. Moreover, when the overlap rate
is less than 0.2, the SLM fails to achieve a good interconnec-
tion within nearby tracks. In addition to the mentioned input
ranges, four quality measures are also considered as optimiz-
ation constraints to make our model more effective for real
industrial applications. The corresponding quality measure-
ments of relative density, hardness, tensile strength, and poros-
ity are also reported in the study by Peng et al [10] and are
taken as the minimum requirements of the qualities of our
optimization process. The constraints in our optimization are
given below:

320W⩽ Laserpower⩽ 400W

600mms−1 ⩽ Scanspeed⩽ 900mms−1

0.25⩽ Overlaprate⩽ 0.35

70.9µm⩽ Hatchdistance⩽ 116.4µm

Relativedensity> 0.9795

Hardness> 125.4HV

Tensile strength> 416.67MPa

Porosity< 2.05

Energyconsumption< 352.4MJKg−1

Laser power and scan speed need to be positive integer value.

4.4. Optimization process

Considering the introduced objective function, decision vari-
ables and their ranges and the constraints on the quality meas-
ures, an optimization algorithm is needed to find the optimal
values. We have used the GA with the maximum generation
and maximum stall generations of 100, as the convergence
rate has shown to be fast enough to converge before the 100th
iteration. Moreover, to maintain the diversity of the popula-
tion and avoid premature convergence, 5% of the population
was chosen as the elite, which will go directly to the next
generation. The chromosomes created by the crossover pro-
cess are more likely to be better than the parent chromosomes,
and that is why the probability of crossover was chosen at
70%. Additionally, a high mutation rate increases the prob-
ability of searching more areas in the search space. There-
fore, the mutation rate was chosen large enough to avoid local
minimums; it is chosen at 6%. At last, the function toler-
ance is 1 × 10−6, which means the algorithm will stop when
the average relative change in the best energy consumption
value over maximum stall generations is less than or equal to

1 × 10−6. Figure 9 shows the flowchart of energy optimiza-
tion using GA. The steps involved in the flowchart are given
below.

4.5. Energy consumption optimization results and discussion

The results of the GA optimization to minimize the energy
consumption are presented in figure 10. The x-axis represents
the generation number in the plot, and the y-axis represents the
fitness function value that is the energy consumption.

From the optimization, the optimal value of the decision
variables is achieved. Table 7 shows the optimal values of the
decision variables that are achieved after the GA optimization.

Figure 11 presents the variables’ values before and after the
optimization. From figure 11, it can be seen that the LASER
power is significantly reduced. LASER power consumes the
most amount of energy during manufacturing. Because of
its reduction, the energy consumption reduced considerably
after the optimization. The scan speed, hatch distance, and
density are inversely proportional to the energy consump-
tion. If they increase, energy consumption will decrease. Scan
speed almost remains the same before and after the optimiz-
ation. With more scan speed, the track of the layer becomes
unstable, which will affect the product quality. That is why
the scan speed stopped at 899 mm s−1. Besides, the hatch dis-
tance is increased from 94.1 to 116.2 because the hatch dis-
tances depend on LASER power and scan speed. If LASER
power decrease and scan speed increase, hatch distance will
increase, and on the opposite, it will decrease. As the LASER
power decreased significantly and scan speed did not reduce
so much, the hatch distance increased. Finally, the density
is improved to 2.64 gcm−3. With higher scan speed, hatch
distance, and lower LASER power, the product quality can
also be improved, which is seen here because the track sur-
face remains stable within this range, which helps to improve
product density.

Peng et al [10] reported that the energy consumption of
an SLM produce product is 352.20 MJ kg−1 in their study.
After our optimization, the energy consumption was reduced
to 260.83 MJ kg−1, a reduction of 26% when maintaining the
quality. It is noted that this reduction is compared with the
best setting presented in Peng et al [10], which reduced
the energy consumption of the process by up to 28%. Figure 12
shows the energy consumption difference before and after the
optimization.

It should also be noted that regarding the comparisonsmade
in figures 11 and 12, after our optimization framework, the
scan speed decreases by 0.11%, which directly increases the
manufacturing required time. However, as the LASER power
falls in using our model, the cooling process also takes less
time which can compensate for that delay. Moreover, the 26%
decrease in LASER power consumption can roughly save 500
USD a month (160 h of operation) based on the average North
American electricity rate. That saving, when it becomes large
scale, can significantly help the industry reduce production
costs.

Moreover, the potential impact of the presented energy
optimization on the 3D printing industry is significant, and
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Figure 9. Energy optimization flowchart using genetic algorithm.

Figure 10. Energy consumption convergence plot using GA.

can lead to cost savings, improved sustainability, increased
efficiency, and practical implementation of energy-efficient
strategies, as the presented energy optimization strategies
can be implemented relatively easily as most of the pro-
cess parameters are tunable in modern 3D printers. These

improvements can be integrated into existing 3D printing
workflows without major modifications or additional costs. As
the 3D printing industry continues to grow and evolve, optim-
izing energy use will become increasingly important for both
economic and environmental reasons.
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Table 7. Optimal values of the decision variables.

Decision variables Optimal value

LASER power 320.00 W
Scan speed 899.00 mms−1

Hatch distance 116.20 µm
Density 2.64 g cm−3

Figure 11. Comparison of decision variables before and after the optimization.

Figure 12. Comparison of the energy consumption reported by
Peng et al [10] (before optimization) and this thesis (after
optimization).

5. Conclusion

A quality prediction model using experimental data and an
energy consumption optimization method for SLM printing
is presented in this paper. First, data gathered from two data-
sets have been combined with being used for ANN modeling.
Then, the ANN model is developed and evaluated using over-
fitting and sensitivity analysis. Regarding the validation and
regression analyses, the developedmodel was shown to be pro-
ficient in predicting SLM products qualities such as relative
density, hardness, tensile strength, and porosity based on four
crucial process parameters: LASER power, scan speed, hatch
distance, and overlap rate. Furthermore, a GA has also been
applied to determine the optimal number of hidden layers and
the number of neurons in each hidden layer based onminimum

MSE to reduce the model’s error. The model’s results show a
fit between the predicted values and the experimental dataset
with an accuracy of 98.8%, which proves the model’s effect-
iveness in predicting the SLM product’s qualities. Moreover,
the sensitivity analysis found that scan speed is the most
influential parameter on the final product’s quality. Using the
developed quality prediction model, an energy consumption
optimization model is also developed to minimize the SLM
printing’s energy consumption considering input parameters’
ranges of variation and output parameters’ required qualit-
ies. After the optimization, the energy consumption is reduced
by 26% compared to the previous study performed by Peng
et al without compromising the output qualities. The frame-
work presented in this paper is general and is not limited to
SLM, and it can also be extended to other AM technologies.
Moreover, the proposed prediction model is conducted based
on a limited dataset, and it can be further improved if more
data are available for future industrial applications.
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Figure A1. MSE comparison of 8 neural network methods.

Appendix. Comparison of different methods

The optimization was performed using the neural network’s
method individually. Gradient descent with momentum
(GDM) backpropagation provided the best prediction accur-
acy among them. Figure A.1 shows the MSE of different NN
methods where the x-axis shows the MSE value and the y-axis
shows the NN methods.
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