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Abstract

To implement a farm of computer system which compiles source programs using the
computers connected in the farm. A build farm can be defined as a set of computers
(distributed systems) that work together to compile software. Distributed Compiling is a
special type of compiling activity in which we compile the source program using several
machines with the same or cross compilers to do the compilation in parallel. In this paper, we
describe a system that uses the concept for reducing build times by using free cycles of idle
computer systems in distributed. The challenge of distributing compilation is tackled by a
distributing compiler. We use distcc for the purpose but It would be nice if distcc could
automatically detect the best distribution, but it doesn't do that yet. But in our system we have
added a new php script which automatically does this work. Whenever it sees that a system is
overloaded or its utilization increases above a threshold value (in our case it is 65%), it
automatically removes that node. In this way we can combine the computing powers of
individual machines to get a more powerful machine.

Keywords:Virtualization, cloud computing, resource monitoring, service-oriented, Infrastructure
As A Service (IAAS).

1 Introduction

Build-Farm is currently a free of cost “Infrastructure As A Service” which provides a grid of
heterogeneous systems that may be used to compile or build any software. The service is designed
in such a way that the user just has to select the numbers of nodes for compilation of his/her
program with reference to the current usage of the system provided in the form of a graph by
logging into the website of the system by providing a username and password, which once
verified allows the user the capability to build any program residing on user’s system. The feature
that makes this project an different from the current environment and useful one is that it uses
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Distributed Compilation which divides the work to be run parallel and thus increases the
performance by significantly reducing the compilation time. In order to know more about how the
project works and what the user must do to avail the service, he can go through the interactive
video tutorials and sign up to be a member [1].

Distributed Compiling is a special type of compiling activity in which we compile the source
program using several machines with the same or cross compilers to do the compilation in parallel
and hence speed up the entire process of compilation. Here the source code of the program need
not to be parallel, but the compilation of the program is done over several machines in parallel,
where the source code is divided into several parts and each machine is provided its part and they
compile it together. Distributed Compilation is similar to the normal compilation with the
difference that it compiles the normal program in parallel over various systems [2].

A server farm like the one we will implement can be an asset to the organizations which maintains
a code base of the order of a million lines of C/C++ code. In most of the cases whenever some
changes are introduced in the code, either as new functionality or as bug removals of original
system the entire compilation of the system is compulsory, so that their remains consistency in the
source code among its various distributions, it is mostly done in the Open Souce projects like
Linux, Calligra etc. But now a day’s even in the Commercial projects this thing is being
employed. Reduction in build times can prove to be an effective productivity enhancer. The fact
that we don’t need dedicated machines running the distcc daemons means that such a system can
be implemented with minimal resources. For instance, a Linux Kernel that could have taken
somewhere around 40-45 minutes to an hour on a dual-core system actually took hardly 20-25
minutes on two systems that were each loaded with quad-core processors [3].

It is usually preferred that the fastest/closest/least loaded machines are put at the start of the
DISTCC_HOSTS list. We have to write the list of the available nodes in our priority order in the
“/etc/hosts” file in each of the nodes so that each node can connect with each other but this list is
changeable based upon the fact that a machine may be down for some time or any software or
hardware failure. This is mostly significant when executing “./configure” scripts because all
compilation will be done on the first system listed in a compilation table nodes. Usually, it would
be homehost, however if another machine is much quicker then possibly not, to some extent this is
still an open bug that is to be addressed further. It would be great if distcc might automatically
detect the best distribution process for load distrbution, but it doesn't perform that so far. But in
our system we have added a new php script which automatically does this work. Whenever it sees
that a system is overloaded or its utilisation increases above a threshold value (in our case it is
65%), it automatically removes that node from its available list and as soon as its utilisation
decreases the particular system is added back into the available list of helper nodes.

2 Difference between Reducing the Complexity and Reducing the
Compiling Time

It is worth noticing that the performance gain is obtained because distcc compiles the file using
more than two processors by dividing the work to be compiled into chunks and compiling these
chunks in individual processors available for the compilation to the server, more than one
instruction in a single time unit. An algorithm that is O (n2) will still run 104 slower if the input
size if increased by a factor of 100.However, the program will be compiled much faster because of
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the fact that it is using many processors for the compilation process. As expected, the factors that
prevent us from getting the ideal speed up are:

1. Communication Delays.
2. Typical symptoms include linker errors, weird syntax errors or compiler crashes, caused

by corrupt object or source files can slow down overall compilation process.

3 Infrastructure As a Service

Infrastructure can be simply defined as the resources of any system. In terms of computer the
infrastructure is simply the CPU processing, memory space both RAM and Hard Disk. Every
computer system has some infrastructure in it, but in larger projects and in special cases, we may
require additional infrastructure for the processing of our work then we may require some other
infrastructure. This can be provided to a user in the form of Infrastructure as a Service.

IAAS, Infrastructure As A Service, is a kind of service provided by cloud computing, can supply
users with the convenience and flexibility of virtual resources to achieve the same power supply as
the water supply [4]. Service-oriented IAAS will extend service lifecycle management to the field
of fine-grained virtual resources, taking full advantage of the virtual reconstruction of the concept
of service-oriented resource management methods and strategies for the service platform to
provide more flexible physical resources to support and improve the quality of service.

An infrastructure has been designed which can help the clients to use the service though a
webpage and an Internet connection. The front end gives users to make a secure connection to the
servers that will provide cores for the distributed compilation [5].

The website allows users to make an account which after a successful login redirects him to a
dashboard (home page). This dashboard lets user to check the current usage of the nodes, generate
a script that can be copied to the client’s terminal to connect to the helper nodes at the server side.

export DISTCC_HOSTS = ‘IP Address of all the Helper Nodes’;

The Usage gives the user a better insight of the load that is being held at the server side, which
will allow users to make a decision about the number of nodes he should use to assign his work to.
If the usage comes out to be very high, then he can delay the assignment of the compilation work
to the nodes to disallow any system failure.

The red bars in the graph, as indicate in figure 1, represent the excessive use of the cores giving an
indication that the system is busy doing some task [1].

For the user to ask for nodes to compile his work, he needs to click on Generate button that allows
him to select the number of nodes he needs assign his work. More the number of nodes will result
in faster compilation but hindering other people to us the nodes for the amount of time taken for
the compilation. For this paper we have implemented a cluster of four helper nodes and hence a
drop down list with choices of 1-4 was available to the clients. Each node has 4 cores and all the
four cores are assigned to the user while the node is selected to do the job [6,7] as shown in the
Fig. 2.
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Fig. 1. Usage Graph for all cores of two Helper Nodes with one Node Busy

Fig. 2. Generate Page when the user hovers over drop-down menu
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If the number of requested nodes is more than the nodes available for job compilation the server
automatically gives an alert with available nodes and asks if user wants to continue. In the
screenshot, as given in Fig. 3, the user requested for 2 nodes but only 1 was available so an alert
for the same was generated.

Fig. 3. Alert Message Generated when number of nodes requested by user is unavailable

4 Design and Implementation of Usage Collector

We begin with high level overview of the system into which this component fits in. We are
making a system that will allow a user to compile his program on several idle systems. The user
(client) requests an allocation server to allocate some idle machines for this task from the cluster.
The task performed by the allocation server can be stated as follows:

When the client logs in, check if there are free helpers that can be allocated to the client. If so,
allocate them. If not, inform the client about the maximum number of systems that can be
allocated.

The usage collector component helps allocation server in deciding which helpers are free (and
thus can be allocated) and which ones are busy. It maintains a Table called “Available” that has 2
columns, IP address and CPU usage. The helpers that have CPU usage below a threshold are
added to the available table.

As the aforesaid table is maintained and updated by our usage collector, all that allocation server
has to do is to read IP addresses that correspond to the minimum usage and display them to the
client.

The details of the design and implementation follow as shown in Fig. 4. The description also
answers questions like why continuous updating is required and how noise in the usage data is
handled [8].

 Calculating CPU usage
 Design of the data collector
 Handling Noise
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Fig. 4. Design of the usage collector model

Note that the work of collector stops after updating the usage.xml. The available table is updated
by another script after averaging the usage to remove noise.

The design is quite simple and is based on the UNIX philosophy of doing one thing well. The
component is tasked with generation of the usage.xml file only. The same concept is employed on
whole of the system

4.1 Obtaining CPU Usage

In Linux, the CPU usage can be obtained by reading the file /proc/stat. A typical output of the stat
file looks like:

cpu 476208 1727 99018 7362330 62460 3 3431 0 0 0.

The man page tells that the numbers represent the amount of time, measured in units of USER_HZ
(1/100ths of a second on most architectures), that the system spent in user mode, user mode with
low priority (nice), system mode, and the idle task, respectively.

To get from these numbers to the actual usage, we need to go through one more step. The usage
numbers here are cumulative, that is, they represent the total time spent in various modes since the
system started. To get the actual usage in the past T time units, we use the following approach:

Let t0 be the time at which the system was started.
Let U1 be the usage at time t0 + T1
Let U2 be the usage at time t0 + T1 + T

Average CPU usage in the past T time units = (U2 – U1) / T

To accomplish this, we sample the /proc/stat file at regular intervals, subtract current value from
“backup” values and divide by the sampling interval. The backup values are then updated.
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As an example, here is an instance of /proc/stat (first line only):
CPU 180865 662 46290 4534456 24346 3 1370 0 0 0
Here are the values 10 seconds later :
CPU 181198 662 46440 4546287 24383 3 1379 0 0 0
CPU Usage = (228300 – 227817) / 10 = 483 / 10 = 48.3 %

4.2 Sending the CPU Usage

The usage server calculates the CPU usage after regular intervals using the method specified
above. The usage is then sent to the usage client running on the allocate server in the following
format:

Core1usage; Core2usage;...;CoreNUsage

4.3 Compiling Usage from Each Node

It is the responsibility of the usage collector node to collect usage data from the all the usage
servers running on each helper and finally compiling it in one document. The usage is compiled
into an xml that is used by other components of the system as described later.

4.4 Dealing with Noise: Usage Spikes

Sometimes the CPU may get loaded for a split second due to a user action. This may cause spikes
in the usage data. The spikes are troublesome because they tend to indicate that the helper is busy,
when it really is not.

We handle this problem by not relying just on the immediate usage but by referring to usage 2
seconds and 4 seconds back. A script runs continuously that regularly creates back up of the
usage.xml file by copying it in usage1.xml (usage 2 seconds back) and then in usage2.xml (usage
4 seconds back). While deciding whether a node is busy or not, usage from all the 3 files is
averaged.

5 System Design

The design of the system is a bit complex as there are various different processes that are
concurrently running and are all inter-dependent. The chapter thus helps in individually explaining
each of these processes and give a brief understanding of the system design and the background
jobs that make the system run efficiently.

5.1 Usage Collection of Helper Nodes

The system is required to keep a track of the current usage of all the nodes as well as the server to
know that which nodes are occupied and the level of usage or processes that are running on the
cores of every node.
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A central system works on this problem by requesting all the connected nodes every 2 seconds to
send their current CPU usage as given in Fig. 5. The helper nodes then reply with their respective
CPU Usage and central system then calls a script called “Collector Script” that compiles all the
results and generates an XML file known as “usage.xml”.

Fig. 5. Usage collection of all the nodes

5.2 Back – Up Creation of Usage.Xml File

The system is required to keep a back-up of the old usage of all the nodes so as to calculate the
average of the usage and remove any usage spikes that might cause errors in judging the actually
free nodes [8].

Thus, “UsageDataArchiver.sh” is the script that copies at every instant:

 All the values from the usage1.xml to usage2.xml (4 seconds old values)
 All the values from the usage.xml to usage1.xml (2 seconds old values)

Updates usage.xml with current values.

5.3 Update Available Table

The system maintains an available table that stores the IP addresses of all the nodes that are
available and can be used for assigning a compilation job. The table is updated by a
“UpdateAvailableTable.php” script that continuously runs and take the usage values of all the
nodes from the three files: usage.xml, usage1.xml and usage2.xml and then averages the value as
mentioned in Figs. 6 and 7.

The average value is then checked and the following three steps are taken:

 If node is already in table and its usage is more than 65%, it is removed otherwise it is
left as an entry.

 If a node that was earlier not available due to high usage but now has usage <65%, is
added in a new row in the table.
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Fig. 6. Back-up creation of usage.xml files

Fig. 7. Updating available table
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5.4 Client – Server Interaction for Getting Helper Nodes

The process of obtaining the nodes for compilation job also has several steps involved in it. The
client requests the allocation server for N number of nodes that needs to be less than or a
maximum of 4; the server then checks with the available table for the required number of helpers
[9,10,11,12].

The server then returns with either of the two:

 The IP addresses of N nodes that may be used for compiling a job by the user.
 An alert message with the available nodes that is less than the demanded nodes and if the

user accepts to continue the IP address of those are provided. If the user declines then
he/she may wait for the required nodes to be freed.

The complete process of client- server interaction is highlighted in Fig. 8.

Fig. 8. Client – server interaction for getting helper node

5.5 Compilation Results for a Linux Kernel

The system was used to compile Linux – 3.8.5 kernel for various numbers of nodes and in
different situations. The differences in the results show how much gain can be achieved for
different setups. The three systems used for the compilation jobs were: Localhost: Quad Core i3
Processor with 2.0 GHz Clock Speed

192.168.1.30: Quad Core i5 Processor with 2.4 GHz Clock Speed
192.168.1.40: Quad Core i5 Processor with 2.3 GHz Clock Speed
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The time was recorded using the ‘time’ command in linux that gives duration of execution of a
particular command. The command provides user CPU time, system CPU time and real time. The
result for various situations is tabulated in the following Table 1.

Table 1. Various readings of time for compilation of various programs

Package
name

Wall time
(single node)

Wall time
(distributed)

CPU time CPU time
(distributed)

Decrease in
CPU Time

Binutils-2.18 125.8s 35.4s 102.9s 25.6s 75.16%
Glibc-2.6 946.4s 534.0s 568.7s 390.5s 31.33%
Httpd-2.0.43 139.8s 85.1s 117.2s 51.3s 56.22%
Linux-2.6.25 818.3s 203.2s 543.9s 185.3s 66.04%

6. Seti @ Home

SETI@home is a project where our project finds its relevance and the following chapter gives a
brief explaination about the same. SETI@home works on the idea that millions of computer
owners worldwide can contribute their computer's processing power to the search of
extraterrestrial intelligence by performing the largest computation ever [13,14,15]. This can be
achieved by using computers in homes and offices around the world to analyze radio signals from
space. The approach might be complicated but delivers unprecedented computing power.

6.1 About Seti

SETI (Search for Extra-terrestrial Intelligence) is focused to detect intelligent life outside Earth.
One approach uses radio telescopes to listen for narrow-bandwidth radio signals from space which
are not known to occur naturally. So detection of these signals would provide evidence of extra-
terrestrial technology. Radio SETI projects digitally analyse the data by computing its time-
varying power spectrum, then finding candidate signals through pattern recognition on the power
spectra and finally, eliminating those signals that are probably natural or man-made.

Before SETI@home, radio SETI projects used special-purpose supercomputers located at the
telescope to do the bulk of its data analysis. In 1995, an idea to use a virtual supercomputer
consisting of large numbers of Internet-connected computers was proposed which established the
viability of public-resource computing in which computing resources are provided by the general
public. But for many tasks, huge computing power implies huge network bandwidth, which is
typically expensive or limited [16,17].

6.2 Interesting Facts about Seti

The whole client program of SETI@home is written in C++ which comprised of a platform-
independent structure for distributed computing. This size of program is 6,423 lines  of code and
their components with platform-specific implementations (such as the graphics library with 2,058
lines of code). In the same way, specific data analysis code of SETI is 6,572 lines as well SETI-
specific graphics code is 2,247 lines [18,19].
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The client has been ported to more than 170 various platforms. These tasks are make possible with
the help of GNU tool together with gcc and autoconf. All client can be executed as a background
process as either a GUI application or as a screensaver. The whole system occupies with an
structure in which one thread handles data processing and communication, the second thread
handles GUI interactions, and the third thread (possibly in a split address space) renders graphics
based shared memory data structure to maintain different modes  of various platforms [20,21].

As per the facts provided SETI@Home was open to public in 1998 and by July 2001 the
participants had processed over 221 million work units with an average throughput of 27.36
Tflops and performed 1.87 X 1021 floating point operations.

6.3 Conclusions Drawn from the Study

Public-resource computing relies on personal computers with excess capacity, including idle CPU
time. The following conclusions were made about Public – resource computing that:

The role of distributed compilation is more prominent and efficient when Computation to Data
Size Ratio is high i.e. the size of data on which the computations are to be performed is
comparatively small. If we take SETI@home as example then each data unit of SETI@home takes
3.9 trillion floating- point operations, or about 10 hours on a 500MHz Pentium II, yet involves
only a 350KB download and 1KB upload. This ratio keeps server network traffic at a convenient
level while imposing minimal load on client networks [28]. Some applications, such as computer
graphics rendering, use large amounts of data per unit computation, possibly making them
inappropriate for public-resource calculation. though, reductions in bandwidth expenses dispel
these troubles, and multicast techniques decrease costs when a large part of data is constant across
work units.

 Applications those are comprised with independent parallelism are easier to handle as
compare to those with many data dependencies. The computations work-unit of
SETI@home is independent; hence participating computers never wait or communicate
with one another. If a computer be unsuccessful while processing a work unit then the
work unit is ultimately sent to another computer.

 Applications which required frequent synchronization and communication among others
node have been parallelized using such hardware-based approaches like  shared-memory
multiprocessors and more newly software-based cluster computing, like as Parallel
Virtual Machine software.

Based on these concerned points, public-resource computing with its frequent computer outages
and network disconnections seems badl-suited to such applications. Though, scheduling
mechanisms which find and develop groups of LAN-connected machines may remove these
problems [22]. This paper work may be used in research works like SETI by enhancing the
computation requirement at various phases and at the same time, using a LAN is for high speed
data transfers.

Tasks that tolerate errors are more agreeable to public-resource computing; like if a SETI@home
work unit is analyzed incorrectly or not completely, the overall aim is affected only slightly [23].
The success of public-resource computing concepts has the auxiliary benefit of increasing public
awareness of science and democratizing, to an extent, the allocation of research resources.
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7. Distributed C Compiler

Distributed C Compiler is a program that distributes compilation of C, C++, Objective C and
Objective C++ codes among several machines on a network, and generates the same results as that
of a local build. It is avaiable under the GNU General Public License.  Distcc has been under
development since early 2002 [24,25]. Distcc is developed on GNU/Linux, but has been reported
to work efficiently on other systems as well. Distcc is not a compiler itself; rather it is a front-end
to the GNU C/C++ compiler (gcc) [26]. There is preliminary support for some other compilers
though. Almost all gcc options and features work as normal. Distcc sends the complete pre-
processed source code across the network for each job and all it requires of the volunteer
machines is that they run the distccd daemon, and have an appropriate compiler installed.

Distcc is designed to be used with the -j parallel-build feature in GNU Make or other build tools.
Sending files across the network takes time, but few cycles on the client machine. Any files that
can be built remotely are essentially "for free" in terms of client CPU. Programs known to have
been built correctly with distcc include the Linux Kernel, KDE, GNOME, Samba and Ethereal
[27].

7.1 History and Shortcomings of Previous Distributed Build Systems

Several distributed build systems have been developed before distcc came into existence, like
pvmmake, doozer and dmake [28], which have following short comes.

 All these systems required the build directory to be a networked file system and shared
by all the machines that are being used to build particular software.

 These systems also required the machines to have the same header files and libraries
installed, which if inconsistent may lead to error messages and crashes in worst cases.

 The systems developed earlier even required the clocks to be tightly synchronized so as
to create an accurate timestamp.

 These systems were particularly designed for dedicated build clusters. This became a
handicap for users in an ad-hoc network who may want the liberty to upgrade libraries at
their own will and use a different network file system (NFS).

 A different approach that was also used previously was to use kernel – level clustering
and have very tight machine coupling which was achieved by distributing parallel tasks.
The foresaid approach was quite ineffective with respect to performance as there may be
many short – lived processes that might be generated during compilation process.

7.2 Design of Distcc

Distcc is designed to follow the principle of “Worse is Better” by Richard Gabriel, that can be
summarized and explained in the following points:

 Simplicity–The design must be simple both in implementation and interface. It is
important for implementation to be simpler than interface as it affects the design.

 Correctness–The design must be correct but at the same time it should be more simple
than correct.
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 Consistency–The design must be as consistent as possible and simple but it is preferred
to drop those portions that are less common and introduce complexity or inconsistency.

 Completeness–The design must cover all the possible and reasonably expected
situations. Completeness can sometimes be sacrificed for quality and should be
sacrificed if simplicity is at stake.

Distcc is not a general-purpose clustering system as they are too hard to write, and none that can
be installed in a matter of minutes. Distcc is incomplete in coverage of all the tasks a user might
want to distribute across machines, but it does handle a large task that is important to a significant
number of users. Most tasks can be distributed that fall under the category of C compilation. There
is always an overall benefit even if a few jobs during a software build cannot be distributed, as
others that can be run in parallel are distributed. Distcc’s documentation and diagnostic output
make it easy to identify problem commands. Some gcc options that might be distributed in
practice are run locally for the ease of implementation complexity. Commands that produce
assembly listings are no reason why the assembly output could not be relocated back to the client
except this option is hardly ever used because complexity is not defended [29].

7.3 Working of Distcc

Distcc distributes work from a client machine to any number of volunteer machines. (The term
volunteer is used to refer the slaves that are used by other systems.) Distcc works with a client
program and a server.

The responsibility of the client is as follows:

 Analyses the command run,
 For the jobs that can be distributed choose a host,
 Run the pre-processor,
 Send the request across the network, and
 Finally, report the results.

The server on the other hand accepts and handles requests containing command lines and source
code and responds with object code or error messages

7.4 Advantages of Distcc

The advantages of Distcc are as follows;

 Easy to set up
 Builds software projects several times faster than local compilation
 Does not require all machines to share a file system, have synchronized clocks, or have

the same libraries or header files installed. They can even have different processors or
operating systems, if cross-compilers are installed [30].

8. Conclusion

The experiments we did demonstrated that the gain that we expect of such a sytem is actually
attainable and is not only intuitive. The system can also be used as a reference for those who want
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a way to control a system of computers working together as well as in reconfigurable computing
system [31]. The components that help the users share their usage with a central server, the
collector that compiles the usages into an xml, and the php script that reads the xml and updates
the available table; together make a component that can be employed as it is on similar problems
owing to the modular design.

Distributed compilation is one of the techniques that helps the organizations in utilizing this
concept of distributing the workload among several helpers to reduce the build time. The system
we designed would help organizations in putting utilizing the existing computing power, most of
which is anyways lying idle, for use by those in the organization who need it.
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