

Assessing the stability of selected software components for reusability

Ajayi, Olusola O. Chiemeke, Stella Chinye Kingsley Chiwuike Ukaoha

Department of Computer

Science Adekunle Ajasin

University Akungba Akoko,

Ondo State Nigeria

Department of Computer

Science University of Benin

Benin City, Edo State, Nigeria

Department of Computer

Science University of Benin

Benin City, Nigeria.

ajayicomputer@gmail.com schiemeke@uniben.edu

kingsley.ukaoha@uniben.edu

Abstract -The need to develop software of great quality with timely delivery

and tested components gave birth to reuse. Component reusability entails the use (re-

use) of existing artifacts to improve the quality and functionalities of software. Many

researches have considered and justified common reusability factors such as

customizability, portability, interface complexities,

understandability/Documentability etc. but with limited works on stability as a

factor. The need to experiment stability (in the context of volatility) as a factor for

determining component reusability, is an attempt to lend our voice to the domain of

component reusability. This study introduces and justifies stability, in the context of

volatility of software component, as a factor that determines the reusability of

software components. As part of the study’s methodology, sixty-nine (69) software

components were collected from third party, and data extracted from their features

were used to compute the metric values of stability. The experimented conducted

proved the stability status of the various component types considered.

Keywords - software component, reusability, soft-computing, adaptive neuro-fuzzy, stability,

interdependency, afferent, efferent, coupling

I. INTRODUCTION

Reusability is the degree to which a software

component can be reused [1][2]. This consequently

leads to reduced software development cost and less

development time as it enables less writing but more

of assembly. Reusability plays an important role in

CBSD and also acts as the basic criterion for

evaluating component. [3] asserted that, reusability of

a component is an important aspect, which gives the

assessment to reuse the existing developed

component, thereby reducing the risk, cost and time of

software development. If a component is not reusable,

then the whole concept of component-based software

development fails [4]. Reusability is one of the quality

attributes of CBSD. It can measure the degree of

features/components that are reused in building

similar or different new software with minimal change

[5]. To realize the reuse of components effectively,

reusability estimation has to be carried out. For

systematic reuse process, the use of metrics is very

germane. Without metrics, evaluating the quality and

qualification of the selected components for reuse

becomes an uphill task [5].

[6] defined reusability as the quality of any software

component to be used again with slight or no

modification. Software reuse is the process of creating

software systems from existing software assets rather

than building them from scratch. The author also

viewed Reusability as the quality factor of software

that qualifies it to be used again in another application,

be it partially modified or completely modified. In

other words, software reusability is a measure of the

ease with which previously acquired concepts and

objects can be used in new contexts. [7] sees

reusability of a component as an important aspect,

which gives the assessment to reuse the existing

developed component.

Thinking mathematically, reusability could be

described thus:

Reusability = Usability + Usefulness …(1)

where

usability describes the degree to which an asset

(component) is easily usable (reusable), while

usefulness implies the degree of suitability

(relevancy) for use (reuse).

According to [8], there are several factors which

influence component reusability. The following

factors may be needed to check the ‘Reusability Level’

of a software element. They are: Reliability,

Customizability, Interface Complexity, Adaptability,

Portability, Understandability, Stability etc.

Reusability is hard to quantify because of numerous

factors influencing it, component stability inclusive.

The complexity of the situation contributes the fact

that it is often not clear at which extent some factors

influence reusability.

II. RELATED WORKS

[9] viewed stability as the life time of a component that

satisfies the system requirement through its services.

The study viewed that if any of the changes happened

in that reusable component, immediately the stability

factor of that component has to be measured for

keeping the same component as a ‘Reusable’ one. The

authors considered stability as one of the four factors

(Coupling, Complexity, Stability, and Quality) needed

to check the reusability level of software element.

However, ‘Import’ and ‘Export’ coupling of a

component was used to calculate the stability value of

that corresponding component. Kamalraj’s work

centered on reuse clustering for classifying reusable

elements. Stability was only introduced to track the

type of dependency among components,

communication among them and their interior

elements.

[10] posit stability as a factor relevant in determining

reusability of a component as he states: ‘the reusable

component should be stable in any environment as the

components are portable to the system where

workload is varying and many processes are

depending on it’. According to the authors, Stability

involves achieving consistent and higher process

yields. However, stability was used as a fuzzy input

with variables such as Low, Medium and High in the

ANFIS structure developed by the authors, without

reference to porting of the components as suggested in

the definition.

In [11], the study established in a preliminary way, the

extent to which the software architecture of a software

project is stable, with reference to its core components.

The work was devoted to the study of the stability of

the architectural core of a software project. Authors

evaluated the architectural stability of a set of open

source software projects with the aim of understanding

the potential reusability of their software components.

In presenting the results, the various projects were

catalogued in a set of stability trends preliminarily

defined. The obtained results showed that projects of

the internet category were generally more stable than

those ones belonging to the software development

category. It should be stated however that Aversano’s

work is tailored towards Architectural Level

Components and not Application Level Components,

which this study is tailored to. According to [5] and

Figure 1, components at application level have more

reusability than those at the rest levels.

Figure 1: Reusability Hierarchy (Singh et al., 2014)

[12] present techniques for assessing the stability of

components extracted from legacy applications using

software maturity index. The research presents a

technique for assessing the stability of components

extracted from legacy applications using software

maturity index. The research proposes components

reusability assessment technique designed specifically

for components stability assessment and possible

ranking using Software Maturity Index (SMI). The

practical demonstration of the approach was based on

maintenance data generated with RANDBETWEEN

function of spreadsheet package on three legacy

applications used in the demonstration. The study

through a careful analysis of the representative legacy

maintenance data randomly generated with

RANDBETWEEN function from a spreadsheet

package yielded some results that led to components

ranking technique which could be used to assess and

rank legacy components to guide their choice for reuse

in modernization. The ranking scheme comprises of

the following ordered items, highly stable, fairly

stable, stable, unstable, fairly unstable and highly

unstable. However, the author measured stability of

legacy components using maturity index but with no

recourse to the reusability of the component.

III. PROBLEM STATEMENT

The three studies ([9],[10],[11]) established the need

for stability in measuring reusability level of a

software element. However, their areas of application

and context differ from the intended focus of this

study, which is, measuring the level to which stability

affect component reusability and introducing stability

as a factor in the context of volatility.

IV. METHODOLOGY

This study adopts:

i. Component-based development approach. This

methodology helps to build component analysis

tool for accessing common software components;

ii. Metric-based approach. This methodology aids to

measure the degree to which a component is

reusable;

iii. Soft-computing approach. This methodology

predicts the certainty for reusability.

The following procedures are followed in ensuring a

successful implementation of the work:

i. Sixty-nine (69) Commercial Off-The Shelve

Software (COTS) Components were be collected

from third party organization. According to [13],

the key to the success of Component-Based

Software Development (CBSD) is its ability to

use software components that are often developed

by and purchased from third party.

ii. Appropriate stability metrics, in the context of

volatility, was applied.

iii. Adaptive Neuro-Fuzzy Inference System

(ANFIS) was deployed for evaluating the level of

reusability of the selected components based on

their types and level of stability.

V. MATERIALS

With established facts that components could be

purchased and extracted from third party rather than

built ([13]; [14]; [15]; [3]), sixty-nine (69) software

components were gotten from four (4) different third-

party component development organizations

(www.elegantjbeans.com, www.jidesoft.com,

www.math.hws.edu, and www.codeproject.com) .

Table 1 shows the sources, nature and numbers of the

components used while Table 2 shows the features and

data extracted from the components. The extracted

features were used in the computations of the metrics.

Table 1: Components Used
S/N Component Source Nature of

Components

Number of

Components

1. www.elegantjbeans.com Java

Components

48

http://www.elegantjbeans.com/
http://www.jidesoft.com/
http://www.math.hws.edu/
http://www.codeproject.com/
http://www.elegantjbeans.com/

2. www.jidesoft.com Java

Components

4

3. www.math.hws.edu Web

Components

13

4. www.codeproject.com .Net

Components

4

Table 2: Extracted Components’ Features and Data

S/N Component Name No of

methods

No of

property

No of

writable

property

No of

readable

property

1. ftptextdataprovider 23 5 5 5

2. httptextdataprovide

r

35 2 2 2

3. Sqldataprovider 37 27 27 22

4. textdataprovider 19 8 8 5

5. xmldataprovider 4 1 0 0

6. awtdatagrid 34 2 1 1

7. datagrid 31 2 1 1

8. Tablesawtapp 11 7 7 6

9. tablejfcapp 4 1 1 1

10. rowcolumnwiseedit

or

9 44 30 20

11. awtdatatreeviewer 58 11 11 6

12. datatreeviewer 49 10 10 10

13. treeawtapplet 8 20 10 10

14. treesawtapp 7 21 10 10

15. datebox 48 21 21 20

16. datemask 43 30 30 17

17. editmask 90 43 43 43

18. timemask 34 18 18 14

19. masking_demo_ap

plet

8 47 35 30

20. entry_form_app 7 47 32 28

21. ftpclientapp 4 37 37 30

22. httpclientgetapp 4 37 32 31

23. httpclientheadapp 4 12 11 10

24. httpclientpostapp 4 14 13 13

25. pop3clientapp 5 25 24 22

26. smtpclientapp 6 36 34 30

27. datagrampacket 22 10 10 9

28. datagramsocket 40 12 12 9

29. ftpclient 29 11 11 10

… … … … … …

58. GenericGraphAppl

et

270 251 117 134

59. IntegralCurves 12 4 2 2

60. MultiGraph 9 0 0 0

61. Parametric 7 1 1 0

62. Riemannsums 5 1 0 1

63. ScatterPlotApplet 256 211 106 105

64. SecantTangent 4 0 0 0

65. SimpleGraph 3 0 0 0

 66. CurrencyCoverter 14 9 3 6

67. ShapeControl 77 58 18 40

68. TimePicker 35 24 8 16

69. MathEx 24 20 18 6

VI. EXPERIMENTATION AND FINDINGS

One of the characteristics of component is

interdependency. Interdependency is necessary if the

packages of the design are to be collaborated. Thus,

some forms of dependency must be desirable, and

other forms must be undesirable.

Stability is at the heart of all software design. While

designing software, every software practitioners strive

to make the product stable in the presence of change.

A component is difficult to reuse when the desirable

parts of the component are highly dependent upon

other components/details which are not desirable.

Lack of interdependencies can bring about reusability.

One factor that can be used to measure stability is

volatility. According to [16], stability is defined as the

capability of a software system or component to

evolve while preserving its design. He sees stability as

the ability of a software item/component to evolve

without violating the compatibility among versions.

He posits stability as a pointer to the volatility of a

component. A highly volatile component will yield

instability, while a lowly volatile component is stable

and hence, highly reusable.

The concept of interdependency and volatility is

associated with the coupling of a component. To this

end, this study sees stability as a factor of the volatility

of a software component, which is computed as:

Component Stability (COST) = Ce / (Ca + Ce) …(2)

where:

Ca is Afferent Coupling of the component,

which implies the number of classes outside

the component that depend upon classes

within the component.

Ce is Efferent Coupling of the component,

which implies the number of classes inside

the component that depend upon classes

outside the component.

The metric has the range [0,1]. Where COST = 0 (<1),

the component is adjudged to be stable, while it is seen

as unstable if equals 1. A highly stable software

component is highly reusable.

Table 3 shows the values computed for the component

stability (COST).

Table 3: Stability Values
Component

ID

Afferent

Couplings

(Ca)

Efferent

Couplings

(Ce)

Stability =

(Ce / (Ca + Ce)

COST

1. 2 1 0.33 0

http://www.jidesoft.com/
http://www.math.hws.edu/
http://www.codeproject.com/

2. 8 3 0.27 0

3. 5 4 0.44 0

4. 4 3 0.43 0

5. 7 6 0.46 0

6. 5 8 0.62 0

7. 4 2 0.30 0

8. 9 8 0.47 0

9. 7 11 0.61 0

10. 7 11 0.61 0

11. 4 3 0.43 0

12. 9 25 0.74 0

13. 7 7 0.50 0

14. 7 6 0.46 0

15. 5 4 0.44 0

16. 4 3 0.43 0

17. 7 8 0.53 0

18. 9 5 0.36 0

19. 2 4 0.67 0

20. 8 6 0.43 0

21. 8 4 0.33 0

22. 9 2 0.18 0

23. 10 2 0.17 0

24. 15 2 0.12 0

25. 10 3 0.23 0

26. 2 4 0.67 0

27. 6 3 0.33 0

28. 7 5 0.42 0

29. 10 4 0.29 0

30. 8 7 0.47 0

31. 4 6 0.60 0

32. 6 5 0.45 0

33. 3 4 0.57 0

34. 1 2 0.67 0

35. 3 7 0.70 0

36. 4 8 0.67 0

37. 6 5 0.45 0

38. 29 17 0.37 0

39. 2 9 0.82 0

40. 31 17 0.35 0

41. 4 2 0.33 0

42. 5 1 0.17 0

43. 7 8 0.53 0

44. 4 2 0.33 0

45. 3 9 0.75 0

46. 7 8 0.53 0

47. 6 2 0.25 0

48. 7 5 0.42 0

49. 4 3 0.43 0

50. 0 1 1.00 1

51. 0 1 1.00 1

52. 3 7 0.70 0

53. 5 1 0.17 0

54. 3 1 0.25 0

55. 2 3 0.60 0

56. 5 1 0.17 0

57. 1 3 0.75 0

58. 19 6 0.24 0

59. 8 4 0.33 0

60. 9 1 0.10 0

61. 6 1 0.14 0

62. 4 1 0.20 0

63. 4 3 0.43 0

64. 4 1 0.20 0

65. 3 1 0.25 0

66. 2 1 0.33 0

67. 1 1 0.50 0

68. 4 2 0.33 0

69. 3 2 0.40 0

A. Parameter Specifications

The followings are the specifications for the

parameters used, both for the Fuzzy Inference System

(FIS) and the Adaptive Neuro-Fuzzy Inference System

(ANFIS) using MATLAB 2017

Table 4: FIS Structure/Properties

Parameter FIS Name Parameter

Type/Range

Input Parameter COST [0 1]

Input FIS Type: Sugeno

MF Type: Triangular

Output Name: CompoStability

Output Type: Linear

Input Parameters: Low [1 10 100]

Medium [1 1 1]

High [0.1 0.75 0.99]

Very High [0 0 0]

Output Parameters: HighlyStable [0 0]

Stable [0.1 0.99]

Unstable [1 1]

HighlyUnstable [1 100]

Table 5: ANFIS Specifications

S/N Parameters Main

Attribute

Others

1. Testing Data 20 data 29% of the

entire data

used

2. Training

Data

49 data 71% of the

entire data

used

3. No of Epoch 50

4. Error

Tolerance

0

5. Rules

6. Logical

Operator

AND

7. Inputs 1 COST

8. Input MF 3 Low,

Medium and

High

9. Output 1 Reusability

10. Output MF 3 Low,

Medium and

High

11. Optimization

Method

Hybrid

B. Results

Having four (4) input variables (Low, Medium, High

and Very High) and one (1) quality factor (Stability),

41 (4) rules were formed. The rule base was

constructed to control the output variable, using the

simple IF-THEN rule with a condition/antecedence

and a conclusion/consequence. The rules formed are

as presented below and in Figures 2 and 3:

1. (COST==Low)=>(CompoStability=HighlyUnstable)

2. (COST==Medium)=>(CompoStability=Unstable)

3. (COST==High)=>(CompoStability=Stable)

4. (COST=VeryHigh)=>(CompoStability=HighlyStable)

Figure 2: ANFIS Model

Figure 3: Rule Editor

For this study, Sugeno was selected as the Fuzzy

Inference System (FIS) type and Triangular MF

chosen as the Membership Function (MF) Type

(Figure 4).

Figure 4: FIS and MF Editors

29% of the data were used as the testing data, while

71% was for the training data. The system reported an

average training error of 0.47735 and 0.49134 as the

testing error (Figures 5 and 6). This implies a

considerable level of prediction accuracy, as most

components show high stability posture (Figure 7).

Figure 5: Training Error

Figure 6: Testing Error

Figure 7: Stability Output

C. Findings

The result of the study’s evaluation shows most

components highly stable and hence highly reusable.

The result also justifies stability, in the context of

volatility as a factor to be consider while measuring

the reusability of software components.

VII. CONCLUSION AND RESEARCH

DIRECTION

This work has been able to prove that stability is a

necessary factor to be consider in the assessment of

software component’s reusability. The work which

made use of three different component types (Java,

.Net and Web Components), totaling 69 in number,

can be improved upon by increasing the tally to further

validate our result. Also, stability can be viewed and

defined in another context with a view to further

establish its place in software components reusability

assessment.

REFERENCES

[1] Washizaki, H., Yamamoto, H., and Fukazawa, Y.

(2003). A metrics suite for measuring reusability

of software components. Proceedings of the 9th

International Symposium on Software Metrics.

Sept 3-5, Sydney, Australia, pp. 201-211

[2] Fazal-e- Amin, Mahmood, A. K., and Oxley, A.

(2011). A Review of Software Component

Reusability Assessment Approaches. Research

Journal of Information Technology, 3(1):1-11.

[3] Kumar, V., Kumar, R., and Sharma, A. (2013).

Applying Neuro-Fuzzy Approach to build the

Reusability Assessment Framework across

Software Component Releases – An Empirical

Evaluation. International Journal of Computer

Applications. 70(15): 41-47

[4] Thakral, S., Sagar, S., and Vinay (2014).

Reusability in Component Based Software

Development – A Review. World Applied

Sciences Journal. 31(12):2068-2072.

 [5] Singh, A. P. and Tomar, P. (2014). Estimation of

Component Reusability through Reusability

Metrics. International Journal of Computer,

Control, Quantum and Information Engineering.

8(11):1865-1872

 [6] Goel, S., and Sharma, A. (2014). Neuro-Fuzzy

based Approach to Predict Component’s

Reusability. International Journal of Computer

Applications, 106(5)

[7] Kumar, A., Chaudhary, D., and Kumar, A. (2014).

Empirical Evaluation of Software Component

Metrics. International Journal of Scientific and

Engineering Research. 5(5):814-820

[8] Hristov, D., Hummel, O., Huq, M., & Janjic, W.

(2012). Structuring Software Reusability Metrics.

The Seventh International Conference on

Software Engineering Advances (pp. 422-429).

IARIA.

[9] Kamalraj, R., Kannan, A. R., Ranjani, P. (2011).

Stability-Based Component Clustering for

Designing Software Reuse Repository.

International Journal of Computer Applications.

Vol. 27, No. 3, pgs. 33-36

[10] Ravichandran, K., Suresh, P., and Sekr, K. R.

(2012). ANFIS Approach for Optimal Selection

of Reusable Components. Research Journal of

Applied Sciences, Engineering and Technology,

4(24): 5304-5312

 [11]Aversano, L., Molfetta, M., Tortorella, M.

(2013). Evaluating Architecture Stability of

Software Projects. IEEE. Pgs. 417-424

 [12] Ekanem, B.A., and Woherem, E. (2016). Legacy

Components Stability Assessment and Ranking

using Software Maturity Index, International

Journal of Computer Applications (0975 – 8887)

Volume 134 – No.13, January 2016.

 [13]Sharma, A., Kumar R., Grover P. S. (2006).

Investigation of reusability, complexity and

customisability for component-based systems",

ICFAI Journal of IT, 2(1).

[14] Sharma, A., Kumar, R. and Grover, P. S. (2009).

Reusability assessment for software components.

ACM SIGSOFT Software Engineering Notes.

34(2):1-6.

[15] Bhardwaj, V. (2010). Estimating Reusability of

Software Components Using Fuzzy Logic. A

Master of Science in Mathematics and Computing

Thesis, School of Mathematics and Computer

Applications, Thapar University, India.

[16] Grosser, D., Sahraoui, H. and Valtchev, P. (2003):

An analogy-based approach for predicting design

stability of java classes. In Proceedings of the

Ninth International Software Metrics Symposium,

252–262.

