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ABSTRACT

Pharmacoepidemiology is the science of studying the effects of utilizing pharmaceutical
and biological products in the population, and in most cases this science is conducted in
observational epidemiological designs, including retrospective database analysis.
Observational pharmacoepidemiology is associated with a myriad of methodological
challenges that affect study conclusions and related causal inferences. However, if these
challenges are addressed and effectively dealt with, observational studies can have
important and impactful clinical, regulatory, and public health outcomes. This article
examines common challenges in retrospective database analysis and serves as an
introductory text to important methodological concepts in research involving medication
use, including confounding by indication, time-dependent confounding, informative
censoring, depletion of susceptibles, and immortal time bias.

Keywords: Pharmacoepidemiology; Observational Research; Retrospective Database
Analysis; Confounding; Bias; Drug Safety.

DEFINITIONS, ACRONYMS, ABBREVIATIONS

E t : = exposure at time t, which is a medicinal product;

E t 1 = previous exposure.

E t 1 = subsequent exposure.

O = outcome, which is either a beneficial effect or an adverse event of the drug.

Z t = confounder at time t.
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Z t 1 = the value/status of the confounder at previous time.

Z t 1 = the value/status of the confounder at future time.
Ĕ = observed measure of the exposure
Ŏ = observed measure of the outcome
Ž = observed measure of the confounder
!e = measurement error in exposure
!o = measurement error in outcome
!z = measurement errors in confounder

1. INTRODUCTION

Pharmacoepidemiology is the science of studying the effects of pharmaceutical and
biological product utilization in the population, and in most cases this science is conducted in
observational epidemiological designs. In observational pharmacoepidemiology, exposure to
drugs is not at random and probabilities of exposures are not the same across different
populations; certain people have higher tendencies to be exposed to a specific treatment
than others. The non-experimental nature of observational designs presents challenges in
accurately and reliably estimating the association between exposures and outcomes. Three
sources of bias can distort this association in research involving medication use:
confounding, selection bias, and measurement bias [1]. However, if these challenges are
addressed and effectively dealt with, observational studies can have important and impactful
clinical, regulatory, and public health outcomes. This paper serves as an introductory text to
these concepts and can be used as a teaching tool in the syllabi of pharmacoepidemiology,
research methods, and evaluation of drug literature courses within the curricula of
professional and graduate programs in colleges of pharmacy.

2. CONFOUNDING

In clinical practice, medications are not prescribed (and therefore, not utilized) at random;
prescribing by physicians take into considerations multiple factors, such as patient, disease
diagnostic, and disease prognostic characteristics. Such factors play the role of exposure
determinants, which lead to confounding by indication, and time-dependent confounding [2].
Furthermore, failure to account for all confounding characteristics in an observational study
leads to residual confounding [3].

Confounding is Latin in origin (confundere), which means “to mix together”.
Epidemiologically, confounding is defined as the distortion of exposure-outcome relationship
by some other variable, i.e. confounder [2]. The distortion can lead to overestimation,
underestimation, or reversal of exposure effect [2]. A confounder Z t is associated with the

exposure E t and the outcome O (i.e. a common cause), accounts for some or all of the

observed exposure effect, and not in the exposure-outcome causal pathway (Fig. 1A). Here,
association means that the risk of the outcome is different among people with the
confounder compared to those without, and the distribution of the confounder is different
among people with the exposure compared to those without (or those with other comparator
exposure).
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2.1 Confounding by Indication

Confounding by indication is defined as a distortion in the association between the exposure
and the outcome, which occurs when a drug (or a class of drugs) is preferentially prescribed
to patients with preexisting comorbidity at baseline (channeling bias) or to those with specific
baseline characteristics, such as patients with worse disease state at baseline (confounding
by disease severity) [4]. In case of the latter, the observed exposure effect could be mixed
with an effect of severer disease state [5]. Both types are common in chronic disease
pharmacoepidemiology [6], e.g. asthma, diabetes, and rheumatoid arthritis.

2.2 Time-Dependent Confounding

Time-dependent confounding is defined as an alteration in the association between the
exposure and the outcome as a result of a variable that may vary over time and concurrently
acts as a confounder between current exposure and outcome, and as an intermediary
between previous exposure and current exposure (Fig. 1B) [7]. In another word, a time-
dependent confounder is a variable that is predicted by previous exposure and a predictor of
subsequent exposure. Conventional methods of confounding control inadequately accounts
for time-dependent confounding because they cannot account for the confounder’s effect
between previous exposure and future exposure; on the other hand, methods like marginal
structural models controls for that type of confounding under specific assumptions [8,9];
however, if previous exposure status does not affect present confounder’s value (Fig. 1C),
time-dependent confounding is not ensued and conventional regression modeling
techniques can efficiently account for this type of confounding. In pharmacoepidemiology,
drug effects are time-dependent, and are affected by time-dependent confounders that
themselves are affected by previous drug exposure, and affect subsequent drug exposure
and outcome. This phenomenon is common in usual-care “real-world” settings, and
conclusions drawn from studies that fail to account for time-dependent confounding could be
misleading.

2.3 Residual Confounding

Databases commonly used in pharmacoepidemiological research may contain an array of
variables; however, even the most complete and detailed database fails to include all
potentially important confounders. The presence of confounding despite adjustment is
referred to as residual confounding. Failure to account for all confounders can rise from
unmeasured variables or measurement errors in recorded variables [3,10]. Further, grouping
a confounder that is on the continuous scale of measurement, e.g. age into few categories
may result in inadequate confounding control in the observed exposure-outcome relationship
[11], especially when some categories end with sparse number of observations.
Unmeasured confounders are either measurable but unmeasured in the main study or
immeasurable (unknown or difficult to measure) [2].
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Fig. 1. Illustration of confounding. A) classical time-independent confounding,
B) time-dependent confounding and time-varying exposure, and
C) time-varying exposure with no time-dependent confounding

Examples of variables that are frequently unavailable (unmeasured) in databases that are
used for pharmacoepidemiologic research include: behavioral information (smoking, alcohol
drinking, nutrition and eating habits, exercise, substance abuse, and therapy adherence
measures); laboratory information (blood tests, lung function tests, and other functionality
tests); and exposure information (over-the-counter products, nutraceuticals and herbal
remedies, and immunization history).

Observing exposure effect in a subset of patients defined by a particular characteristic is
effect modification. In another word, the effect of the exposure on the outcome is different
across levels of the effect modifying factor. Unlike confounding, effect modification is not a
source of bias; rather it may be of public health importance, e.g. identifying exposure groups
at risk. Both confounding and effect modification can exist together or separately. Stratified
analysis is used to elucidate the association between exposure and outcome across levels
of the factor. E.g. the association between obesity and asthma prevalence is different
between men and women [12]. In some epidemiology references, the term “effect-measure
modification” is used to signify the point that identifying the presence of effect modification is
contingent upon the type of effect measure used, i.e. additive or multiplicative [13]. An effect
modifier may change the direction or the magnitude of exposure effect. When the direction of
exposure effect is the same in all subsets of the effect modifier but the magnitude is
strengthened or weakened between subsets, quantitative effect modification occurs. When
exposure effects are in opposite directions in subsets of the effect modifier (i.e. the exposure
and the outcome are associated in the presence of the effect modifier but not associated in
the absence of the effect modifier, and vice versa), qualitative effect modification occurs. In
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case of qualitative effect modification, both additive and multiplicative effect modifications
are present [14]. In the absence of qualitative effect modification, effect modification may be
present in one scale of measurement than the other [13]. Therefore, the concept of effect
modification in pharmacoepidemiology should always be examined in light of the chosen
scale of effect measure, e.g. risk ratio (multiplicative) or risk difference (additive).

3. SELECTION BIAS

Selection bias is a distortion in the association between exposure and outcome that arises
from systematic errors in the way the study sample was selected. In cohort studies, the
outcome of interest can be over- or under-represented in the preferentially selected sample
of patients who have higher or lower likelihood of presenting the outcome [4]; therefore, the
sample will be unrepresentative of the target population to which study results are
extrapolated (Fig. 2).

Fig. 2. The relationship between study sample and target population in
pharmacoepidemiologic studies

There are many forms of selection bias, including: informative censoring; depletion of
susceptibles (survivor bias); admission (referral) bias; diagnostic bias; volunteer (self-
selection) bias; and healthy-user effect—the latter is considered a type of confounding more
than of selection bias [15]. In retrospective database analyses, informative censoring and
depletion of susceptibles are probably the most important types of selection bias.

3.1 Informative Censoring

In the context of survival analysis, censoring refers to the termination of observations when
they are not followed long enough to observe the outcome of interest [4]; the conditions for
such termination are usually defined by study investigator. When censoring occurs due to
reasons that are not under the control of the investigator, random censoring is said to
happen [16]. Within this framework, informative censoring is likely to occur (Fig. 3) [16]. If the
censored individuals are biased subsample of the uncensored individuals who have similar
covariate distribution (i.e. censored individuals have systematically higher or lower risks of
observing the outcome than the uncensored counterparts), the censoring mechanism could
be due to the exposure or the outcome, i.e. informative. Informative censoring can lead to
biased estimates of the association between exposure and outcome, which is likely in
longitudinal studies with time-dependent confounding [17].
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Fig. 3. Informative censoring in pharmacoepidemiology
O = observed outcome of interest, i.e. uncensored;

R = randomly censored outcome other than the outcome of interest and was not defined by the investigator as
a censoring criterion; X = censored outcome occurred after study termination.

Selection bias due to random censoring can be prevented by including the variables that
affect censoring and event times in the multivariate regression model, e.g. study starting
time (index date) in case of random study entry and termination times [16]. In case of
censoring due to competing outcomes, e.g. asthma hospitalization and asthma death, if the
rate of competing outcome is higher in the exposed, the exposure effect, e.g. asthma death
will be overestimated. Sensitivity analyses on the other hand can be employed to see how
sensitive the estimates are to informative censoring [16]. For example, the investigator may
assume that censored individuals are at high risk of observing the outcome (outcome occurs
immediately after censoring), or the reverse (censored individuals have longer time-to-event
than any other individual in the sample). When association estimates from sensitivity
analyses bracket the estimates from original analysis (i.e. act as confidence limits),
conclusions are not affected by treating censoring reason (e.g. other death when asthma-
related death is the outcome of interest) as non-informative.

3.2 Depletion of Susceptibles

There are many terms for this type of selection bias, including “survivor bias” [3], “crossing of
hazards” [18], and “survivor cohort effect” [19]. Depletion of susceptibles is the most
commonly used term in pharmacoepidemiology. Depletion of susceptibles is defined as the
gradual exclusion of a subgroup of patients who are susceptible to the outcome of interest
from one exposure group, which leads to subsequent selection of another subgroup of
patients who are less susceptible to the outcome from another exposure group (provided
that exposure groups are comparable with regard to other factors other than exposure
categories, e.g. confounders). This phenomenon is common in studies using prevalent users
instead of incident users [20].

Fig. 4 illustrates the depletion of susceptibles concept in a retrospective cohort design
assessing the association of a drug with an adverse drug reaction. At earlier time of the
study (Period 1), patients at risk of experiencing the outcome are expected to develop the
outcome and thereby excluded from the follow up. This will eventually leave a subgroup of
patients who have low risk of experiencing the outcome at later times (Periods 2-3). If the
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drug of interest causes the outcome of interest (i.e. effective in comparative effectiveness
research—CER, or harmful in a drug safety study), susceptible patients will be differentially
excluded from the drug exposure group (Drug A, gray shaded blocks) than the other
comparator group (Drug B, not shaded area). The overtime depletion of susceptibles from
Drug A group leads to the selection of susceptibles (who were less susceptible in prior
periods) from Drug B group. Overtime (Periods 3-6), Drug A will appear inferior to Drug B
(less effective in CER, or protective/safe in a drug safety study) when it is not in earlier
periods. This phenomenon leads to the crossing of survival curves at a point of time due to
the depletion of susceptibles and differential selection of less susceptibles overtime (hazard
ratio>1 in Periods 1-3; hazard ratio<1 in Periods 4-6). Therefore, caution should be
exercised in interpreting “time-varying period-specific hazard ratios” [18], where they are
prone to selection bias due to this phenomenon.

Fig. 4. Depletion of susceptibles in a cohort study examining the association of a drug
with an adverse reaction

Furthermore, prevalent users invoke selection bias in two mechanisms: depletion of
susceptibles, and adjusting for confounders that are affected by past exposures [21].
Prevention of selection bias induced by prevalent users is possible at the design stage of the
study, where follow up is restricted to those patients who were naïve to the exposure and
first time users, or those who were not exposed to the drug of interest for a period of time,
then became exposed after the end of the specific period, when they will be considered
exposure initiators after being unexposed [21]. Patient’s past experience with a drug affects
current and future utilization and risks of adverse events associated with current or future
drug use. Prevalent users (those with past experience) may not have the same risk of an
adverse event as incident users (first-time users); those who tolerate the drug continue using
it, and those who do not (susceptible to the adverse event) stop using it. Table 1 depicts an
example of attenuating the risk of gastrointestinal bleeding among 100 prevalent users of a
non-steroidal anti-inflammatory drug (NSAID) in contrast to 100 incident users of NSAID.

Table 1. Depletion of susceptibles among prevalent users of a NSAID

Drug Incident users Prevalent users
N GI bleeding IR RR GI bleeding IR RR

NSAID 100 40 0.4 2.0 30 0.3 1.5
COX II inhibitors 100 20 0.2 20 0.2

COX = cyclo-oxygenase; GI = gastrointestinal; IR = incidence rate; N = total sample size; RR = relative risk



British Journal of Pharmaceutical Research, 3(2): 161-175, 2013

168

4. MEASUREMENT BIAS

Measurement (information) bias is a distortion in the association between exposure and
outcome that arises from systematic errors in the way variables of interest are measured for
the comparison groups [4]. In retrospective database analysis, information (“unobserved
construct”; E, O, Z) regarding true exposures, outcomes, and other variables are recorded in
form of indicators (“observed measures”; Ĕ, Ŏ, Ž) to mimic these true experiences [22]; thus
for example, drug exposure ascertainment in a database is not the reflection of true drug
utilization, rather a reflection of a measured drug utilization. When these observed measures
do not accurately reflect unobserved constructs, measurement error—or misclassification
(!e, !o, !z) occurs [23].

Measurement bias in pharmacoepidemiology is classified into four types (Fig. 5):
independent nondifferential misclassification; independent differential misclassification;
dependent nondifferential misclassification; and dependent differential misclassification [22].
Independent nondifferential misclassification denotes to the independence between the
measurement errors in the exposure and that in the outcome; however, exposure
misclassification is not affected by true outcome value (i.e. exposure misclassification is
nondifferential across levels of the outcome), and likewise in outcome misclassification (Fig.
5A). Independent differential misclassification refers to the independence between the
measurement errors in the exposure and that in the outcome; however, the true value of the
outcome affects exposure classification (i.e. exposure misclassification is differential across
levels of the outcome) (Fig. 5B), and similarly in outcome misclassification (Fig. 5C).

Dependent misclassification happens when measurement errors in the exposure and that in
the outcome are dependent on each other, e.g. because they share same mechanism of
abstracting information such as recall bias in pregnancy outcomes. Like independent
misclassification, dependent misclassification can be nondifferential (Fig. 5D) and differential
(exposure misclassification, Fig. 5E and outcome misclassification, Fig. 5F). Confounder
misclassification is depicted in Fig. 6, which is similar to the framework of residual
confounding. This type of misclassification may incline investigators to erroneously conclude
the presence of effect modification by the confounder, when none actually exists [22].

Nondifferential misclassification drives estimates of association between exposure and
outcome towards the null hypothesis; differential misclassification on the other hand drives
estimates either towards or away from the null values [1]. In addition to measurement errors
in abstracting the information, grouping categorical or continuous variables into fewer
categories can revert nondifferential misclassification to differential misclassification [1]; and
association estimates can be driven away from the null estimates even when the
misclassification is nondifferential. This may occur in multi-category exposures and when
exposure or outcome misclassification depends on misclassification in other variables in the
dataset, e.g. confounders [1].
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Fig. 5. Measurement bias in pharmacoepidemiology. A) independent nondifferential,
B) independent differential exposure, C) independent differential outcome,

D) dependent nondifferential, E) dependent differential exposure, and
F) dependent differential outcome misclassification

Fig. 6. Confounder misclassification in pharmacoepidemiology. A) independent
nondifferential, B) independent differential, C) independent differential depends on
outcome, D) dependent nondifferential, E) exposure misclassification depends on

confounder, and F) outcome misclassification depends on confounder
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4.1 Exposure Misclassification

Characterization of exposure in observational designs is a challenging task. There is a
myriad of reasons for imposing measurement bias in exposure characterization when
utilizing retrospective database analyses. In pharmacoepidemiology, measures of drug
exposure are not necessarily accurate reflections of true drug exposure. In databases,
prescribing a drug to a patient doesn’t necessarily mean that the patient has actually
received the medication from the pharmacy and has actually taken it with adherence to
prescriber’s instructions. Patients may take or receive too little (e.g. incorrect inhaler
technique) or too much of the correct drug (e.g. too high dose for the indication, or
interactions), or they may not take or receive the drug prescribed (e.g. product is not
affordable to the patient or not reimbursed by the healthcare insurance system; product is
inconvenient to use, e.g. inhaler coordination; instructions not understood or remembered or
even agreed upon by the patient; experiencing undesirable effects; failure to experience
perceived benefits; product unavailability; or health beliefs and cultural factors). Thus, such
patients may be classified as exposed to the drug of interest, when they may be not exposed
or exposed to a variable amount of the drug.

Medication adherence measures are developed to measure the extent of drug utilization in
pharmacy administrative claims databases that record prescription filling and medication
dispensing information. However, these measures have limited applications in prescribing
databases, e.g. the Clinical Practice Research Datalink, where dispensing information is not
recorded.

4.1.1 Immortal time bias

Immortal time bias is a form of exposure misclassification that is increasingly found in
pharmacoepidemiologic studies [24]; it arises from cohort definitions in which patients must
meet certain survival criterion of follow up from index date, in which patients should survive
for a specific duration of time since exposure (Fig. 7) [25]. Failure to account for immortal
person-time results in biased estimates of the association between exposure and outcome,
which is an underestimation of the true association in the absence of this bias (If survival
rate is higher in the exposed group, the hazard ratio will be reduced), and the magnitude of
bias is proportional to the duration of immortal person-time [24,26].

Fig. 7. Immortal time bias in pharmacoepidemiology
O = outcome of interest; Rx1 = first drug group; Rx2 = second drug group.
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Immortal time bias can be prevented at the study design and analysis stages. At the design
stage, patient follow up should start after the immortal person-time period; while at the
analysis stage, this period can be excluded from the analysis of the denominator of person-
time calculations for the risk estimates [24,25].

4.2 Diagnostic Misclassification

Diagnostic (disease) misclassification refers to the differential classification of the clinical
condition among patients. Diagnostic misclassification is a form of measurement bias and
should be distinguished from diagnostic bias, which is a type of selection bias in which
patients are differentially diagnosed depending on exposure to specific risk factors [4].
Specifying the clinical condition of interest is usually the first step in pharmacoepidemiologic
research design. The validity of disease diagnoses in pharmacoepidemiologic databases
varies by the type and the source of the database. Some databases record diagnoses
utilizing disease classification codes, e.g. International Classification of Diseases (ICD) and
Read clinical terms; others use clinical terminologies, e.g. Medical Dictionary for Regulatory
Activities (MedDRA) and Systematic Nomenclature of Medicine (SNOMED). Incorrect coding
may arise at the general practice, hospital, health insurance system, or the database
administrator. Patients may be misclassified as having the disease of interest, when in reality
they are not and vice versa. In databases, the accuracy of the diagnosed condition is
contingent upon the validity of the diagnosis process (at the practitioner level), and the
extent of association of the classification code with the documented diagnosis (at the
database level), where the code serves as a surrogate measure for the true diagnosis [27].

4.3 Outcome Misclassification

In retrospective database research, patient outcomes of interests are measured by a set of
definitions that serve as a proxy to the true outcomes, e.g. asthma morbidity is sometimes
measured by patient’s referral to emergency departments or hospitals due to asthma
exacerbations, or prescribing and utilization rates of rescue inhaler medications and oral
corticosteroids [28]. Like exposures, outcomes are prone to misclassification in
pharmacoepidemiologic research. When outcome misclassification is nondifferential (Figs.
5A & 5D), the association will be driven towards the null; and it will be driven away from the
null if the misclassification is differential (Figs. 5C & 5F). For example, if exposure to a
specific asthma drug increases (or decreases) the probability of misclassifying the patient as
having hospitalized for asthma exacerbations, the association between the exposure and the
outcome will be biased away from the null estimate.

Developing algorithms to identify outcomes that include a combination of clinical, referral,
and prescription information can improve the validity of outcome measurement [26,29]. For
example, if the outcome of interest is asthma exacerbations, the investigator can identify
diagnosis codes for asthma exacerbations in addition to referral information to an emergency
department and relevant medication history. Likewise, utilizing linked databases can help in
the identification of relevant outcomes.

5. CONCLUSION

In randomized, controlled clinical trials, randomization equally (or near equally) balances
confounders across exposure groups. Pharmacoepidemiologists aim at evaluating the
causality of associations between drugs and outcomes; lack of randomization in
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observational studies casts additional challenges in evaluating causal associations.
Moreover, depending on the therapeutic effectiveness of a medication in an individual
patient, subsequent medication use may change; patients who tolerate the unintended side-
effects or experience the intended therapeutic effects of a medication are more likely to
continue using it in the future compared to those who experience side-effects or those who
do not perceive the beneficial effects of a medication.

Fig. 8 outlines different approaches to minimize confounding and bias in
pharmacoepidemiology at the design and analysis stages of the research. In observational
studies, measured confounders can be accounted for at the design stage through restriction,
matching, or implementation of a new-user design; and at the analysis stage through
stratification, standardization, or regression including propensity scores techniques.
Likewise, unmeasured confounders can be addressed at the design stage through the
implementation of crossover active comparator, or validation designs; and at the analysis
stage through instrumental variable techniques, sensitivity analyses, and utilizing proxy
measures [30].

In addition to selection and measurement bias, confounding is one of the most important
sources of bias in observational studies, and any observed association in such studies is
confounded to some degree [31]. However, well designed and well conducted rigorous
observational studies have increasingly important clinical, regulatory, and public health
impacts.

Fig. 8. Pharmacoepidemiologic approaches to account for confounding and bias
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