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Abstract
Weapply threemachine learning strategies to optimize the atomic cooling processes utilized in the
production of a Bose–Einstein condensate (BEC). For the first time, we optimize both laser cooling
and evaporative coolingmechanisms simultaneously.We present the results of an evolutionary
optimizationmethod (differential evolution), amethod based on non-parametric inference (Gaussian
process regression) and a gradient-based function approximator (artificial neural network). Online
optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in
creating a BEC from completely randomized initial parameters. Optimizing these cooling processes
results in a factor of four increase in BEC atomnumber compared to ourmanually-optimized
parameters. This automated approach canmaintain close-to-optimal performance in long-term
operation. Furthermore, we show thatmachine learning techniques can be used to identify themain
sources of instability within the apparatus.

1. Introduction

Recent developments in artificial intelligence andmachine learning have provided tools withwhich a computer
can nowoutperform the analytic capability of a human, particularly when data sets are large orwhen a system
relies onmany free parameters [1]. The application ofmachine learningmethods has led to dramatic advances in
many scientific fields and contexts, such as supply chain forecasting and healthcare [2, 3].Machine learning is
alsowell suited to the optimization of a complex experimental apparatus [4–6]. As compared to a human, a
major advantage ofmanymachine learningmethods is that the chosen learner has no preconceptions for how
the parameters should affect the final result, and is therefore objectively guided purely by the actual data. As a
result, amachine learner is able tofind counter-intuitive solutions that a trained experimentalistmay
overlook [5].

In this paper, we apply three differentmachine learning algorithms to optimize an atomic physics
experiment. Our apparatus is designed to produce a Bose–Einstein condensate (BEC), a quantum-mechanical
state ofmatter which occurs when bosonic particles accumulate in their lowest energy (ground) quantum state
[7]. Bose–Einstein condensation in a dilute atomic vaporwasfirst realized in 1995, resulting in the award of the
Nobel Prize in 2001 [8, 9]. Since then, ultracold atomic vapor experiments have been used to investigate awide
range of physical phenomena, including quantummany-body physics [10], quantum-mechanical phase
transitions [11, 12] and superfluid turbulence [13].

To observe the BECphase transition in dilute gas experiments, extremely low temperatures of tens of
nanokelvin are typically required. The techniques used to reach these ultracold temperatures usually include a
combination of optical cooling and forced evaporative cooling [8, 9, 14]. Implementing these cooling processes
requires the precise sequencing of time-varyingmagnetic and opticalfields using a control computer.We
parametrize thesefields by defining their values at specific times, and refer to these definitions as the ‘settings’
that describe a given sequence. The parameter space that describes a typical experimental sequence is large and
locating the optimal experimental settings using exhaustive, brute-force searches is unfeasible.
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Given the large parameter space, analyticmodels are often used to predict the optimal experimental settings.
Well-established theory exists to explain several of the typical stages common to cold-atom apparatuses. For
example, the cooling of atoms by the radiation forces exerted by laser light has been investigated for decades [15]
and forced evaporative cooling in optical ormagnetic traps is routinely used [16]. The theories describing these
stages of cooling contain approximations and, furthermore, the apparatus can suffer fromunknown
imperfections or external perturbations. These limitations are usuallymitigated by employing furthermanual
optimization of the experimental settings after using the theoretical optimumpredictions as a starting point.

Recently,machine learning techniques have been applied in the field of ultracold quantummatter to
optimize individual laser cooling [5, 17] and evaporative cooling [4, 18] stages, achieving significant
improvements in the performance of these apparatuses. The optimizations in each casewere performed on a
subset of the atomic cooling processes [19, 20], and did not consider the changeover between each process,
which increases the likelihood that the entire cooling sequence will become trapped in a local optimum.

In this paper, we present the results of a simultaneous optimization of all atomic cooling stages involved in
our experimental sequence. Additionally, we compare the efficacy and rate of convergence of three common
algorithmswhen applied to our optimization problem. The exact nature of what constitutes an optimized
quantumgas experiment depends on the user’s requirements. For example: quicker experiments with a higher
repetition rate produce a greater amount of data in a given time; lower temperatures of the atomic cloud can
improve the precision of spectroscopicmeasurements [21]; a larger atomnumber or higher peak density can
improve the signal-to-noise ratio when imaging the BEC.Here, our chosenmetric for optimization consists of
maximizing the atomnumber in a BEC, unless stated otherwise.

We define ourmethods of optimization in section 3 and implement these using an open-source software
package (Machine LearningOnlineOptimization Package (M-LOOP)) [22], which has previously been used to
optimize evaporative cooling elsewhere [4]. The improvements in experimental performance that result from
the optimization of several cooling stages, both individually and collectively, are then presented.We utilize one
particular optimizationmethod to identify experimental settings whichmost strongly affect the result [4]; this
also highlights likely sources of instability within the experiment. Finally, wemodify our optimizationmetric to
minimize the sequence time required to produce a BEC,which is desiredwhen performing tasks such as optical
alignment, or to collectmore datawhen atomnumber is not a priority.

2. The experimental apparatus

Wenowdescribe our experimental apparatus and the several stages of trapping and cooling of an atomic vapor
which lead to the production of a BEC [21, 23]. An outline of the apparatus and optimization scheme is
illustrated infigure 1.

2.1. Producing a BEC
First, atoms are laser cooled in amagneto-optical trap (MOT) [25], which collects a fraction of atoms froma
room temperature vapor and cools them to around theDoppler limit ( m146 K for Rb87 ) [26]. After fully loading
theMOT, the trapped atoms are subjected to a sudden compression and further cooling during a ‘compressed’
MOT (cMOT) stage, which acts to further reduce the temperature by roughly an order ofmagnitude [27, 28].
The efficiency of the cooling and compression is dependent onmany factors which include the detuning of the
laser light from the atomic resonance and the strength of the appliedmagnetic field. The cold cloud is loaded
into amagnetic quadrupole trap and transported to an ultra-high vacuum region by physically translating the
field-producing coils. Subsequently, evaporative cooling is performed to further reduce the cloud temperature.

Evaporative cooling can be understood from the following arguments. Atoms in a gas at afinite temperature
occupy a distribution of energies, as described by theMaxwell–Boltzmann distribution [29]. Evaporative cooling
is performed by selectively ejecting the highest-energy atoms, which reduces the average energy of the remaining
atoms. The trapped atoms then rethermalize through collisions, which re-establishes aMaxwell–Boltzmann
distribution characterized by a lower temperature [30]. In our case, evaporation is performed by the application
of aweak radiofrequency (RF)field, colloquially referred to as a ‘knife’3, which removes atomswith energy above
a threshold determined by the frequency of the applied knife.

Evaporation isfirst performed in amagnetic quadrupole trap and later in a time-averaged orbiting potential
(TOP) trap [9, 31]. The quadrupole trap is implemented using a pair of coaxial current-carrying coils to produce
amagnetic quadrupolefield that confines the atoms. After the RF knife is applied to the trapped atoms, the
frequency is slowly reduced; as the evaporation stage progresses, this reduces the threshold energy at which
atoms are removed and thus reduces the cloud temperature.

3
The applied RFfield effectively cuts away the high energy tail of theMaxwell–Boltzmann distribution, hence it is termed a ‘knife’.
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After afirst stage of evaporative cooling, atoms are loaded into the TOP trap. This typically occurs once a
temperature of m1 K is reached. Themagnetic field of the TOP trap combines a static quadrupolefieldwith a
rotating biasfield that lies in the horizontal plane, and is of the form ( ) ˆ ( ) ˆw w= +B B t B te ecos sinx x y y, where
w p= ´2 7 kHz is thefield rotation frequency, êx y, are theCartesian axes in the horizontal plane andBx andBy
are the amplitudes of the quadratures of the field.Bx andBy can be individually controlled to produce an
elliptically polarized field, with the ellipticity expressed by = - B B 1y x . Further evaporative cooling proceeds
in the TOP trap using the RF knife as before. Overall, the evaporative cooling processes in both traps are
described by a number of settings which vary in time and include: the quadrupole coil current IQ, the RF knife
frequency and, in the case of the TOP trap, the amplitude and ellipticity of the TOPfield.

The experimental settings are processed by the control computer in order to direct the apparatus during the
sequence. By adjusting these settings between successive sequences, we are able to optimize the production of
a BEC.

2.2.Observing a BEC
After all stages of cooling have been completed, the atomic cloud is released from the trap. The cloud undergoes
a period of free fall, duringwhich it expands ballistically, before an image is taken [24]. This ‘time-of-flight’
(TOF) expansion allows us to observe themomentumdistribution of the cloud. The expansion dynamics of a
gas in the quantum regime are distinct from those of a thermal gas [30]. This difference produces a bimodal
spatial distribution of atoms after TOF: the BEC component is responsible for a dense ‘core’ of atomswhich lies
within a broader ‘pedestal’ of thermal atoms. This bimodal distribution is evidence that a BEChas been
produced. The absorption image is analyzed to determine properties of the cloud, such as the atomnumber,
which are used in the calculation of the cost.

Figure 1.The experimental apparatus and the optimization loop. The atomic gas is initially trapped and laser cooled by a combination
of laser light andmagnetic fields. The trapped cloud is then transported to an ultra-high vacuum regionwhere evaporative cooling is
performed. An image of the resulting cloud is taken using absorption imaging [24] and is analyzed to evaluate the cost, which is
calculated from the atomnumber in the cloud. The cost is passed to the chosen optimization algorithmwhich produces a new set of
experimental settings. These settings are processed by a control computer into a new set of instructions and used in the next sequence.
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2.3.Machine learningmethods
The goal of optimization is to identify the global optimumwithin a parameter space. In our experiment, the
parameter space is that spanned byM experimental settings (currents, voltages, timings etc). A point in this
parameter space is given by a vector of experimental settings Î X M4. Each point in space has an associated
cost ( )= Î Y f X , generated by a cost function f (X) [32]. The cost function quantifies the desirability of a
measured outcome, and is used to steer the optimization.

There are a number of candidate cost functions that could be used for a cold atom experiment. Figure 2
illustrates an example absorption image, fromwhich awealth of datamay be obtained. The bimodal density
distribution after TOF expansion clearly indicates the presence of a BEC, as explained in section 2.2.
Consequently, we define our cost function to be proportional to ( ˜ )- Nlog , where Ñ is the number of atoms
within a small region of interest which is chosen to be comparable to the approximate extent of a typical BEC
after TOF expansion [30]. Atoms above a thresholdmomentum are not containedwithin this region after TOF
expansion, and therefore do not contribute to Ñ . Further detail justifying our choice of cost function is
presented in the appendix.We choose the cost function to be the logarithmof Ñ , as the value of Ñ can span
several orders ofmagnitude during the optimization; bad settingsmay result in no atoms detected above the
noisefloor, whereas BECs typically contain approximately 105 atoms.

Although analytic functions exist which describe the bimodal distribution, they containmany free
parameters. This canmakefitting unreliable, especially for the low atomnumbers present in the early stages of
optimization, and parameters extracted from such fits can throw the learner off course. Our simple cost function
is robust against these issues. Physically, our cost function can be interpreted asmeasuring the population of
atomswithmomentum close to zero, which increases as the optimization progresses towards producing a BEC.
Previouswork employed a cost function derived from the fittedwidth of the cloud, with two repeats of the
experiment per experimental settings generation [4].

The optimization feedback loop, outlined infigure 1, can be summarized as follows: themachine learner is
configuredwith an initialM-dimensional vector X0 of experimental settings.We also configure the allowed
ranges that each setting can take, to ensure that generated sequences will not damage the apparatus. X0 is read by
an experimental control computer, which defines relevant analog and digital outputs at time steps accordingly.
The sequence is run and the resulting image is analyzed to produce a costY0. This pair of settings and cost is then
used by the chosen optimization algorithm to determine the next settings X* to be tested. Each new settings/
cost pair updates the learner’s knowledge of how the cost depends on each setting [33]. Our problemdescribes a
settings/cost landscape with no initial data and is an example of online optimization.We terminate the
optimization after afixed number of sequences orwhen no further improvement to the cost has been achieved
after 35 sequences.

Figure 2. Illustration of the results of the optimization viamachine learning versusmanual optimization.We compare the absorption
images, showing the atomic density integrated along the imaging direction êy , of amanually-optimized BEC (a) and aBECwhere the
evaporative cooling stages of both the quadrupole andTOP traps have been optimized using theGPmethod (b). Both inset images
show the region (black line) inwhich the counted atomnumber contributes to the cost. The total atomnumbers and temperatures of
the clouds are shown below the images. The plot shows a direct comparison of the images integrated along the direction of gravity, êz .
The horizontal extent of the region of interest, withinwhich atoms are counted in the cost function, is indicated by the dashed lines.

4
Although the settings are continuously varying (up to floating-point precision), bounds on each setting are imposed, owing to physical

limitations or for safety reasons, hence the set is not strictly M .
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To implement the optimization routines, we utilize an open-sourcemachine learning toolkit:M-LOOP,
which is based on the Python scikit-learn library [4, 22]. This toolkit contains several optimization routines
which are described in section 3.

3.Optimizationmethods

Wecompare the efficacy of three algorithms to optimize our experiment: an evolutionary optimizationmethod
(differential evolution (DE)) [34], a regressionmethod based on non-parametric inference (Gaussian process
(GP) regression) [35] and a gradient-based (parametric) function approximator (artificial neural network
(ANN)) [1].

The optimizationmethods are tested in the context of non-convex optimization: the cost function described
earlier is in general non-convex and thus it is possible that anymethodmay not converge to the global optimum.
The likelihood offinding the global optimumcan be increased by performingmany optimization procedures
with varying initial conditions.

We note that the optimizationmethods are robust to random variations in cost for a given setting. This is
appropriate for an experimental apparatus inwhich randomfluctuations are present, either due to variation in
the performance of laboratory equipment or because the results depend intrinsically on randomprocesses (e.g.
shot noisefluctuations in the atomnumber). This does not fundamentally prevent the algorithms fromfinding a
good solution, but uncertainty in the cost increases the number of experimental sequences required for the
solution to converge.

3.1.Differential evolution
Evolutionary algorithms involve several key stages, which are inspired by biological evolution [36]. First, an
initial population is generated randomly. New individuals are then produced bymixing features of pre-existing
individuals (crossover) and by adding randomvariation (mutation). Finally, selection is performed by assessing
thefitness of new individuals and by replacing the populationwith the lowest fitness.

In the present work, we use theDE algorithm. In this context, the individuals are settings vectors X i and the
fitness is the associated costYi of each vector. The initial population is a randomly generated set of n vectors
{ }¼X X, , n1 and their experimentallymeasured costs {Y1,K,Yn}.Mutation produces a new vector

( )= + -V X X Xk i j , where X i, X j and Xk are randomly selected vectors [34]. Crossover is achieved by
selecting elements randomly from either X i orV to create a new candidate vector X*. A sequence is then
performed using vector X* and the value of the cost functionY* ismeasured, producing an additional settings/
cost pair { }YX ,* * . Selection is performed by determiningwhether <Y Y ;i* if so, X* replaces X i and the process
repeats.

TheDEmethod has low computational complexity and requires a small number of vectors fromwhich to
begin.However, the simplicity of themethod results in slow convergence towards a solution. Nevertheless, we
utilize thismethod to build a set of settings/cost pairs which serves as a starting point to initially train the other
optimizationmethods.

3.2. GP regression
Bayesian inference provides uswith tools to update a prior hypothesis of a probability distribution based on new
data, namely Bayes’ rule [35]. In general, a GP is a probability distribution of functionswhich describe a given
dataset. GP regression utilizes Bayes’ rule to update this probability distribution given newdata [37]. Prior
knowledge about a point in parameter space can be invoked in terms of a kernel function; a kernel is ameasure of
similarity between two inputs separated by a distance in parameter space. A popular choice is the squared-
exponential, or Gaussian, distribution kernel ( )K X X,i j :

⎧⎨⎩
⎫⎬⎭( ) ( [ ] [ ]) ( )åh= - -

=

K k kX X X X, exp
1

2
, 1i j

k

M

k i j
1

2

where [ ]kX i represents the (dimensionless) kth element in the vector X i, the dimensionless parameters 1/ηk are
the characteristic length-scales for each parameter and the summation runs over all settings k. The ηk are
generatedwhen performingGP regression, and provide ameasure of how strongly the kernel depends on
changes to each of the parameters.

In our context, the function that wefit usingGP regression is themapping between the experimental settings
and the experimentallymeasured cost. Given an existing set of settings/cost pairs { }YX ,i i , we can estimate the
cost (and uncertainty) of any settings X* according to theGPfit.We can therefore search for new experimental
settingswith the lowest predicted cost and iterate within our optimization loop. To facilitate a comparison of ηk
across all settings, we normalize each [ ]kX with respect to theminimumandmaximumallowed values for the
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kth setting. Before applying theGPmethod, a training set of 2M settings/cost pairs is constructed using theDE
method.

3.3. Artificial neural network
ANNs are an example of a function approximator and take the formof an interconnected network of nodes
[1, 38]. AnANNproduces a ‘black-box’mapping between an input and an output. In our context, the inputs are
settings vectors X and the outputs are the associated costsY. Themapping is determined by the structure and
weights of connections in the network, with a connection structure which is intrinsically linear. To incorporate
the non-linearity of the cost function, we include theGaussian error linear unit (GELU) activation function for
each node [39]. This continuous function is a popular choice for data which is subject to normally-distributed
stochastic variation, which suits our experimental context [40]. In addition, the structure and scale of theANN
must be appropriate for the complexity and size of the vector inputs.We choose a network comprised of 3
hidden layers of 8 fully-connected neurons, inspired by [41], which is sufficient for the number of settings that
we optimize in this context (amaximumof 35). An initial training set of 2M settings/cost pairs is produced using
theDEmethod.

We utilize the Adamoptimizationmethod [42] to update the ANNgiven new training data. Thismethod is
widely used for gradient-based optimization of cost functions with stochastic noise. Themethod is
straightforward to implement and is computationally efficient; themethod is also appropriate for problemswith
very noisy or sparse gradients. In comparison to other classical gradient descentmethods, the Adammethod
utilizes higher-ordermoments of the gradients of each parameter [43], which often leads to a comparatively
faster rate of learning. [42].We use the trainedANN to search for optimal predicted settings X*. A sequence is

then run using X* and the costY* ismeasured. This settings/cost pair is then used to refine theANN for future
sequences.

4. Results

Weapplied the algorithms presented above to optimize the atomic cooling processes utilized in the production
of BECs.We begin by presenting the optimization of evaporative cooling in the quadrupole andTOP traps. This
optimization also identified the settings thatmost strongly affected the cost function. Similarly, we optimized
the cMOT laser cooling stage.We combined the sensitive settings in both the laser cooling and evaporative
cooling stages to perform a full optimization of all cooling processes involved in the production of a BEC.
Finally, we altered the cost function to favor faster sequences, finding settings which produced a BECof a
threshold atomnumberwithin the shortest sequence duration.

4.1.Optimizing evaporative cooling
Prior tomachine learning optimization, ourmanually-optimized settings produce a BECof 1.1×105 atoms.
This produces a cost of 8.9 when using a circular region of interest of radius 50 μmlocated about the cloud
center after 23 ms of free fall. These settings can be used as a starting point formachine learning optimization,
leading to rapid convergence towards the optimum settings and providing a useful way to quickly retune the
experiment.

In order to properly compare the different learners, we instead begin each optimization using completely
randomized settings. These initial settings produce no visible atom cloud. Figure 3 shows the cost as a function
of experimental run number. The optimization is continued until no further improvement is foundwithin 35
cycles or until amaximumof 180 sequences, which limits the optimization process to amaximumduration of
approximately 3 h.We performone optimization routine for eachmethod.

TheGPmethod converged to a BECof 3.8×105 atoms after 47 sequences, whereas DEdid not converge
within the time limit. TheANNmethod produced a BECof 3.2×105 atoms after 117 sequences with a rate of
convergence which is between those of theGP andDEmethods5. For both theGP andANNmethods, the
optimization procedure resulted in a factor of 3 increase in BEC atomnumber as compared to themanually-
optimized settings. The settings that produced the best cost are shown in table 1with the original settings used
prior to optimization shown in parentheses. Figures 4(a) and (b) illustrate the progression of the experimental
settings during the optimization, namely the quadrupole current IQ andRF knife frequency, respectively. The
settings are plotted against the duration of each substage.

The cloud density profile after TOF expansion becomes bimodal as the cost drops below approximately 9.2,
indicating the presence of a BEC component. This threshold is achieved after 156 sequences (DE), 14 sequences

5
For both theGP andANNmethods, the quoted number of sequences does not include the training set of 2M=70 sequences whichwas

produced usingDE.
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(GP) and 75 sequences (ANN). Overall, the relative convergence rates of themethods differ significantly, as
expected; the slower convergence of the ANN, as compared toGP, is representative of the large amount of data
required to train a fully-connected network. DEproceeds the slowest of the three, which is expected given its
simplistic approach to generating subsequent settings. As there is an element of randomness as to how theDE
method chooses points to evaluate, it is possible that onemodelmay have chanced upon good settings early in
the optimization procedure which then strongly guided its subsequent choices. However, the data sets used to
train theGP andANNmethodswere comparable and contained settingswithminimumcosts of 9.4 and 9.6,
respectively, giving a fair comparison between the learners.

Figure 3.Optimizing the quadrupole andTOP evaporative cooling stages, beginning from random initial settings. Data points for the
measured cost are illustrated as (DE), (GP) and (ANN). In addition, themovingminimum for each of the threemethods is indicated
by the solid lines. Inset (a), (b), (c): absorption images of BECs produced using the best settings found forDE,GP andANN-based
optimization, respectively, including the atomnumber and temperature for each cloud. Sequences used in building the training set
using theDEmethod are labeledwith negative numbers. Absorption images below correspond to points labeled (d)–(h). These images
illustrate the progression of the optimization from initial settings, forwhich no trapped atomswere detected, towards finding settings
which produce a BEC. The images use the same color scheme as used infigure 2.

Table 1.The best settings found for evaporative cooling stages in themagnetic quadrupole (Quad) andTOP traps; these were
found using theGPmethod but are very similar to those found using the ANNmethod. The values showndefine points which are
linearly interpolated to produce the evaporation instructions. Numbers in parentheses represent themanually-optimized settings
used prior to the optimization. Values shownwithout brackets were not included in the optimization.

Substage
Duration (s) IQ (A) RF knife (MHz) Bx (G) Ellipticity, ò

Quad 0 0 323 (315) 120

1 18 323 (315) 15 (18)

TOP 2 0 83 (60) 26 (32) 2.6 (3.6) 0 (0)
3 0.08 (0.08) 142 (131) 29 (26) 19 (18) 0 (0)
4 8.1 (7.0) 237 (226) 9.1 (9) 6.6 (7.8) 0.06 (0)
5 1.1 (0.8) 213 (226) 10 (8.5) 6.3 (7.8) −0.15 (0)
6 1.8 (1.8) 249 (226) 14 (7.8) 9.9 (7.8) 0.04 (0)
7 6.3 (3.3) 222 (226) 9.5 (6.7) 9.0 (7.8) 0.09 (0)
8 5.5 (1.5) 200 (226) 6.9 (6.5) 7.8 (7.8) 0.11 (0)
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After only a fewhours, the result of the optimization procedure is a greater than threefold improvement in
the BEC atomnumber, as compared to a BECproducedwith settings which have beenmanually optimized over
many years. This improvement is illustrated infigures 2(a) and (b), which showBECs produced using the
evaporation settings before and after optimization, respectively. Figure 2 also demonstrates themerit of defining
a small region of interest, which discounts atoms from the broader, thermal fraction of the atomic distribution.

4.2. Sensitivities
Weutilize the cost landscape fitted by theGP learner to determine the sensitivity of the different settings. As
detailed in section 3.2, the variables ηk provide ameasure of how steeply the cost function varies about the
predictedminimumwith respect to each setting. As a heuristic indicator of sensitivity, we define a setting to be
sensitive if the associated ηk is greater than exp(−2). Figure 4 illustrates the convergence of ηk asmore data is
added during the evaporative cooling optimization. For clarity, only the fivemost sensitive settings are shown.

Wefind that the cost is highly sensitive to the final amplitude of themagnetic field in the TOP trap (Bx[7]), as
well as the initial (RF[1]) andfinal (RF[7]) radiofrequencies of the knife. This can be understood as follows: the
initial frequency determines the threshold energy abovewhich atoms are ejected from the trap; this frequency
must be sufficiently high so as not to immediately cut away a large number of atomswhen the RF knife isfirst
turned onwhen evaporation begins. A combination offinal knife frequency andTOP amplitude determines the
final, lowest energy cut in the evaporation ramp. If this is too high, the cloud is hotter and fewer atoms
accumulate within the region-of-interest after TOF. If this is too low, the evaporation sequence unneccesarily
ejects atomswhichwould otherwise have contributed to the BEC component. The cost is also sensitive to the
final RF knife cut in the quadrupole trap, as this determines the temperature of the atomic cloudwhen it is
loaded into the TOP trap.

Surprisingly, we find the cost is highly sensitive to the TOP field ellipticity during certain substages. This
settingwas fixed to 0 during previousmanual optimization, as this was expected to yield the best results. From
observations of cloud positions when trapped in the quadrupole or TOP trap, we have determined that the
rotation axis of the TOPfield is not perfectly alignedwith the symmetry axis of the quadrupolefield, which
increases the displacement between the energyminima of an atom in these two traps. In addition to any center-
of-massmotion of the cloud, whichmay be induced as the cloud is transferred from the quadrupole to the TOP
trap, othermultipole oscillations in the cloudmay be excited.We postulate that a non-zero ellipticity in the TOP
field provides an asymmetric confinement force, whichmay help to eradicate or damp excitations in the cloud

Figure 4. (a) and (b) illustrate the progression of the quadrupole current IQ andRF knife frequency settings during the TOP substages,
respectively, as produced during the optimization. The settings are plotted against the duration of the evaporative cooling stage.
Darker colors indicate settings produced later into the optimization procedure. Theminimum cost is achievedwith the settings shown
in black. (c) Shows the evolution of thefivemost sensitive ηk asmore data is added during the optimization routine. The settings
shown are indexed by a numberwhich indicates the substage of the evaporative cooling stage, as given in table 1. The shaded area
indicates the region of ( )h- <Log 2k withinwhich a setting is deemed sensitive.
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that would otherwise affect the efficiency of subsequent evaporative cooling. The ellipticity of the TOPfield can
also help to counter-balance any asymmetry in the quadrupole field. These unexpected results produced by the
optimization procedure, which at first seem counterintuitive, can provide hints to the experimentalist as to
where imperfectionsmight exist in the apparatus.

4.3.Multiple stage optimization of laser cooling and evaporative cooling
Theprevious section shows thatGP regression is themost rapidly convergingof themethods tested inour
experimental context. For the remainder of this paper,we therefore focus on thismethod.Weuse theGPmethod to
optimize the cMOTstage, approximately doubling thenumber of laser cooled atomsproduced. Infigure 5, the Laser
coolingpanel illustrates the convergence of the fourmost sensitiveηkof this stage as theoptimizationprogresses.

The number of sequences required for theGPmethod to converge increases with the number of settings. In
addition, the computation time scales as the cube of the number of costs over which theGP fits. Given this, it is
advantageous to reduce the number of settings as far as is reasonable without compromising the outcome of the
optimization. Determining themost sensitive settings allows simultaneous optimization of all cooling stages
(laser cooling in the cMOT, evaporative cooling in the quadrupole trap andTOP traps) in a reasonable time.We
again utilize theDEmethod to produce a training set of 2M=36 settings/cost pairs. The values of insensitive
settings in the laser cooling and evaporative cooling stageswere fixed to the best values found during the separate
optimization of each stage.

Using theGP learner and by optimizing only the sensitive settings, we are able to produce a BEC from
random initial settings after only 12 experimental sequences (following the 36 runs used to build the training
set). The optimization produces a BECwith an atomnumber of 4.5×105, which is greater than atomnumbers
produced in the optimization of the cooling stages separately. Figures 5(a)–(d), illustrates the improvements in
BEC atomnumber after we have optimized the stages individually and collectively. This faster optimization
routine, using only the sensitive settings, can be used to performquick and regular re-optimization to keep an
experimental apparatus tuned up to the best of its capability.

4.4. Tailoring the cost function
Amaximized atomnumber in the BEC is often desirable and thismotivated our earlier choice of cost function.
However, depending on the scenario, other quantitiesmay be of greater importance. For example, when
performing alignment of optical elements, it ismore useful tomaximize the repetition rate of the experiment.

Figure 5.Cost versus run number for optimization of all cooling processes, using theGPmethod. Laser cooling panel: evolution of the
4most sensitive ηk during optimization of laser cooling (cMOT). Evaporative cooling panel: evolution of the 4most sensitive ηk during
optimization of evaporative cooling. Right: cost versus run number for the overall cooling optimization, using the 18most sensitive
settings, for the initial DEmethod ( ) and the subsequent GPmethod ( ). Themovingminimumcost is illustrated by the solid line.
Sequences used in building the training set using theDEmethod are again labeledwith negative numbers. Insets: (a)—manually-
optimized BEC, (b)—BEC following evaporative cooling optimization, (c)—BEC following laser cooling optimization and (d)—BEC
following the full cooling optimization. The temperature, as extracted from a fitting procedure, of (d) is 69(6)nK. Images use the same
color scheme as that used infigure 2 and values within the insets correspond to the total atomnumbers.
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4.4.1.Minimizing sequence duration
Weuse our optimization routine tofind settings which produce a BECof a threshold atomnumber in the
shortest possible time. In general, BEC experiments have sequence durations ranging from a few seconds to
minutes, depending on the implementation details of each apparatus.We use the cost function

( ˜ ) ( ( ˜ ˜ ) ( ˜ ) ( )= - + - +f N N N t1 arctan 1 , 20

where Ñ0 is a threshold number of atomswithin our region-of-interest, whichwe choose to correspond to an
overall BEC size of 1×105 atoms, and t̃ is the sequence duration. This cost function rewards a short sequence
time and penalizes settings which do not produce a BECof a threshold atomnumber; there is also little reward
for producing a BECwith an excess of atoms.With no other changes to the optimization routine, the optimized
settings produce a BECof 9.6×104 atoms and reduce our overall sequence time from 58 s to 46 s, a time saving
of over 20%. This demonstrates the power of online optimization to reconfigure an apparatus to achieve the
aims of the user.

4.4.2.Minimizing temperature
Weuse ourmachine learner tofind settings whichminimize the temperature of the ultracold gas. Temperature
cannot bemade arbitrarily low, asN→ 0 forT→ 0 for an evaporative cooling process, sowe incorporate a
threshold numberN0 into the cost function.We define the cost function f (N,T) to be

( ) ( )

( ) ( ) ( )

>
=

= -

N N
f N T T

f N T N

if
, log

else
, 0.2 log , 3

0

whereT is the cloud temperature andN is the total atomnumber in the atomic cloud. Figure 6(a) illustrates this
cost as a function of atomnumber and temperature. For sufficient atomnumbers, the cost depends only on
temperature and encourages the learner to reduceT. For smaller atomnumbers, the fits fromwhich temperature
is inferred can fail, and so only the atomnumber itself is used to determine the cost.We takeN0=5×103 as a
lower bound for the number of atoms in the BEC. The prefactor of 0.2minimizes the discontinuity in the cost
either side of the threshold atomnumber, which assists our gradient-basedmethod infinding the optimal
parameter set.

As shown infigure 6(d), optimizing for temperature produces a ( )37 12 nK cloud of around ´6.5 103

atoms. The resulting cloud is significantly colder than that produced using the optimization detailed in
section 2.3 (figure 6(c)).

Figure 6.Results of optimizations detailed in sections 4.4.2 and 4.4.3. (a), (b)Cost versus atomnumber and temperature for the cost
functions presented in sections 4.4.2 and 4.4.3, respectively. Values in the legend of each plot indicate the total atomnumber of the
cloud. ((c), (d), upper)Absorption images of BECs produced using the optimization routines presented in sections 4.1 and 4.4.2,
respectively. ((c), (d), lower)Bimodal fits (purple) to the atomic density profiles (black) extracted from the absorption images above.
(e), (f) m1 K clouds produced using a truncated version of the evaporative cooling routine presented in section 4.1 and by the
optimization presented in 4.4.2, respectively.
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4.4.3.Maximizing atomnumber at a specific temperature
Other optimizations could also be conceived, such asmaximizing the atomnumber of a thermal cloud at a
specified temperature.We use the cost function

( ) ( ( ) ) ( ) ( )= - - - -f N T T T N, exp 1 log , 40
2

whereT is the temperature, m=T 1 K0 is the target temperature andN is the total atomnumber. This cost
function favors the production of a m1 K cloudwith the greatest atomnumber, and is illustrated infigure 6(b) as
a function of temperature for different atomnumbers.

Figure 6(f) shows an image of a thermal cloud produced by settings optimized in this way and, for
comparison, figure 6(e) shows a m1 K cloud produced by truncating the evaporative cooling ramp from table 1.
The m1 K cloud produced through this new optimization has an atomnumber that is 38% larger. Another
variant of this scheme could be tominimizeT for a thermal gas with a specified atomnumber, whichwould be
possible with only aminor adjustment to the cost function described above.

5. Conclusion

The value ofmachine learning infinding patterns and optima in datawhich depends onmany parameters is
apparent acrossmultiple fields of research [40]. In our specific case,machine learning has provided ameans for
autonomous experimental optimization.We have compared the convergence rate of three optimization
methods.Most notably, for the first time, we have optimized all cooling stages involved in a quantum gas
experiment simultaneously. The optimization is quick and achieves our aimof increasing the atomnumber in a
BEC,which is beneficial for improved signal-to-noise ratios whenmeasuring atomnumbers in future
experiments.

We have used theGPmethod to identify the sensitive settings within each cooling stage. By restricting the
attention of the learner to only consider these sensitive settings, it becomes possible to optimize the experiment
as awhole with only a small number of sequences. Optimization can be performedwithin an hour, allowing
daily optimization if necessary tomaintain peak performance for producing consistent, high-quality data. Long-
termdrifts whichwould otherwise degrade the apparatus’ performance can thus be easilymitigated, by
scheduling regular optimization routines, e.g. once aweek.

Certain features of our optimal solutions are counterintuitive: improvements arising froman elliptical TOP
field during the evaporative cooling stagewere not expected andwould not generally be explored by a researcher.
These featuresmay indicate underlying physics, ormay allude to the presence of imperfections in the
experimental apparatus.

One caveat is that the point of convergence, or optimum,may be one forwhich the length scale of any
parameter is extremely short.While we hope tofind the globalminimumof the cost function, it is of little
experimental value if a perturbation from the prescribed experimental settings leads to a sharp response in the
cost. The stability of the solution can be evaluated by assessing the average cost overmultiple runs for each input
and building separatemodels for both [ ]E Y and [ ]YVar . These can be jointly optimized to produce a solution
which not onlyworks to achieve the user’s optimization aimbut also reduces shot-to-shot fluctuationswhich
limit the resolution of an experiment. In the interest of short optimization routines, we have decided against this
approach.We have observed that the optima found are no less stable than the previous,manually optimized
values. Even so, shorter optimization routines can be performedmore frequently to counter long-termdrifts.

Given the desirability of short optimization routines, and as illustrated by the relative rates of convergence
between themethods, we conclude that theGP regressionmethod is of greatest utility in our experimental
context. Our optimization routine produces a relatively small amount of training datawhich, consequently,may
reduce the suitability of anANN-basedmethod, as these typically requiremany thousands of data points to
accurately train the networkweights.
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Appendix. Further detail on the optimization cost function

In our context, the intention of the evaporative cooling stage is to increase the phase-space density (PSD) [30]
of an atomic cloud to the critical value required for Bose–Einstein condensation. As detailed in section 2.1,
evaporative cooling is performed by ejecting atoms of higher-than-average energy. The remaining atoms
rethermalize to form a colder atomic cloudwith amomentumdistribution that ismore strongly peaked around
k=0, where k is atomicmomentum,with the onset of amacroscopic occupation of k≈0 at the critical point
for Bose–Einstein condensation. Although the temperature of the atomic cloud is favorably reduced, the
mechanismof evaporative cooling reduces the total number of atoms as the stage progresses.

Our optimization objective, as described in section 2.3, is tomaximize the number of atomswithin a small
circular region centered on the atomic cloud after TOF expansion. TOF expansion is a popularmethod of
extracting themomentumdistribution of an atomic cloud [30]. The bimodal density distribution for a BEC after
TOF expansion is well known [8]: the thermal cloud expands to form a broadGaussian pedestal, while the BEC
forms a parabolic profile in the center. This is illustrated infigure 2.Our counting region captures the number of
atomswithmomentum k less than a threshold kc, where kc is set by the radius of the region. To ensure our region
includesmostly the BEC component, the radius of the counting region is chosen to be comparable to the
Thomas–Fermi radius of a BECof 105 atoms in a trapwith similar parameters to ourmanual-optimized BEC
sequence. Figure 2 illustrates that this region predominantly includes the BEC component of the cloud for both
themanually-optimized andmachine learning-optimized BECs.

We vary the completion percentage of the evaporative cooling stage and extract the PSD from a bimodalfit.
As shown infigure A1, the fitted PSD (purple) rises to and above the critical value for Bose–Einstein
condensation.We also show the number of atoms containedwithin a regionmuch larger than the extent of the
BEC ( m180 m radius, blue) and a region of comparable size to the BEC ( m50 m radius, black).We divide the
number of atoms containedwithin the larger region by 8 for easier comparisonwith the smaller region on the
same axis.

The number of atoms containedwithin the smaller region increases with PSD, as the atomic ensemble re-
establishes amomentumdistributionmore strongly peaked around k=0. Additionally, and as expected, the
number of atoms containedwithin the larger region decreases as the stage progresses and as the total atom

Figure A1. Fitted PSD (purple) as a function of evaporative cooling stage progression. Similarly, the number of atoms contained
within regions of size m180 m (blue) and m50 m (black) as a function of evaporative cooling stage progression for the same data.
Images ((a)–(d), upper) show atomic density distributions after TOF for 82%, 89%, 95%and 99% stage completion, respectively.
The counting regions of radius m180 m (blue) and m50 m (black) are also illustrated. ((a)–(d), lower) Show the density distribution
integrated in the vertical axis plotted against horizontal position. The horizontal extent of the m180 m (blue) and m50 m counting
regions are illustrated by blue and black lines, respectively.
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number is reduced. As shown for this data set, extracting PSD from afitting procedure would provide the
equivalent information to a learner as our atom countingmethod.Nevertheless, when the atomic cloud is faint
or not visible, as is the case for earlier stages of the evaporative cooling stage, thefit fails. In contrast, the counting
regionmethod relies on fewer parameters and is significantlymore robust to small or faint clouds, which are
encountered regularly during an optimization routine.
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