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Abstract

In this study, an epidemic disease fractional-order mathematical model for Omicron, denoted as B.1.1.529
SARS-Cov-2 Variant, is constructed. Covid-19 vaccines and quarantine are considered here to ensure the host
population’s safety across the model. The fundamentals of positivity and boundedness in this model have
been investigated and validated. The reproduction number was calculated to determine whether or not the
disease would spread further in Tamilnadu. Infection-free steady-state solutions that exist are asymptotically
stable locally and globally when R0 < 1. Infection-present steady-state solutions also that are locally stable
are discovered when R0 < 1. Finally, the current Omicron variant pandemic data from Tamilnadu, India, is
validated.

Keywords: Omicron; quarantine; vaccination; reproduction number; steady states; fractional derivative.

2020 Mathematics Subject Classification: 26A33, 34D20, 37N25.

1 Introduction

Omicron has been found in several nations as of November 24, 2021, and was still the dominant variety
everywhere. Omicron may cause a milder form of disease, according to preliminary research, but some people
who acquire this variant’s infection still run the risk of developing serious illness, needing hospitalisation, and
even passing away. You should take precautions even if only a tiny portion of those with Omicron infection
require hospitalisation because the high incidence of cases could collapse the healthcare system. The Omicron
variation, also known as B.1.1.5 29 SARS-Cov-2 Variant, was less contagious than the original COVID-19 virus
and the Delta variant. People who have the Omicron variant infected may exhibit symptoms that are similar
to those of earlier forms. At the most effective public health measure for preventing COVID-19 and reducing
the possibility of new variations arising is still COVID-19 vaccination. This covers the initial course, booster
shots, and any necessary subsequent doses. It is anticipated that the current vaccines will guard against the
serious sickness, hospital stays, and fatalities brought on by Omicron variant infection. Breakthrough infections
in vaccinated people, on the other hand, are likely.

Mathematical models have been developed in a wide range of ways to describe how diseases spread in
subpopulations compartments. The highly infectious Omicron variant is challenging mathematicians to rethink
models that have aided India’s comprehension of COVID-19 and response to the outbreak. With the next wave
of the pandemic, everyone from those who get tested to whome most likely to get the virus has altered, providing
new hurdles for those who model its impact. The vaccine class is remembered for the model definition of an
exemplary model, which allows appropriate antibodies to be supplied to the recovered and powerless persons
in the host population when a wiped out individual recovers from an illness ([1], [2], [3]). Asymptotic strong
characteristics move from the infection absent consistent state to the disease present consistent state. Because
there are no known numerical approaches for developing Lyapunov capabilities for epidemic models, investigating
the global aspects of a pestilence model framework is difficult ([4], [5]). Many mathematical models have been
constructed for COVID-19 without the vaccination and Quarantine compartment ([6],[7],[8],[9]). In this study,
we combined the results of papers ([10],[11],[12],[13], [14], [15],[16],[17],[18],[19],[20],[21]) to create an COVID-19
model with a variable population size.

The fractional differential has been utilised in the mathematical modelling of biological phenomena throughout
the last few decades. This is due to the fact that fractional calculus can more precisely explain and process the
retention and heritage characteristics of different materials than integer order models [22, 23, 24, 25, 26, 27]. As
a result, many approaches have been used to examine the aforementioned field, including qualitative theory and
numerical analysis. Fractional Mathematical models are effective instruments for researching infectious diseases.
Recently, some authors looked at COVID-19 mathematical models using fractional order derivatives, and the
findings were excellent. By reffering ([28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38]), fractional Omicron
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mathematical model has been constructed and the existence, uniqueness, and positivity of the solution are also
deduced. In this model the rate at which a given percentage of susceptible people is quarantined, is included
here. There is also a compartment for vaccinations. Computational simulations were done at the end of the
study to validate and reinforce our theoretical findings for Omicron B.1.1.529 SARS-Cov-2.

2 Model Formulation

In this section some important definitions and lemma has been given. The formulation of the model is discussed.

Definition 1. Caputo fractional derivative [39]

Let Ψ be a continuous function on [0, T]. The Caputo fractional derivative of order δ is given by

CDδΨ(t) =
1

Γ(n− δ)

∫ t

0

(t− α)n−δ−1 dn

dαn
Ψ(t)(α)dα, (2.1)

where n = [δ] + 1 and [δ] represents the integer part function and 0 < δ ≤ 1.

Definition 2. Riemann-Liouville fractional integral [39]

The Riemann-Liouville fractional integral of order δ is given by

IδΨ(t) =
1

Γ(δ)

∫ t

0

(t− α)δ−1Ψ(α)dα. (2.2)

where 0 < δ ≤ 1.

Definition 3. Stability for Fractional-order Differential Equations

Consider the fractional-order system

CDδX (t) = J (t,X (t)), 0 < δ < 1,

X (0) = X0. (2.3)

Let J (t,X0) be the unique solution of the system (2.3) satisfying the initial condition X (0) = X0 ∈ Rn. Then:

1. the trivial solution of (2.3) is said to be stable if for any ε > 0, there exist δ = δ(ε) > 0 such that, for
every X0 ∈ Rn satisfying ‖X0‖ < δ, we have ‖J (t,X0)‖ < ε for any t ≥ 0.

2. the trivial solution of (2.3) is said to be asymptotically stable if it is stable and there exists ξ > 0 such
that limt→∞ J (t,X0) = 0 for ‖X0‖ < ξ.

A numerical Omicron mathematical model based on a consistent, non linear first request construction of common
differential conditions is examined. The whole population N(t) is subdivided into state factor sub-populations of
people who are Susceptible individuals S(t), Quarantined individuals Q(t), Infected individuals I(t), Recovered
individuals R(t) and Vaccinated individuals V (t). The other parameters are given in Table 1.

In the model development, there are associated concerns that (i) the birth and passing rate is specific. (ii)
People who are susceptible get contaminated if they come into contact with an infectious person who is not
vaccinated. (iii) Vaccines lose their effectiveness over time, causing people to lose their immunity. (iv) A person
who has been infected recovers after therapy. (v) No long-term recovery is possible. By the assumptions made,
the system of equations of the model and network is formulated as
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dS

dt
= Υ− η1S + η2SV − η3SI + η4Q+ η5R

dI

dt
= η3SI − (η1 + η6 + η9 + η11)I,

dQ

dt
= η6I − (η1 + η4 + η7)Q− η8QV,

dR

dt
= η11I + η7Q− (η1 + η5 + η10)R,

dV

dt
= η10R− η2SV − η1V + η8QV (2.4)

with the initial conditions: S(0) = S0, I(0) = I0, Q(0) = Q0, R(0) = R0
0, V (0) = V0.

Table 1. Parameters and their descriptions

Parameters Descriptions

Υ Rate at which humans are recruited into the population

η1 The natural death rate applicable to all compartments

η2 Rate at which a certain fraction of susceptible individuals
receives vaccination

η3 Effective infectious contact rate between the susceptible and
infected individual

η4 The quarantine rate of the susceptible individuals

η5 The rate at which the recovered compartment loses its
immunities to treatment

η6 The rate at which the vaccinated compartment loses its
immunities to vaccination

η7 The treatment rate of the infected class

η8 The natural recovery rates due to quarantine

η9 The contact rate between Quarantined and Vaccinated people

η10 The death rate induced by infections of infected individuals

η11 The rate at which recovered individuals move to
vaccinated compartment

Remark 1. The system of equations can be written as

dS

dt
= Υ− η1S + η2SV − η3SI + η4Q+ η5R

dI

dt
= η3SI − (η22)I,

dQ

dt
= η6I − η23Q− η8QV,

dR

dt
= η11I + η7Q− η24R,

dV

dt
= η10R− η2SV − η25V + η8QV (2.5)

where η21 = η1, η22 = η1 + η6 + η9 + η11, η23 = η1 + η4 + η7, η24 = η1 + η5 + η10, and η25 = η1

Subject to initial conditions: S(0) = S0, I(0) = I0, Q(0) = Q0, R(0) = R0
0, V (0) = V0.
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Fig. 1. Network of the Fractional-order SIQRV Model

2.1 FDE model formulation

The corresponding system of fractional order differential equations model can be written as

CDδS = Υ− η21S + η2SV − η3SI + η4Q+ η5R
CDδI = η3SI − (η22)I,
CDδQ = η6I − η23Q− η8QV,
CDδR = η11I + η7Q− η24R,
CDδV = η10R− η2SV − η25V + η8QV (2.6)

Subject to initial conditions: S(0) = S0, Q(0) = Q0, I(0) = I0, R(0) = R0
0, V (0) = V0.

The system (2.6) can be written in the form:

CDδX (t) = J (t,X (t)), 0 < δ ≤ 1,

X (0) = X0. (2.7)

To find the existence of solution, a Banach space is defined as B = B1 × B2 × B3 × B4 × B5, where Bi =
C([0, T ]), (i = 1, 2, . . . , 5) under the norm

‖X‖ = ‖ (S, I,Q,R, V ) ‖ = max
t∈[0,t]

[|S(t)|, |I(t)|, |Q(t)|, |R(t)|, |V (t)|].

Let Y : A → A be an operator defined as follows:

Y(X )(t) = Y0 +
1

Γ(δ)

∫ t

0

(t− γ)δ−1J (γ,X (γ))dγ.
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Using the Riemann Liouville type integral, equation (2.7) solved as follows: X (t) = X0+ 1
Γ(δ)

∫ t
0

(t−γ)δ−1J (γ,X (γ))dγ
where 

S(t) = S0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ, S)dγ,

I(t) = I0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ, I)dγ,

Q(t) = Q0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ,Q)dγ,

R(t) = R0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ,R)dγ,

V (t) = V0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ, V )dγ,

(2.8)

with 
J (γ, S) = Υ− η21S − η3SI + η4Q+ η5R
J (γ, I) = η3SI − (η22)I,
J (γ,Q) = η6I − η23Q− η8QV,
J (γ,R) = η11I + η7Q− η24R,
J (γ, V ) = η10R− η2SV − η25V + η8QV

(2.9)

2.2 Positivity and existence of solution

To investigate the non-negativity of the solution, we define
R5

+ =
{
X ∈ R5 | X ≥ 0

}
and X (t) = (S(t), Q(t), I(t), R(t), V (t))T

Now we remind the generalized mean values theorem [27].

Lemma 1. Let X (t) ∈ C[c, d] and CDδ
tX (t) ∈ (c, d], then X (t) = X (c) + 1

Γ(β)

(
CDδ

tX
)

(ζ)(t− c)δ with c ≤ ζ ≤
t, ∀t ∈ (c, d].

Corollary 1. Let X (t) ∈ C[c, d] and CDδ
tX (t) ∈ (c, d] where δ ∈ (0, 1]. Then, it is clear from lemma 1 that

if CDδ
tX (t) ≥ 0, ∀t ∈ (c, d], then the function X (t) is non-decreasing and if CDδ

tX (t) ≤ 0,∀t ∈ (c, d], then the
function U(t) is non-increasing for all t ∈ [c, d].

Now to prove the non-negativity of the solution, it is necessary to investigate that the solution on every
hyperplane bounding the positive orthant, the vector field points to R5

+.

Theorem 1. If S(0), I(0), Q(0), R(0), V(0) are positive and bounded in R5
+, then S(t), I(t), Q(t), R(t), V(t)

are also positive and bounded in R5
+ for all t > 0.

Proof. From model (2.6), we get

CDδ
tS(t)S=0 = Υ + η4Q+ η5R ≥ 0

CDδ
t I(t)I=0 = 0 ≥ 0

CDδ
tQ(t)Q=0 = η6I ≥ 0

CDδ
tR(t)R=0 = η11I + η7Q ≥ 0

CDδ
tV (t)V=0 = η10R ≥ 0

Hence, by using the corollary 1 we get that our solution is nonnegative and will lie in the given feasible region.

Adding all the equations of the system in (2.6), we get

CDδ
tN = Υ− η1(S + I +Q+R+ V )− η10I (2.10)

and in the infection free state we have CDδ
tN = Υ−Nη1. Thus by taking Laplace transform we get

N(s) =
Υ

s(sδ + η1)
+N(0)

s(δ−1)

sδ + η1
, (2.11)
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By taking inverse Laplace transform and solving we get

lim
t→∞

N(t) ≤ Υ

η1
. (2.12)

Then it follows the positivity and bounded for all t>0.

The following theorems show the existence of a solution.

Theorem 2. Let S(t), I(t), Q(t), R(t), and V (t) be nonnegative bounded functions. Then the system (2.9)
satisfies Lipschitz cindition.

Proof. Assume that S(t), I(t), Q(t), R(t), and V (t) are nonnegative bounded functions. That is, there are some
positive constants ξ1, ξ2, ξ3, ξ4, ξ5, such that

‖S(t)‖ ≤ ξ1, ‖I(t)‖ ≤ ξ2, ‖Q(t)‖ ≤ ξ3, ‖R(t)‖ ≤ ξ4, ‖V (t)‖ ≤ ξ5.
Consider the function J (γ, S), for any S and S1, we can get

‖J (γ, S)− J (γ, S1)‖ = ‖η1 (S − S1) + η2V (S1 − S) + η3I(S − S1)‖
≤ ‖η1 (S − S1)‖+ ‖η2V (S − S1)‖+ ‖η3I (S − S1)‖
≤ (η1 + η2‖V (t)‖+ η3‖I(t)‖) ‖S − S1‖
≤ (η1 + η2ξ5 + η3ξ2) ‖S − S1‖
≤ GJ1 ‖S − S1‖ (2.13)

where GJ1 = η1 + η2ξ5 + η3ξ2. Hence, J (γ, S) satisfies the Lipschitz condition. Similarly, we can find GJi , for
i = 2, 3, 4, 5 so that J (γ, S),J (γ,Q),J (γ, I),J (γ,R), and J (γ, V ) satisfy the Lipschitz’s conditions.

Consider the equation (2.8), it can be formulated as :

Xn(t) =



Sn(t) = S0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ, Sn−1)dγ,

In(t) = I0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ, In−1)dγ,

Qn(t) = Q0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ,Qn−1)dγ,

Rn(t) = R0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ,Rn−1)dγ,

Vn(t) = V0 + 1
Γ(δ)

∫ t
0

(t− γ)δ−1J (γ, Vn−1)dγ.

The provided initial conditions establish the first elements of the given equations. The contrast between two
terms is expressed as :

Ψ1n(t) = Sn(t)− Sn−1(t) = 1
Γ(δ)

∫ t
0

[J (γ, Sn−1)− J (γ, Sn−2)] dγ,

Ψ2n(t) = In(t)− In−1(t) = 1
Γ(δ)

∫ t
0

[J (γ, In−1)− J (γ, In−2)] dγ,

Ψ3n(t) = Qn(t)−Qn−1(t) = 1
Γ(δ)

∫ t
0

[J (γ,Qn−1)− J (γ,Qn−2)] dγ,

Ψ4n(t) = Rn(t)−Rn−1(t) = 1
Γ(δ)

∫ t
0

[J (γ,Rn−1)− J (γ,Rn−2)] dγ,

Ψ5n(t) = Vn(t)− Vn−1(t) = 1
Γ(δ)

∫ t
0

[J (γ, Vn−1)− J (γ, Vn−2)] dγ

where

Xn(t) =



Sn(t) =
∑n
i=0 Ψ1i(t),

In(t) =
∑n
i=0 Ψ2i(t),

Qn(t) =
∑n
i=0 Ψ3i(t),

Rn(t) =
∑n
i=0 Ψ4i(t),

Vn(t) =
∑n
i=0 Ψ5i(t).

(2.14)
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Consider

‖Ψ1n(t)‖ = ‖Sn(t)− Sn−1(t)‖ =
1

Γ(δ)

∫ t

0

[J (γ, Sn−1)− J (γ, Sn−1)] dγ

=
ξ1

Γ(δ)

∫ t

0

‖Sn−1 − Sn−2‖ dγ =
ξ1

Γ(δ)

∫ t

0

∥∥Ψ1n−1(t)
∥∥ dγ

Hence, we can get

‖Ψin(t)‖ =
ξi

Γ(δ)

∫ t

0

∥∥Ψin−1(t)
∥∥ dγ for i = 1, 2, . . . 5. (2.15)

Now the functions defined in (2.14) are exist and smooth. For,

We have that the functions S(t), I(t), Q(t), R(t), and V (t) are bounded and all kernels J (t, S),J (t, I),J (t, Q),J (t, R), and J (t, V ),
fulfill Lipschitz’s conditions, thus, we obtain the following relations:

‖Ψ1n(t)‖ ≤ ‖S(0)‖
∥∥∥ ξ1

Γ(δ)
t
∥∥∥n ,

‖Ψ2n(t)‖ ≤ ‖I(0)‖
∥∥∥ ξ2

Γ(δ)
t
∥∥∥n ,

‖Ψ3n(t)‖ ≤ ‖Q(0)‖
∥∥∥ ξ3

Γ(δ)
t
∥∥∥n ,

‖Ψ4n(t)‖ ≤ ‖R(0)‖
∥∥∥ ξ4

Γ(δ)
t
∥∥∥n ,

‖Ψ5n(t)‖ ≤ ‖V (0)‖
∥∥∥ ξ5

Γ(δ)
t
∥∥∥n .

. (2.16)

The system (2.16) shows the existence and smoothness of the function defined in (2.15).

Theorem 3. Let Y : A → A be completely continuous and let J : [0, T ]×A → R is continuous and there exists
a constant GJ > 0 such that for X,X1 ∈ A,

|J (t,X)− J (t,X1)| ≤ GJ |X −X1|

is hold. Then there is at least one solution for the considered system (2.6).

Proof. To prove the operator Y is completely continuous. The sequence {Xn} converges to X ∈ A. For, after
n-iterations define the remainder terms as D1n(t), D2n(t), D3n(t), D4n(t), D5n(t), such that

S(t)− S(0) = Sn(t)−D1n(t),

I(t)− I(0) = In(t)−D2n(t),

Q(t)−Q(0) = Qn(t)−D3n(t),

R(t)−R(0) = Rn(t)−D4n(t),

V (t)− V (0) = Vn(t)−D5n(t).

Using triangle inequality along with the Lipschitz condition of J (t, S), we obtain:

‖D1n(t)‖ =
1

Γ(δ)

∫ t

0

[J (γ, S)− J (γ, Sn−1)] dγ ≤ ξ1
Γ(δ)

‖S − Sn−1‖ t.

Applying the above process recursively, we get

‖D1n(t)‖ ≤
∥∥∥∥ C1

Γ(δ)
t

∥∥∥∥n+1

ξ1.

Then, at t0

‖Dn(t)‖ ≤
∥∥∥∥ C1

Γ(δ)
t0

∥∥∥∥n+1

ξ1.

13



Bavithra et al.; J. Adv. Math. Com. Sci., vol. 39, no. 8, pp. 6-23, 2024; Article no.JAMCS.119717

Taking limit as n tends to infinity, we get

lim
n→∞

‖D1n(t)‖ ≤ lim
n→∞

∥∥∥∥ C1

Γ(δ)
t0

∥∥∥∥n+1

ξ1. (2.17)

For Ci
Γ(δ)

t0 < 1, Equation (2.17) becomes limn→∞ ‖D1n(t)‖ = 0 Similarly, as n tends to infinity, we can get

‖Din(t)‖ → 0.

Hence for t ∈ [0, T ], we have Sn(t)→ S(t) as n→∞

‖Y(Sn)− Y(S)‖ ≤ 1

Γ(δ)
max
t∈[0,T ]

∫ t

0

(t− γ)δ−1 − |J (γ, Sn(γ))J (γ, S(γ))|dγ,

≤ GJ
Γ(δ)

‖Sn − S‖t→[0,T ]

∫ t

0

(t− γ)δ−1dγ ≤ T δGJ
Γ(δ + 1)

‖Sn − S‖ .

Since, Sn → S, so ‖Y (Sn) − Y(S)‖ → 0 as n → ∞ and hence ‖Y (Xn) − Y(X)‖ → 0 as n → ∞. Thus Y is
continues. Let a bounded set M⊂ A. Then by definition of A, |J (t, X(t))| ≤ LJ ,LJ > 0,∀X ∈ M. Then for
each X ∈M, we can obtain

‖Y(X)‖ ≤ 1

Γ(δ)
max
t→[0,T ]

∫ t

0

(t− γ)δ−1|J (γ, Y (γ))|dγ

≤ LJ
Γ(δ)

max
t→[0,T ]

∫ t

0

(t− γ)δ−1dγ ≤ T δLJ
Γ(δ + 1)

Thus, Y is uniformly bounded. Further suppose 0 ≤ t2 ≤ t1 ≤ T . Then

‖Y(X)(t1)− Y(X)(t2)‖ ≤ LJ
Γ(δ)

max
t→[0,T ]

|
∫ t1

0

(t1 − γ)δ−1dγ −
∫ t2

0

(t2 − γ)δ−1dγ|,

≤ LJ
Γ(δ + 1)

maxt→[0,T ]|tδ1 − tδ2| → 0 as t1 → t2.

Thus, Y is equicontinuous. Y is compact and hence it is completely continuous because of the continuousness
and boundedness of it . Let Ψ = {X ∈ A : X = ρY(X), ρ ∈ [0, 1]}, we need to confirm that Ψ is bounded.
Suppose X ∈ Ψ, say S then for t ∈ [0, T] , we have:

‖S‖ = maxt→[0,T ]{
ρ

Γ(δ)

∫ t

0

(t− γ)δ−1J (γ, S(γ))dγ}

≤ LJ
Γ(δ)

max
T→[0,T ]

∫ t

0

(t− γ)δ−1dγ ≤ T δLJ
Γ(δ + 1)

.

Thus the operator is completely continuous. The set Ψ is also bounded. Therefore, Y has at least one fixed
point[40]. So, the considered system (2.6) has the same number of solutions.

Theorem 4. If ξi
Γ(δ)

t < 1, for i = 1, 2, · · · , 5, then the system (2.6) has a unique solution.

Proof. . Assume that {Sν(t), Iν(t), Qν(t), Rν(t), Vν(t)} is another set of solutions of system (2.6) then,

‖S(t)− Sν(t)‖ =
1

Γ(δ)

∫ t

0

[J (γ, S)− J (γ, Sν)] dγ =
ξ1

Γ(δ)
t‖S(t)− Sν(t)‖

Thus

(1− ξ1
Γ(δ)

t)‖S(t)− S1(t)‖ ≤ 0. (2.18)

Since ξi
Γ(δ)

t < 1 for i = 1, (2.18) becomes ‖S(t)− Sν(t)‖ = 0

Hence S(t) = Sν(t). Similarly, for i = 2, 3, 4 and 5, we can get I(t) = Iν(t); Q(t) = Qν(t); R(t) = Rν(t); Vν(t) =
Vν(t). Hence the system has unique (2.6) solution.
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2.3 Existence of steady state solutions

The steady-state solutions exist as a result of research into the long-term behaviour of which is heavily dependent
on R0 and its steady-state solutions. The model under consideration in this paper has two steady-state solutions.
The model system (1) is made static, i.e. the time-independent solutions are obtained.

The steady-state solutions in the absence of infections i.e., I = 0 is given by

E0 = (S, I,Q,R, V )

=
( Γ

η1
, 0, 0, 0, 0

)
(2.19)

Also, the steady-state solutions when infection is persistent i.e., I 6= 0 is given by,

E∗ = (S∗, I∗, Q∗, R∗, V ∗)

=
(η22

η3
,

η1η22(R0 − 1)

η3(η3η22 − η4A+ η5B − η2η22C)
,

η6I
∗

η23 + η8V ∗
,

(η6η7 + η11[η23 + η8V
∗])I∗

η24(η23 + η8V ∗)
,

η10η3BI
∗

η2η22 + η1η3 + η1η8Q∗
)

(2.20)

where,

A = η6
η23+η8V ∗ , B = (η6η7+η11[η23+η8V

∗])
η24(η23+η8V ∗)

, C = η10η3B
η2η22+η1η3+η1η8Q∗

The fundamental reproduction number R0 is from the next generation method ([41], [42]) as follows:

F =


0 0 0 0 0
0 η3S 0 0 0
0 η6 0 0 0
0 η11 0 0 0
0 0 0 0 0



V =


η1 0 η4 η5 0
0 η1 + η9 + η11 + η6 0 0 0
0 η6 η1 + η4 + η7 0 0
0 η11 η7 η1 + η5 + η10 0
0 0 0 0 η1



V −1 =


1
η1

η5(η11η23−η6η24)+η4η6η24
η1η22η23η24

η5η7−η4η24
η1η23η24

− η5
η1η24

0

0 1
η22

0 0 0

0 − η6
η22η23

1
η23

0 0

0 η11η23+η6η7
η22η23η24

− η7
η23η24

1
η24

0

0 η10(η11η23−η6η7)
η22η23η24

η7η10
η1η23η24

η10
η1η24

1
η1


Then, R0 is the largest eigenvalue of the spectral radius given by

R0 = ρ(FV −1) = η3

( Υ

η1(η1 + η6 + η9 + η11)

)
(2.21)

When R0 < 1, the infections vanish out of the host population. But if R0 > 1, then the infections ravage and
becomes endemic, which calls for appropriate medical interventions to stop the disease spread.
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3 Stability Analysis

Theorem 5. The disease-free equilibrium E0 of the given system (2.6) is stable if R0 < 1 and unstable if R0 > 1.

Proof. To state the stability analysis of the disease-free equilibrium points, we analyse the linearization of the
given system (2.6) at any equilibrium point (S∗, I∗, Q∗, R∗, V ∗) as follows:

CDδS = Υ− η21S + η2S
∗V + η2SV

∗ − η3S
∗I − η3SI

∗ + η4Q+ η5R
CDδI = η3S

∗I + η3SI
∗ − η22I,

CDδQ = η6I − η23Q− η8Q
∗V − η8QV

∗,
CDδR = η11I + η7Q− η24R,
CDδV = η10R− η2S

∗V − η2SV
∗ − η25V + η8Q

∗V + η8QV
∗ (3.1)

Applying the Laplace transform on both sides of above system (3.1) gives

sδL[S(s)]− sδ−1S(0) = Υ− η1L[S(s)] + η2S
∗L[V (s)] + η2V

∗L[S(s)]

−η3S
∗L[I(s)]− η3I

∗L[S(s)] + η4Q+ η5R

sδL[I(s)]− sδ−1I(0) = η3S
∗L[I(s)] + η3I

∗L[S(s)]− η22L[I(s)], (3.2)

sδL[Q(s)]− sδ−1Q(0) = η6L[I(s)]− η23L[Q(s)]− η8Q
∗L[V (s)]

−η8V
∗L[Q(s)],

sδL[R(s)]− sδ−1R(0) = η11L[I(s)] + η7L[Q(s)]− η24L[R(s)],

sδL[V (s)]− sδ−1V (0) = η10L[R(s)]− η2S
∗L[V (s)]− η2V

∗L[S(s)]

−η25L[V (s)] + η8Q
∗L[V (s)] + η8V

∗L[Q(s)]

where L[S(s)],L[I(s)],L[Q(s)],L[R(s)], and L[I(s)] are the Laplace transformations of S(t), Q(t), I(t), R(t), and
V (t). The proposed system (3.2) can be rewritten by

∆(s) · [L[S(s)]L[I(s)]L[Q(s)]L[R(s)]L[V (s)]] = [ν1(s)ν2(s)ν3(s)ν4(s)ν5(s)]

where 
ν1(s) = sδ−1S(0)

ν2(s) = sδ−1I(0)

ν3(s) = sδ−1Q(0)

ν4(s) = sδ−1R(0)

ν5(s) = sδ−1V (0)

Hence ∆(s) = 
A11 −η3S

∗ η4 η5 η2S
∗

η3I
∗ A22 0 0 0

0 η6 sδ + η23 0 −η8Q
∗

0 η11 η7 sδ + η24 0
−η2V

∗ 0 η8V
∗ η10 A55


where A11 = sδ + (η1 + η3I

∗ + η2V
∗), A22 = sδ + η22 − η3S

∗ and A55 = sδ + η1 + η2S
∗ − η8Q

∗,

which is a characteristic matrix of system (3.2). Now, the characteristic matrix of the proposed system at
disease-free equilibrium (DFE) (2.19) is given by ∆(s) =

sδ + η1 −η3S η4 η5 η2S
0 B22 0 0 0

0 η6 sδ + η23 0 0

0 η11 η7 sδ + η24 0
0 0 0 η10 B55


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where B22 = sδ − η3S + η22 and B55 = sδ + η1 + η2S.

Then from the Jacobian matrix, the characteristic polynomial is (sδ + η1)(sδ + (η1 + η4 + η6 + η7))(sδ + (η1 +
η4 + η10))(sδ + (−η3S − (η1 + η6 + η9 + η11)))(sδ + (η1 + η5 + η10))(sδ + (η1 + η2S)).

Now, the System (2.4) is stable iff η3S − (η1 + η6 + η9 + η11) < 0.

Hence η3

(
Γ

η1(η1+η6+η9+η11)

)
< 1.

Then clearly the infection free steady state of (2.19) is locally asymptotically stable if R0 < 1.

4 Numerical Analysis

In the second wave of the Corona virus, India experienced a high infection rate. We’ve gathered data from
Tamilnadu, India, for this article ([43]). Mathematica and Matlab are used to simulate the numerical solution.
The values of the variables and parameters are listed in the Tables below 2 and 3.

Table 2. Variables in Model and their values

Variable Descriptions Values

S(0) Susceptible individuals 30095

Q(0) Quarantine Individuals 322

I (0) Infected individuals 35

R(0) Recovered individuals 51

V (0) Vaccinated Individuals 42846

The solution for (2.6) demonstrates that it is unstable locally and will never become stable when R0 > 1, as
shown in the figures. The steady state solution becomes stable when the contact rate is controlled and the
vaccination class is increased when R0 < 1. We conclude from all of the data that if the number of isolated,
recovered, and vaccinated people increases, the host community will be safe from the Omicron variant. We also
discovered that if the intercessions are strictly followed, the spread of the second wave of SARS Cov-2 Omicron
variant is reduced.
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Fig. 2. Susceptible E(t) and Infected I(t) people against time t in the data of Tamilnadu

Fig. 2 describes the visualization of the impact of the Omicron variant in the Susceptible individual, Infected
individual against time t in the overall state of Tamilnadu. People are becoming less susceptible to infection
and less probable to obtain it as a result of increased vaccination and quarantine.
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Table 3. Parameters in Model and their values

Parameters Descriptions Values

Υ Per Capita Recruitment Rate 5

η1 Natural death rate 0.065

η2 Rate of vaccination of susceptible individuals 0.0109

η3 Infectious rate 0.0012

η4 Quarantine rate 0.0098

η5 Rate of immunity loss 0.0017

η6 Treatment rate 0.1087

η7 recovery rate due to Quarantine 0.0146

η8 The contact rate between Quarantined and
Vaccinated people

0.0098

η9 The death rate induced by infections of
infected individuals

0.0006

η10 The rate at which recovered individual moves
to vaccinated compartment

0.92

η11 The natural recovery rates transfere from
infected to recovered individuals

0.045
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Fig. 3. Quarantined and recovered people against time t

Fig. 3 describes the Quarantined and recovered people of the host of human population respectively against the
time t in the state of Tamilnadu. Figs. 2 and 3 show how persons in Tamilnadu were infected and confirmed
with the Omicron variant in the beginning and recovered by the end of March 31st, 2022. It is obvious from
Figs. 2 and 3 that once the infected population increases, all other compartments increase as well. In addition,
if there is an increase in isolated and vaccinated classes, a disease-free field will exist after 80 days when δ=0.97.

According to Table 3, as of March 31, the number of infected people in Tamilnadu districts has decreased to
low level with no death based on RT PCR sample tests.
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Fig. 4. Stability condition of the fractionsl model against time t with I(t) and R(t) and Stability
condition against time t with I(t), R(t) and V(t) -3D Plot

The stability of the Omicron mathematical model for Tamilnadu (Fig. 4). During the Omicron period, which
runs from December 25th to March 11th, 2022, the people of these four districts have a high rate of illness.
When people were vaccinated according to government instructions, the infection rate progressively decreased
to a low level.
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Fig. 5. Infected and Vaccinated against time t in Tamilnadu

Fig. 5 describes the relation between the rates of infected, isolated and vaccinated people in the infection period
of Omicron in Tamilnadu state.

Fig. 6 demonstates the stability graph representation of the constructed model in the host population in
Tamilnadu with various order of δ. Fig. 6 shows that when the Omicron variant was first discovered, its spread
was rapid, and when the government implemented quarantine and vaccination at a high rate, the variant’s spread
was reduced to a safe level. On March 31, 2022, the state of Tamilnadu discovered that no one had caused the
death of Omicron. Covid-19 vaccinations helped people avoid infection with the SARS CoV-2 Omicron variant.

We can observe from Fig. 6 and Table 3 that the infected rate decreases after a rapid spread over a short time
with the reproduction number R0 < 1. As a result, the system in the four districts, as well as the entire state
of Tamilnadu, is stable.
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Fig. 6. Stability of the given Omicron System against time t with repect of four different δ′s

5 Conclusions

In this study, an SIQRV fractional order mathematical model for COVID-19 was developed. The data acquired
from Tamil Nadu together with our mathematical model, suggest that the Omicron variant of COVID-19
infection has been stabilised after few months. This model outperforms other mathematical models by taking into
account the nonlinear force of quarantine, vaccine, infection, and care, as well as the right inclusion of valuable
parameters. The principles of reproduction number calculated with this model are an outbreak threshold that
determined whether or not the disease would go further in Tamilnadu where R0 < 1. These model’s fundamentals
of positivity and boundedness have been examined and validated. There are infection-free steady-state solutions
that are asymptotically stable locally and globally when R0 < 1. Also When R0 < 1 is present, infection-present
steady-state solutions that are stable locally are discovered. Finally, the current Omicron variant pandemic data
from the Indian state of Tamilnadu is validated.
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