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ABSTRACT

Exact solutions of nonlinear evolution equations play very important role to make known
the inner mechanism of intricate physical phenomena. In this article, the novel )/( GG -
expansion method is applied to construct traveling wave solutions of the (1+1)-dimensional
modified Benjamin-Bona-Mahony equation. The performance of this method is reliable,
effective and giving many new exact solutions than the existing methods. The obtained
solutions are expressed in terms of hyperbolic, trigonometric and rational functions
including solitary and periodic solutions which have many potential applications in physical
science and engineering.

Keywords: The new ( GG / )-exphansion method; the (1+1)-dimensional modified Benjamin-
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1. INTRODUCTION

Nonlinear evolution equations (NLEEs) have many important applications in several aspects
of mathematical-physical sciences as well as other natural and applied sciences. Essentially
all the fundamental equations of physics are nonlinear and in general such NLEEs are often
very difficult to solve explicitly. The exact solutions of NLEEs play an important role in the
study of nonlinear physical phenomena. Therefore, the powerful and efficient methods to find
exact solutions of nonlinear equations still have drawn a lot of interest by a diverse group of
scientists. In the past decades, there has been significant progress in the development of
finding effective methods for obtaining exact solutions of NLEEs. With the invention of
symbolic computation software, like-Maple or Mathematica direct methods to search for
exact solutions of NLEEs have attracted more attention. As a result, the researchers
developed and established many methods, for example, the Exp-function method [1-4], the
inverse scattering transform [5], the sine-cosine method [6], the extended tanh-method [7],
the parameter-expansion method [8], the homogeneous balance method [9], the Backlund
transform method [10], the Darboux transformation [11], the Hirota bilinear method [12], the
symmetry method [13], the Painleve expansion [14], the )/( GG -expansion method [15-26],
the Cole-Hopf transformation [27], the modified simple equation method [28-32], the
improved )/( GG -expansion method [33,34] and so on to construct exact solution of NLEEs.

Recently, Alam et al. [35] established a highly effective extension of the )/( GG -expansion

method, called the novel )/( GG -expansion method to obtain exact traveling wave
solutions of NLEEs. The objective of this article is to present an application relating to the
new )/( GG -expansion method to find hyperbolic, trigonometric and rational functions
solutions of the (1+1)-dimensional modified Benjamin-Bona-Mahony equation to
demonstrate the suitability and straightforwardness of the method.

The foremost advantage of the method applied in this article over the basic )/( GG -
expansion method is that it provides further new exact traveling wave solutions including
additional free parameters. All the solutions obtained by the basic )/( GG -expansion
method are obtained through the applied method as a particular case and we obtain some
new solutions as well. The exact solutions have its great importance to uncover the inner
mechanism of the physical phenomena. Apart from the physical relevance, the close-form
solutions of nonlinear evolution equations assist the numerical solvers to compare the
accuracy of their results and help them in the stability analysis.

In the basic )/( GG -expansion method, if the order of the reduced ordinary differential
equation (ODE) is less than or equal to three, with the help of computer algebra, such as
Maple 13, it is mostly possible to find out a useful solution of the algebraic equations resulted
in step 4 of section 2. Otherwise, it is generally unable to guarantee the existence of a
solution of the resulted algebraic equations; this is because the number of the equations
included in the set of algebraic equations is generally greater than the number of unknowns.
But the applied method might be used less than or equal to fourth order reduced ODE, since
it contains further arbitrary constants compared to the basic )/( GG -expansion method.

The rest of the article is organized as follows: In Section 2, the description of the novel
)/( GG -expansion method and Remark 1 are given. In Section 3, we apply this method to the

(1+1)-dimensional modified Benjamin-Bona-Mahony equation to obtain the traveling wave
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solution. In Sections 4 and 5, we give some discussions and physical explanation and in
Sections 6, conclusions are given.

2. MATERIALS AND METHOD

Suppose the nonlinear evolution equation is of the form

( , , , , , , ) 0t x tt t x xxP u u u u u u  , (1)

where P is a polynomial in ( , )u x t and its partial  derivatives wherein the highest order
partial derivatives and the nonlinear terms are involved. The main steps of the method are
as follows:

Step 1: Combining the real variables x and t by a compound variable  , we suppose that

)(),( utxu  , tVx  , (2)

where V is the speed of the traveling wave. Eq. (2) transforms Eq. (1) into an ODE for
( )u u  :

( , , , , ) 0Q u u u u    , (3)

where Q is a function of ( )u  and its derivatives wherein prime stands for derivative with

respect to  .

Step 2: Assume the solution of Eq. (3) can be expressed in powers )( :

 



N

Nj

j
ju )()(  (4)

where

 )()(   d (5)

and
)(
)()(



G
G 
 .

Herein N or N may be zero, but both of them could not be zero simultaneously. j
),,2,1,0( Nj   and d are constants to be determined later and ( )G G 

satisfies the second order nonlinear ODE (see [36] for details):

22 )′(++′=′′ GυGμGGλGG (6)

where prime denotes the derivative with respect  ;  ,  , and υ are real parameters.
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The Cole-Hopf transformation  
)(
)()(ln)(

  G

GG


 reduces the Eq. (6) into Riccati

equation:

)()1-(+)(+=)(′ 2 ξυξλμξ ΦΦΦ (7)

Eq. (7) has individual twenty five solutions ([37] for details).

Step 3: The value of the positive integer N can be determined by balancing the highest
order linear terms with the nonlinear terms of the highest order come out in Eq. (3). If the
degree of ( )u  is nuD )]([  , then the degree of the other expressions will be as
follows:

)(])([,])([ qnspn
d
uduDpn

d
udD

s

q

q
p

p

p

















.

Step 4: Substitute Eq. (4) including Eqs. (5) and (6) into Eq. (3), we obtain polynomials in
j

G
Gd 







 


)(
)(



and

j

G
Gd










 


)(
)(



, ),,2,1,0( Nj  . Collect each coefficient of the

resulted polynomials to zero, yields an over-determined set of algebraic equations for j
),,2,1,0( Nj   , d and V .

Step 5: Suppose the value of the constants can be obtained by solving the algebraic
equations obtained in Step 4. Substituting the values of the constants together with the
solutions of Eq. (6), we will obtain new and comprehensive exact traveling wave solutions of
the nonlinear evolution equation (1).

Remark 1: It is noteworthy to observe that if we replace  by  and  by  and put

0 in Eq. (6), then the applied novel )/( GG -expansion method coincide with Akbar et

al.’s [17] generalized and improved )/( GG -expansion method. On the other hand, if we
put 0d in Eq. (5) and 0 in Eq. (6) then the proposed method is identical to the
improved )/( GG -expansion method presented by Zhang et al. [33]. Again if we set ,0=d
0 and the negative exponents of )/( GG are zero in Eq. (4), then the proposed method

turn into the basic )/( GG -expansion method introduced by Wang et al. [15]. Finally, if we

put 0 in Eq. (6) and j ( Nj ,,3,2,1  ) are functions of x and t instead of

constants then the proposed method is transformed into the generalized the ( / )G G -
expansion method developed by Zhang et al. [19]. Thus the methods presented in the Ref.
[15, 17, 19, 33] are only special cases of the applied novel )/( GG -expansion method.
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3. APPLICATION

In this section, we will bring to bear the new )/( GG expansion method to construct new
and more general traveling wave solutions of the (1+1)-dimensional modified Benjamin-
Bona-Mahony equation. The equation was introduced by Benjamin, Bona, and Mahony in
1972 as an improvement of the KdV equation for modeling long waves of small amplitude in
(1+1)-dimensions surface water waves propagating uni-directionally and suffering nonlinear
and dispersive effects. They showed the stability and uniqueness of solutions to the BBM
equation. In contrasts with the KdV equation this equation is unstable in its high wave
number components. Let us consider the (1+1)-dimensional modified Benjamin-Bona-
Mahony equation.

02  xxxxxt uuuuu  . (8)

Using the traveling wave transformation x V t   , Eq. (8) is converted into the following
ODE:

0)1( 2  uuuuV  . (9)

Integrating Eq. (9), we obtain

0
3
1)1( 3  uuuVK  (10)

whereK is an integration constant. Considering the homogeneous balance between the
highest-order derivative u  and nonlinear term of the highest order 3u in Eq. (10), we obtain
1N .

Therefore, the solution of Eq. (10) takes the form

   )()()( 10
1

1   
u . (11)

Inserting Eq. (11) into Eq. (10), the left hand side is transformed into polynomials in








 


)(
)(



G
Gd and

1

)(
)(









 




G
Gd . Equating the coefficients of like power of these

polynomials to zero, we obtain a set of algebraic equations (for minimalism we leave out to
display the equations) for 0 , 1 , 1 , d , K and V . Solving the over-determined set of
algebraic equations by using the symbolic computation software, such as, Maple 13, we
obtain

Set 1: 0K ,



6

)22(3
0




dd
, 2

2
1212  V ,
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01  , dd  , )1(61  


 . (12)

Set 2: 0K ,



6

)22(3
0




dd , )(6 22
1 ddd  


 ,

2

2
1212  V , dd  , 01  , (13)

where d ,  ,  , and  are arbitrary constants.

Substituting (12)-(13) into solution Eq. (11), we obtain

 )/()1(6
6

)22(3),(1 GGdddtxu 


 



(14)

where tx 





 

2
1212  , and  , d ,  ,  and  are arbitrary constants.

  122
2 )/()(6

6
)22(3),( 


 GGddddddtxu 




(15)

where tx 





 

2
1212  , and  , d ,  ,  and  are arbitrary constants.

Substituting the value of )/( GG into Eq. (14) and simplifying, we achieve the following
solutions:

When 0442   and 0)1(  (or 0)1(  ),

.
6

)22(3

)
2
1tanh(

)1(2
1)1(6),(

11



























 




dd

dtxu
(16)

where tx









2

212
2 ,d , and  ,  and  are arbitrary constants.
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.
6

)22(3

)
2
1coth(

)1(2
1)1(6),(

21



























 




dd

dtxu
17)

  

.
6

)22(3

)(sec)tanh(
)1(2

1)1(6),(
31


























dd

hidtxu
(18)

  

.
6

)22(3

)(csc)coth(
)1(2

1)1(6),(
41


























dd

hdtxu
(19)

.
6

)22(3

)
4
1coth()

4
1tanh(2

)1(4
1

)1(6),(
51




































 






dd

d

txu

(20)

.
6

)22(3

)sinh(
)cosh()(

)1(2
1

)1(6),(

22

16




















































dd

BA
ABA

d

txu

(21)
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.
6

)22(3

)sinh(
)cosh()(

)1(2
1

)1(6),(

22

17




















































dd

BA
ABA

d

txu

(22)

where A and B are real constants.

.
6

)22(3

)
2
1cosh()

2
1sinh(

)
2
1cosh(2

)1(6),(
81



































dd

dtxu
(23)

.
6

)22(3

)
2
1sinh()

2
1cosh(

)
2
1sinh(2

)1(6),(
91



































dd

dtxu
(24)

.
6

)22(3
)cosh()sinh(

)cosh(2)1(6),(
101

























dd
i

dtxu
(25)

.
6

)22(3
)sinh()cosh(

)sinh(2)1(6),(
111

























dd

dtxu
(26)

When 0442   and 0)1(  (or 0)1(  ),
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.
6

)22(3

)
2
1tan(

)1(2
1)1(6),(

121



























 




dd

dtxu
(27)

.
6

)22(3

)
2
1(cot

)1(2
1)1(6),(

131



























 




dd

dtxu
(28)

  

.
6

)22(3

)sec()tan(
)1(2

1

)1(6),(
141




























dd

d

txu

(29)

  

.
6

)22(3

)csc()cot(
)1(2

1)1(6),(
151


























dd

dtxu
(30)

.
6

)22(3

)
4
1cot()

4
1tan(2

)1(4
1

)1(6),(
161




































 






dd

d

txu

(31)

.
6

)22(3

)sin(
)cos()(

)1(2
1

)1(6),(

22

117




















































dd

BA
ABA

d

txu

(32)
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.
6

)22(3

)sin(
)cos()(

)1(2
1

)1(6),(

22

118




















































dd

BA
ABA

d

txu

(33)

where A and B are arbitrary constants such that 022  BA .

.
6

)22(3

)
2
1cos()

2
1sin(

)
2
1cos(2

)1(6),(
191



































dd

dtxu
(34)

.
6

)22(3

)
2
1sin()

2
1cos(

)
2
1sin(2

)1(6),(
201



































dd

dtxu
(35)

.
6

)22(3
)cos()sin(

)cos(2)1(6),(
211

























dd

dtxu
(36)

.
6

)22(3

)
2
1sin()

2
1cos(

)
2
1sin(2

)1(6),(
221



































dd

dtxu
(37)
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When 0 and 0)1(  ,

 

.
6

)22(3
)sinh()cosh()1(

)1(6),(
231























dd
k

kdtxu
(38)

 
 

.
6

)22(3
)sinh()cosh()1(

)sinh()cosh()1(6),(
241

























dd
k

dtxu
(39)

where k is an arbitrary constant.

When 0)1(  and 0  , the solution of Eq. (8) is







 6
)22(3

)1(
1)1(6),(

1
125














dd
c

dtxu (40)

where 1c is an arbitrary constant.

For Set 2, substituting the value of  GG / into Eq. (15) and simplifying, we achieve the
following solutions:

When 0>4+4-= 2 μυμλΩ and 0≠)1-(υλ (or 0≠)1-(υμ ),

.
6

)22(3

)
2
1tanh(

)1(2
1)(6),(

1
22

21



























 






dd

ddddtxu
(41)

where tx 





 

2
1212  , and  , d ,  ,  and υ are arbitrary constants.

.
6

)22(3

)
2
1(coth

)1(2
1)(6),(

1
22

2 2



























 






dd

ddddtxu
(42)
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  

.
6

)22(3

)(sec)tanh(
)1(2

1

)(6),(

1

22
2 3






























dd

hid

dddtxu

(43)

The other families of exact solutions of Eq. (8) are omitted for convenience.

When 0<4+4-= 2 μυμλΩ and 0≠)1-(υλ (or 0≠)1-(υμ ),

,
6

)22(3

)
2
1tan(

)1(2
1

)(6),(

1

22
212



























 








dd

d

dddtxu

(44)

.
6

)22(3

)
2
1(cot

)1(2
1

)(6),(

1

22
213



























 








dd

d

dddtxu

(45)

  

.
6

)22(3

)sec()tan(
)1(2

1

)(6),(

1

22
214






























dd

d

dddtxu

(46)

The other families of exact solutions of Eq. (8) are omitted for convenience.
When 0)1(  and 0  , the solution of Eq. (8) is
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.
6

)22(3
)1(
1)(6

1

1

22
225

























dd
c

ddddu
(47)

where 1c is an arbitrary constant.

The other families of exact solutions of Eq. (8) are omitted for convenience.

4. DISCUSSIONS

The advantages and validity of the method over the )/( GG  -expansion method has been
discussed in the following:

4.1 Advantages

The crucial advantage of the novel approach against the basic )/( GG -expansion method
is that the method provides more general and large amount of new exact traveling wave
solutions with several free parameters in a uniform way. The exact solutions have its great
importance to expose the inner mechanism of the physical phenomena. Apart from the
physical application, the close-form solutions of nonlinear evolution equations assist the
numerical solvers to compare the accuracy of their results and help them in the stability
analysis.

4.2 Comparison

In Ref. [38] Manafianheris investigated solutions of the well-established (1+1)-dimensional
modified Benjamin-Bona-Mahony equation via the )/( GG  -expansion method wherein he

used the linear ordinary differential equation 0 GGG  as auxiliary equation and

traveling wave solution was presented in the form 



m

i

i
i GGau

0
,)/()( where 0ma . It

is noteworthy to point out that some of our solutions are coincided with already published
results, if parameters taken particular values which authenticate our solutions. The
comparison among Manafianheris’s solutions [38] and the solutions obtained in this article
are given in Table 1:
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Table 1. Comparison among the solutions obtained in this article and Manafianheris’s
[38] solutions

Solutions obtained in this article Manafianheris’s solutions [38]
(i) If 0 , 0d and  and  are replaced
by  and  respectively then the solution
(16) becomes










6
3

)
2

)4(
tanh(

2
)4(3 22

11




u

(i) If 02 C , and a is replaced by
 then the solution (4.9) becomes










6
3

)
2

)4(
tanh(

2
)4(3 22

1




u

(ii) If 0 , 0d and  and  are replaced
by  and  respectively then the solution
(17) becomes










6
3

)
2

)4(
coth(

2
)4(3 22

12




u

(ii) If 01 C , and a is replaced by
 then the solution (4.9) becomes










6
3

)
2

)4(
coth(

2
)4(3 22

1




u

(iii) If 0 , 0d and  and  are replaced
by  and  respectively then the solution
(27) becomes










6
3

)
2

)4(
tan(

2
)4(3 22

112




u

(iii) If 02 C , and a is replaced by
 then the solution (4.10) becomes










6
3

)
2
)4

tan(
2

)4(3 22

2




u

(iv) If 0 , 0d and  and  are
replaced by  and  respectively then the
solution (28) becomes










6
3

)
2

)4(
cot(

2
)4(3 22

113




u

(iv) If 01 C , and a is replaced by
 then the solution (4.10) becomes










6
3

)
2
)4

cot(
2

)4(3 22

2




u

(v) If 0 , 0d then the solution (40)
becomes




 6
316

1
125 




txC
u

(v) If 042   and a is replaced
by  then the solution (4.11)
becomes




 6
316

1
3 




txC
u
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Manafianheris [38] did not get any solution, but in this article apart from these solutions we
obtain a large number of solutions.

5. PHYSICAL EXPLANATION

Solutions (16), (18), (21), (22), (24)-(26), (42) and (43) represent kink. Kink waves are
traveling waves which arise from one asymptotic state to another. The kink solutions are
approach to a constant at infinity. Fig. 1 below shows the shape of the exact kink-type
solution (16) of the (1+1)-dimensional modified Benjamin-Bona-Mahony equation (8). Other
figures are omitted for convenience. Solution (22) is the singular kink solution. The Fig. 2
shows the shape of the exact singular kink-type solution (22) of the (1+1)-dimensional
modified Benjamin-Bona-Mahony equation (8). Solutions (17), (19), (20), (23), (28), (31),
(40) and (41) are the multiple soliton solution. The Fig. 3 shows the shape of the exact the
multiple soliton solution (17) of the (1+1)-dimensional modified Benjamin-Bona-Mahony
equation (8). Solutions (27), (29), (30), (32)-(37), (44)-(46) represent the exact periodic
traveling wave solutions. Periodic solutions are traveling wave solutions that are periodic
such as )cos( tx  . Fig. 4 below shows the periodic solution of ),(

121
txu .Graph of periodic

solution (27), for 1 , 1 , 1=υ , 1d , 1 with 1,1  tx . For convenience
other figures are omitted. Solutions (38) and (39) describe the soliton. Solitons are special
kinds of solitary waves. The soliton solution is a specially localized solution, hence

0)(),(),(   uuu as  , tcx  . Solitons have a remarkable property
that it keeps its identity upon interacting with other solitons. Fig. 5 shows the soliton obtained
from solution (22).

Fig. 1. Kink shape solitary wave
obtained from solution (16), for 1 ,

1 , 2=υ , 1d , 1 with
10,10  tx .

Fig. 2. Singular kink shape solitary
wave obtained from solution ),(21 txu ,

for 1 , 1 , 2=υ , 1d , 1 with
10,10  tx .
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Fig. 3. Multiple soliton obtained from
solution (17) for 1 , 1 , 2=υ ,

1d , 1 with 10,10  tx .

Fig. 4. Periodic solution obtained from
(27) for 1 , 1 , 2=υ , 1d , 1

with 1,1  tx .

Fig. 5. Soliton obtained from solution (38) for 1 , 0 , 2=υ , 1d , ,1k 1
with .10,10  tx

6. CONCLUSION

The novel )/( GG -expansion method is successfully applied to establish traveling wave

solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. The
performance of this method is reliable, convincing and can be used to other NLEEs in finding
exact solutions. The method gives more general solutions which contain further arbitrary
constants and the arbitrary constants imply that these solutions have rich local structures. It
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is important to notice that the basic )/( GG  -expansion method, the improve )/( GG  -
expansion and the generalized and improved )/( GG  -expansion method are only special
case of the new )/( GG  -expansion method. It is shown that the novel )/( GG -expansion
method method is straightforward and effective mathematical tool for solving nonlinear
evolution equations in mathematical physics and engineering. By means of this scheme, we
found some fresh traveling wave solutions of the above mentioned equation. Although the
method has a lot of merit it has a few drawbacks, such as, sometimes the method gives
solutions in disguised versions of known solutions that may be found by other methods.
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