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ABSTRACT 
 

Lentil (Lens culinaris Medik) is an essential pulse crop that is widely grown for its high nutritional 
value, notably its high protein content, making it an important dietary component for vegetarians 
and vegans. Despite being the world's fifth most produced pulse, with large contributions from 
Canada and India, lentil production confronts obstacles such as poor productivity due to limited 
genetic improvement against biotic and abiotic stresses under rainfed cultivation conditions. Recent 
advances in lentil genetics and genomics, such as the discovery of genes related to yield, disease 
resistance, and nutritional content, have boosted breeding efforts to generate improved lentil 
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varieties. The use of contemporary genomic techniques like molecular markers, marker-assisted 
selection (MAS), genomic selection (GS), and next-generation sequencing (NGS) technology has 
sped up the discovery of quantitative trait loci (QTLs) and the production of novel cultivars with 
superior agronomic characteristics. Databases such as NCBI and ENA, as well as specialized 
resources like KnowPulse, provide critical genomic data, while the creation of lentil genome 
assemblies, notably the CDC Redberry variety, has improved our understanding of lentil genetics. 
These resources help to solve the constraints of traditional breeding, particularly for complex 
characteristics impacted by genotype-environment interactions, opening the way for more robust 
and productive lentil varieties. Although the application of advanced tools such as genetic 
engineering, cisgenesis, and genome editing has moved more slowly in lentils than in other crops, 
their potential to improve lentil output is encouraging. Recent studies on lentil genomes, together 
with the creation of increased genetic resources and cutting-edge techniques, offer the ability to 
overcome production constraints and dramatically increase lentil production and quality throughout 
the world. 
 

 
Keywords: Genomics; genomic selection; GWAS; lentil; molecular markers. 
 

1. INTRODUCTION 
 
The lentil plant, scientifically known as                          
Lens culinaris Medik 2n=2x=14, is a member of 
the Fabaceae family. It is a pulse crop that has 
been cultivated for thousands of years,                       
making it one of the oldest known crops [1]. They 
are a staple in many cuisines around the world 
and are a green alternative to animal meat 
protein [2]. It occupies fifth position in production 
worldwide among the pulses, with the production 
of 6.65 mt out of 5.5 mha areas; around 75% of 
the world's production is coming from                     
Northern America and Asia (Fig. 1). Canada and 
India being the largest and second largest 
producers with the total production of 2.3 MT and 
1.26 MT, respectively [3]. Lentils are highly 
nutritious, rich in protein, fiber, vitamins, 
minerals, and complex carbohydrates [4,5,6,7]. 
They are an excellent source of                        
plant-based protein, making them an important 
food source for vegetarians and vegans [2,8]. 
Additionally, lentils are low in fat and                     
glycemic index (GI), making them a healthy 
choice for those looking to maintain a                  
balanced diet [9,10]. Although there has been an 
increase in the production of lentils over the 
period, the increase in productivity has not been 
realized [11]. This is due to poor genetic                       
gain in lentil improvement [12]. However, the 
release of short-duration lentil varieties has 
gained areas under lentil cultivation in 
Bangladesh, Morocco, and Ethiopia [13]. Among 
other production constraints, lentils are being 
grown under rainfed conditions, and                         
several biotic and abiotic stresses are  
associated with lower productivity [14,15,16,17, 
18,19,20].  

Advances in molecular breeding techniques, 
such as marker-assisted selection (MAS) and 
marker trait association analysis, have helped 
improve lentil breeding efforts. There has been a 
renewed interest in genetics of lentils in recent 
years [11,13,21]. Researchers have been 
studying the genetic makeup of different lentil 
varieties to identify genes linked with important 
traits such as yield, disease resistance, nutrient 
content, and nutrient uptake [22,23,24,25,26]. 
These approaches enable breeders to discover 
and choose desired traits and genetic factors at 
the molecular level, hence increasing breeding 
efficiency. Moreover, the availability of genomics 
and other datasets, such as markers and genetic 
maps at the publicly available databases has 
made it easy to understand the genetic 
composition of lentils [27,28]. Genomic datasets 
generated through next generation sequencing 
(NGS) technologies are enabling it further. 
Moreover, with the development of genetic 
engineering, cisgenics, and genome editing tools 
such as CRISPR-Cas9, researchers may now 
directly manipulate the lentil genome [29]. These 
methods have the potential to speed up the 
production of superior lentil varieties with 
increased resistance to pests, diseases, and 
environmental challenges, as well as greater 
nutritional value. With a greater understanding of 
lentil genetics, breeders may develop novel 
cultivars with higher yields and resilience, 
assuring the crop's viability in the face of global 
agricultural difficulties. 
 

This review article aimed to delve into 
advancements in lentil genomics that are paving 
the way for targeted breeding strategies that can 
elevate lentil productivity, nutritional quality, and 
environmental resilience. 
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Fig. 1. Production share of lentils by different regions of the world 
 

2. LENTIL GENOMICS: AN OVERVIEW 
 
Improving lentil genetics is essential for 
enhancing crop yield [30,31,32,33,34]. Although 
conventional breeding strategies have been able 
to enhance monogenic traits by combining and 
selecting desirable characteristics, they are not 
as efficient when it comes to improving seed 
yield. The main reason for this is primarily the 
intricate nature of polygenic inheritance and the 
interplay between genotype and environment. 
Initially, the main attention has been on important 
characteristics such as agronomic performance, 
drought, heat, cold, frost tolerance, seed quality, 
and resistance to several fungal diseases. 
Nevertheless, when it comes to quantitative 
characteristics that are significantly affected by 
environmental variables and genotype-
environment interactions, conventional 
techniques have lower accuracy and require 
more time [12]. 
 

Integration of genomics into the lentil 
improvement program is crucial for overcoming 
these constraints. Use of molecular markers in 
marker-assisted selection (MAS), marker-trait 
association analysis, genomic selection, and 
genetic engineering provide more                         
precise and effective ways to choose superior 
genotypes and introduce new genetic variation 
and genes into the cultivated gene pool 
[31,35,36,37,38].  
 
The progress in molecular markers and genome-
wide association studies (GWAS) has greatly 

enhanced our capacity to create precise genetic 
maps and identify crucial quantitative trait loci 
(QTLs) [22,39,40]. An essential aspect of 
implementing these contemporary methods is 
accurately identifying quantitative trait loci (QTLs) 
and strategically integrating them into desired 
cultivars. NGS technology has advanced our 
comprehension of genetic diversity by facilitating 
the representative sequencing of cultivars 
genome over a shorter period of time through the 
genotyping by sequencing (GBS) approach 
[41,42,43]. Furthermore, the examination of the 
transcriptome under various situations has 
yielded a more profound understanding of gene 
expression patterns [44,45]. The progress made 
in this field has made it easier to identify 
quantitative trait loci (QTLs) and has resulted in 
the finding of several molecular markers, 
including simple sequence repeats (SSRs) and 
single nucleotide polymorphisms (SNPs) 
[44,45,46,47,48,49]. Apart from these, several 
other marker systems have also been used to 
assess genetic diversity and characterize Lens 
species, including inter-simple sequence repeat 
(ISSR), directed amplification of minisatellite 
DNA (DAMD), inter-primer binding site (iPBS), 
and sequence-related amplified polymorphism 
(SRAP) [50,51,52]. These markers are crucial 
instruments for identifying cultivars with desirable 
characteristics, which in turn accelerates the 
advancement of more robust and productive 
cultivars. By incorporating technologies such as 
MAS into breeding programs, the process of crop 
improvement becomes more efficient and 
focused, enabling the development of breeding 
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methods that effectively meet the requirements 
of modern agriculture.  
 
Progress has also been made towards modifying 
the lentil genome using genetic engineering, but 
these developments are scarce in comparison to 
major crops such as rice. However, this scenario 
presents an opportunity to explore the use of 
genetic engineering as well as more efficient 
technologies such as cisgenesis and genome 
editing in directly modifying the lentils for desired 
traits.  
 

3. GENOMIC RESOURCES IN LENTIL 
 

3.1 Databases for Genes and Genomic 
Sequences in Lentil 

 
There are various generic databases that cover 
datasets of various organisms, including lentils, 
and are maintained by international communities 
or consortia and often publicly funded. These 
databases, or consortia, are long-term 
sustainable; they work as archives for valuable 
data, and most of them are updated frequently, 
and the data stored in them can be retrieved 
freely. The repositories that contain datasets of 
lentils along with several other species include 
NCBI, ENA, DDBJ, Phytozome, KnowPulse, and 
Pulse Crop Database. The details of these 
databases and archives are given in Table 1. 
 
Currently, there isn't a single database dedicated 
to lentils, and when we compare these 
databases to those for other crops such as rice 
and tomato, the number is significantly smaller. 
However, the development of new genomics 
datasets for lentils may lead to the inclusion of 
more data in new databases. 
 

3.2 Sequencing Platform for Lentil 
Genomics 

 
Rice was the first sequenced crop genome, and 
it paved the way for the sequencing of several 
other crops, including the more complex one. 
The rice genome was sequenced through the 
Sanger sequencing method following a clone-by-
clone approach and was a mammoth effort of the 
International Rice Genome Sequencing Project 
(IRGSP), which started in 1997 and took about 5 
years to complete, mainly due to the limited 
output of the Sanger sequencing technique and 
hardship involved [59]. The advent of next-
generation sequencing (NGS) or second-
generation sequencing technologies was driven 

by the demand for faster and more cost-effective 
methods to sequence vast amounts of genetic 
material. Over time, various NGS platforms and 
techniques have emerged, each employing 
unique chemical processes and detection 
strategies [60]. Despite their variations, all NGS 
technologies are characterized by their capacity 
for massively parallel processing, allowing the 
sequencing of thousands to millions of DNA 
fragments at once. This has made sequencing 
and re-sequencing very affordable and less time-
consuming [61]. Recent advancements in 
sequencing technologies have resulted in the 
emergence of Third Generation Sequencing 
(TGS) technologies, which have the ability to 
generate substantially longer reads compared to 
second-generation sequencing [62]. These TGS 
technologies have found extensive use in 
genome research. Table 2 provides details on 
these sequencing technologies, which are also 
applicable to lentil genomics. 
 
Sequence datasets generated from NGS 
technologies have been widely used for the 
creation of genetic resources such as SSRs, 
EST-SSRs, and SNPs [72,73]. These can be 
used for the development of physical maps, 
MAS, and GWAS. Moreover, the whole genome 
transcriptome analysis has resulted in the 
identification of genes upregulated and 
downregulated under various conditions or 
developmental stages [74]. Novel transcript 
isoforms, gene fusion, and splice variants can 
also be identified from sequenced transcriptome 
assembly [75,76]. Apart from these, various 
classes of non-coding RNAs, such as miRNAs, 
tRNAs, and lncRNAs, can also be detected and 
quantified using NGS technologies [77,78,79].  
 

3.3 Lentil Genome Assembly 
 
The initial version of the lentil genome assembly 
(the lentil genome assembly v1.0), based on the 
Canadian variety CDC Redberry, was released in 
January 2016 [80]. This assembly contains 7 
pseudomolecules anchored by 6 high-density 
genetic linkage maps, accounting for about half 
of the 4.3 Gb lentil genome. The assembly was 
produced utilizing genomic and RNA sequencing 
data obtained by several institutions across the 
world using a variety of methods. The assembly, 
which includes identified potential genes, may be 
viewed with a genome browser (JBrowse) and 
accessible through the Knowpulse online                   
portal (http://knowpulse.usask.ca) via BLAST 
searches. 
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Table 1. Databases for genes and genomic sequences in lentil 
 

S. No. Database  URL Description Species Data Type References 

1. NCBI https://www.ncbi.nlm.nih.
gov/ 

The National Center for Biotechnology 
Information promotes scientific and medical 
advancement by facilitating access to 
biomedical and genomic information  

Lentil and 
other species 
across several 
kingdom 

Gene, Protein, 
Genomic 
Sequences 

[53] 

2. ENA https://www.ebi.ac.uk/en
a/ 

The European Nucleotide Archive (ENA) 
offers a repository of global nucleotide 
sequencing data, encompassing raw 
sequencing datasets, sequence assembly, 
and functional annotation 

Lentil and 
other species 
across several 
kingdom 

Gene, Protein, 
Genomic 
Sequences 

[54] 

3. DDBJ https://www.ddbj.nig.ac.jp
/ 

The DNA Data Bank of Japan Center along 
with Bioinformation offers data sharing and 
analysis services for life science research, 
contributing to the advancement of scientific 
knowledge 

Lentil and 
other species 
across several 
kingdom 

Gene, Protein, 
Genomic 
Sequences 

[55,56,57] 

4. Phytozome https://phytozome-
next.jgi.doe.gov/ 

Phytozome advance comparative genomics 
research by consolidating a vast assortment of 
plant genomes into one resource and 
performing thorough and consistent annotation 
and analysis, resulting in precise and 
informative findings 

Lentil and 
other species  

Genome Assembly 
and Annotation, 
Synteny 

[27] 

5 KnowPulse https://knowpulse.usask.
ca/ 

A website dedicated to providing 
comprehensive diversity data for the purpose 
of enhancing pulse crop development 

Lentil and 
other legumes 

Genome Assembly 
and Annotation 

[28] 

6 Pulse Crop 
Database 

https://www.pulsedb.org/ Genome, Genetic and Breeding Recourses for  
Pulse crop Improvement 

Lentil and 
other legumes 

Genome Assembly 
and Annotation, 
QTL, Markers, and 
Traits 

[58] 

  



 
 
 
 

Kesari et al.; J. Exp. Agric. Int., vol. 46, no. 9, pp. 1043-1060, 2024; Article no.JEAI.123449 
 
 

 
1048 

 

Table 2. Details of sequencing technologies used in genomics 
 

Sequencing 
Technology 
Generation   

Chemistry Methodology References 

1st Generation Chemical method (chain degradation) (Maxam and 
Gilbert method) 

Chemical alteration of DNA followed by targeted cleavage at 
specific nucleotide bases 

[63] 

Chain termination sequencing (Sanger method) Targeted inclusion of labelled chain-terminating 
dideoxynucleotides (ddNTPs) during in vitro DNA replication 

[64] 

2nd Generation Pyrosequenscing Non-gel based DNA ‘sequencing by synthesis’ technique that 
uses light detection to detect inorganic pyrophosphate released 
during DNA synthesis 

[65] 

Sequencing by synthesis Incorporation of fluorescently labelled deoxyribonucleotide 
triphosphates (dNTPs) onto a replicating DNA strand in clusters 

[66] 

Sequencing by ligation DNA are sequenced by leveraging the mismatch sensitivity of 
the DNA ligase enzyme 

[67,68] 

3rd Generation Single Molecule Real Time (SMRT) sequencing by 
the use of  Zero-Mode Waveguides (ZMW ) 

Single Molecule Real Time (SMRT) sequencing utilizes Zero-
Mode Waveguides (ZMW) technology to separate the desired 
fluorescent signal from the intense background fluorescence 
produced by unincorporated free-floating nucleotides and 
requires no PCR amplification  

[69] 

Sequencing by Binding By using native nucleotides and eliminating the need to remove 
fluorescent modifications, the sequencing strand experiences 
minimal alterations, leading to more accurate base calls 

[70] 

Nanopore sequencing Uses flow cells with an array of small holes, known as 
nanopores, embedded in an electro-resistant membrane. Each 
nanopore detects the electric current passing through the 
nanopore and identify the specific nucleotide 

[71] 
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Utilizing the power of next-generation 
sequencing, the Genome Assembly v2.0 of the 
CDC Redberry lentil variety, which is accessible 
at https://knowpulse.usask.ca/bio_data/2690904, 
was constructed using long-read sequencing 
data, comprising 34x PacBio SMRT and 20x 
Oxford Nanopore reads [81]. The assembly's 
contiguity was not only validated but also 
enhanced with the integration of HiC data, 
alongside both an optical and genetic map (LR-
01; ILL 1704 x CDC Robin intraspecific RIL). The 
completed assembly totals 3.69 Gb, organized 
into 7 pseudo-molecules and 2,068 unplaced 
unitigs. 
 

4. USE OF LENTIL GENOMICS IN CROP 
IMPROVEMENT 

 

4.1 Marker Trait Association Analysis 
 
Conventional breeding is more effective in 
genetic improvement of traits with high 
heritability. Genetic gain of quantitative traits is 
low and very difficult in selection for traits 
governed by minor QTLs. With the advent of 
next-generation sequencing techniques, rapid 
identification of molecular markers linked with the 
genes, or QTLs, is possible. Higher genetic gain 
can be achieved for the traits governed by QTLs 
with small effect upon selection of traits using 
linked molecular markers. Genetic mapping 
utilizes both biparental mapping and association 
mapping, or genome-wide association studies 
(GWAS), to detect the genes or QTLs governing 
a trait. Biparental mapping restricts the genetic 
diversity between two parental lines and the 
limited number of recombination events. 
Alternatively, association mapping uses a large 
number of diverse parental lines; thus, it 
increases resolution, detects a large number of 
minor and major QTLs, and reduces the time 
spent developing mapping populations. 
Biparental mapping is extensively carried out in 
lentils for detection of QTLs of major traits 
including early plant vigor, heat tolerance, winter 
hardiness, salinity tolerance, nutritional and 
milling quality, disease resistance, and herbicide 
tolerance [35,82,83,84,85,86,87]. Grain yield 
remains a principal trait to breed on; thus, 
emphasis was given on increasing seed size of 
lentil. A number of genes governing seed size 
and weight were detected. Two QTLs for seed 
weight and seed size co-localized in the linkage 
group 4 explained phenotypic variance of 48.4% 
and 27.5%, respectively [88]. Breeding for these 
QTLs can improve simultaneously seed size and 
weight in lentils. Development of short-duration 

varieties in lentil is most suitable for the areas 
where the crop is grown after the harvest of rice. 
Delayed harvest of rice delays sowing of lentil; 
thus, the crop suffers heat stress and diseases 
appear at later stages. Growing short-duration 
varieties escapes the heat stress at the later 
growth stage and minimizes the yield loss in 
Indo-Gangatic plains [89]. Shivaprasad et al. 
(2024) detected 11 loci for extra earliness in 
lentil; one InDel marker (I-SP-383.9) near the 
LcELF3a gene showed 82.35% PVE (phenotypic 
variation explained) for earliness [46]. Biparental 
mapping on LG6 revealed a major flowering time 
locus, with one of the SSR markers, SSR212_1, 
closely linked to the locus, explaining 57% of the 
PVE [90]. Targeting these genes in breeding 
programs would be useful in developing early-
maturing genotypes. Diseases caused significant 
yield loss in lentils, and the use of 
environmentally hazardous chemicals to control 
the diseases also increased the production cost. 
Anthracnose can cause yield losses up to 70% 
under favorable conditions. Major fungal 
diseases are ascochyta blight (Ascochyta lentis), 
stemphylium blight (Stemphylium botryosum), 
aphanomyces root rot (Aphanomyces euteiches), 
and anthracnose caused by Colletotrichum lentis 
(Damm). Breeding for disease resistance in 
lentils through conventional breeding approaches 
has achieved significant improvement. A small 
seeded lentil variety, “Pant Lentil 4” developed by 
pedigree selection, was high yielder, resistant to 
rust, wilt, and Ascochyta blight for North Western 
India [91]. A number of high-yielding varieties 
were developed in India, Africa, and Canada 
[92,93]. Genomic regions governing resistance to 
Ascochyta blight [94,95], stemphyllum blight [96], 
rust [97], anthracnose [98], and Fusarium wilt 
[99] were identified in Lentil. Genes conferring 
resistance to Ascochyta blight were detected in 
LG 1, 4, 5, and 9, accounting for up to 61% of 
PVE [94]. A major gene, LCt-2, has been 
designated for anthrancnose resistance [100]. 
Recently, Gela et al. (2021) identified major 
resistance loci for anthracnose on linkage groups 
3 and 7, accounting for 20.1–31.2% and 8.3–
18.4% of variation, respectively [101].  
 
Association mapping, also called LD (linkage 
disequilibrium) mapping, was effectively used for 
the detection of QTLs with high resolution in 
lentil. LD is a non-random association of loci 
present at different loci on the genome. LD 
between a trait and marker locus indicates 
association of the marker with the trait 
phenotype. Recently, genomic tools are being 
utilized to unlock the genetic potential of plant 
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genetic resources for complex agronomic traits. 
Genome Wide Association Studies (GWAS) 
studies conducted using 96 diverse lentil 
genotypes detected one SSR (simple sequence 
repeats) PBALC 224 for seed diameter and two 
SSR, GLLC 614 and PBALC 29 for seed weight 
[102]. Lentil seed size and diameter are 
important parameters determining market class 
and price. More plump and round-shaped seeds 
have more efficiency of dehulling. Therefore, 
identification of the genomic region responsible 
for seed size, diameter, and plumpness in lentil is 
useful for improving the trait. Major genomic 
regions for seed diameter are reported on LG 1, 
2, and 7 [103,104]. QTL clusters were detected 
using GWAS analysis on LG 1, 4, 5, 6, and 7 for 
root rot disease caused by Aphanomyces 
euteiches Drechs [24]. Utilization of global lentil 
germplasm to identify genotypes of important 
traits would assist the breeding process in 
realizing the fast genetic gain. One of the studies 
conducted using 196 ICARDA Reference Puls 
collection of lentils identified two flowering time 
loci on LG 3; eight loci for days to maturity on LG 
2, 3, 5, 6, and 7; two loci for seed per pod on LG 
2, and 7; and one locus on LG 1 [22]. A diverse 
panel of 96 lentil genotypes was used to map 24 
QTLs with nine agronomic traits, including 
maturity, number of pods per plant, primary and 
secondary branches per plant, and 100 seed 
yield [39]. QTLs detection can be affected by the 
environmental variations; GWAS applied in a 
population evaluated under a controlled 
environment can be most effective in the 
detection of QTLs. However, conducting GWAS 
in a controlled environment may lead to 
inaccurate judgments about character expression 
under varying climatic conditions. Therefore, 
populations are tested over multiple seasons and 
locations. Under such circumstances, 
MetaGWAS has proved to be more effective than 
the standard to detect QTLs tested in multiple 
environments and having an unbalanced set of 
data. QTL detection through MetaGWAS 
analysis previously carried out in soybean [105], 
wheat [106], and canola [107]. Balech et al. 
(2024) recently used MetaGWAS analysis in 
lentil to detect herbicide tolerance, and four 
SNPs were detected to be linked with 
imazethapyr and metribuzin tolerance, which can 
be utilized in the development of herbicide 
tolerance lentil genotypes [35]. Biofortification is 
an important area of research in major food 
crops, including rice, wheat, maize, potatoes, 
and cassava. Enhancing the genetic potential of 
crops through which the grain mineral content 
increases and increasing their bioavailability is a 

sustainable approach to biofortification [108]. 
Inheritance of micronutrients is a complex trait 
and highly influenced by environmental 
fluctuation [89,108,109]. Lentil is a good source 
of minerals; large genetic variation for iron (Fe), 
zinc (Zn), and selenium (Se) was detected in the 
lentil germplasm [110]. Screening of lentil 
germplasm recorded grain iron concentrations 
ranging between 31.55 and 119.35 mg/kg, and 
that of grain Zn ranged from 7.80 to 75.45 mg/kg. 
Association mapping identified SSR markers 
PBALC 13, PBALC 206, and GLLC 563 linked 
with grain Fe concentration with 9% to 11% PVE 
and four SSR markers PBALC 353, SSR 317–1, 
PLC 62, and PBALC 217 linked with grain Zn 
concentration with 14% to 21% PVE [111]. Iron 
concentration in lentils is higher than in cereal 
crops [112]. Four QTL regions for Se 
concentration were identified in the LG 2 & 5, 
explaining phenotypic variation ranging from 6.3–
16.9% [25]. For iron concentration, 21 QTLs 
were detected on six linkage groups (LG 1, 2, 4, 
5, 6 & 7) explaining PVE of 5.9% to 14% [113]. In 
the recent past, twelve iron-rich biofortified lentil 
varieties developed at the International Center 
for Agricultural Research in Dry Areas (ICARDA) 
were released by the Harvest Plus Programme in 
Syria, Nepal, India, and Bangladesh [114]. 
Varieties IPL 220 and L4704 were released in 
India with 89.10 [110] and 75 mg/kg 
concentrations of iron, respectively. Use of 
molecular markers and genomic tools would be 
effective in developing biofortified lentil varieties.  
 

4.2 Marker Assisted Breeding 
 
Molecular markers are among the genomic tools 
used on a large scale for crop improvement 
programs. Molecular markers tightly linked (5 
cM) to the agronomic traits, disease resistance, 
and quality are available in lentils suitable for 
marker-assisted breeding (MAB), marker-
assisted backcross (MABC), marker-assisted 
gene pyramiding, or genomic selection. A sizable 
number of PCR-based makers (RAPD, SSR, 
SRAP, etc.) that can be detected easily with 
minimum cost and time are available to transfer 
the genes or QTLs through MAB or MABC in 
lentil. Tar'an et al. (2003) pyramided two genes, 
ral1 and AbR1, to confer resistance to Ascochyta 
blight (A. lentis) and a major gene to confer 
resistance to anthracnose (C. truncatum) using 
RAPD markers: UBC 2271290 and RB18680 
linked to ral1 and AbR1, respectively, and 
OPO61250 linked to anthracnose resistance 
[115]. Successful gene introgression of 
anthracnose and Stemphylium blight disease 
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resistance was reported from wild lentil L. 
ervoides in a lentil advanced backcross 
population developed in the background of 
cultivar CDC Redberry, which can be used 
further as valuable genetic resources for 
improvement of resistance to these diseases 
[116]. Unlike other crops, marker-assisted 
breeding in lentils is limited; most of the literature 
is confined to the use of molecular markers for 
genetic diversity analysis and detection of 
parental lines for specific traits. Marker-assisted 
gene or QTL introgression or pyramiding of 
biotic-abiotic stress tolerance and nutritional 
enhancing traits is relatively higher in major field 
crops, particularly wheat, rice, and maize 
[117,118,119]. These could be attributable to the 
limited number of tightly linked markers (1.1 cM) 
identified with the target trait, the dearth of 
genomic data compared to the major cereals, 
and the less established infrastructure available 
for lentil breeders [120]. Ideally, the marker 
should be placed within the gene of interest. 
MAS using the linked molecular markers placed 
at more than 5 cM distance may lead to the 
detection of a false positive result. For instance, 
when a marker and gene are 5cM apart; then the 
marker prediction will wrongly predict in 5% of 
the progeny. Association of molecular markers 
with the major QTLs of agronomic traits have 
been detected in large number; however, lack of 
tightly linked markers with the QTLs limits their 
utilization in lentil improvement [13].  Recently, 
genomic information in the pulses has increased 
significantly, which would lead to the detection of 
candidate genes and their fine mapping and 
marker-assisted selection.  
 

4.3 Genomic Selection 
 
MAS is the most effective method in plant 
breeding for selecting desirable plant types and 
making changes in phenotypes through the 
transfer of known genetic variations. However, 
economically important traits like yield, disease 
resistance, abiotic stress tolerance, nutrient use 
efficiency, and quality are governed by many 
genes, each accounting for a minor percentage 
of phenotypic variations. Selection of plants for 
minor QTLs in breeding programs is difficult; 
thus, it limits the MAS for QTLs with small 
effects. Under such circumstances, genomic 
selection (GS) based on genomic estimated 
breeding values (GEBVs) plays a significant role, 
where genome-wide markers are used to 
estimate the genomic potential of an individual 
genotype. GS involves developing genomic 
prediction equations using phenotyping and 

genotyping data of the training population, which 
is then used for predicting the GEBV of individual 
populations of a testing population that have not 
been phenotyped [121]. GS is more effective for 
the traits with low heritability, given more gain per 
unit time than the phenotypic selection and MAS 
[31]. GS can increase the higher genetic gain per 
unit time by phenotypic selection, shortening the 
generation interval in lentils [122]. Genetic gain 
was higher from selecting plants in early 
generations (F1 or F2) than the later stages of 
segregating generations. During early generation 
selection, GS led to the loss of genetic diversity; 
however, the addition of additional phenotypes in 
F2 families to the training populations can 
increase the GEBVs, genetic gain per unit time, 
and decrease the rate of genetic diversity loss. 
Genomic prediction (GP) accuracy depends on 
several factors, including GxE interactions, 
inheritance of traits, and prediction models, 
which are important factors to be considered. 
The advantage of GS is that it accounts for GxE 
interactions effectively, thus allowing in selecting 
genotypes for the untested environments. GP 
methods like ridge regression, Bayesian LASSO, 
BayesA, BayesB, kernel-based approaches, and 
genomic BLUP models have been used. 
Predication accuracy of GEBVs was recorded 
higher (0.34-0.83) than the BLUP estimated 
breeding values (EBVs) (0.22-0.54) in lentil [31]. 
Moderate to high prediction accuracy was 
observed for grain yield (0.47-0.57), Ascochyta 
blight (0.45-0.64), Botrytis grey mold (0.63), 
boron tolerance (0.47 to 0.72), and salt tolerance 
(0.39 to 0.52) [31]. Moderately higher prediction 
accuracy indicated the effectiveness of GS in 
improving these traits in lentil. Another study 
reported that BayesB has the highest prediction 
accuracy for traits controlled by few QTLs with 
relatively large effects, while incorporation of 
genotype-environment interactions improved 
prediction accuracy by up to 66% [123]. 
Moderate to high prediction accuracy within 
population (range of 0.36–0.85) and across-
environment (range of 0.19–0.89), which were 
higher than the across-population prediction 
suggesting implementation of GS in lentil to 
predict both within population and across the 
environment. 
 

5. GENETIC ENGINEERING AND 
GENOME EDITING 

 
The transgenic approach has facilitated the 
transfer of useful genes across the gene pool in 
lentils through transformation. The introduction of 
new genes has been generally done through 
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particle bombardment and the Agrobacterium 
tumefaciens infection method. With the 
advancement of sequencing techniques, 
adequate information about the whole genome 
sequence is available in sequence databases, 
which can be used to develop transgenic plants 
to improve the lentil and to decipher the function 
of lentil genes either through overexpression or 
suppression of genes through RNAi approaches. 
Report is available for transformation of lentil via 
a number of explants, viz., shoot apices, epicotyl, 
root, cotyledons, and cotyledonary nodes [124]. 
The particle bombardment technique was used 
to produce first transient and stable expression in 
cotyledonary tissues [125]. An herbicide resistant 
lentil was developed using Agrobacterium 
mediated transformation containing the bar gene 
as a selectable marker [126]. Lentil was also 
transformed with the DREBA gene (derived by 
rd29A promoter) into lentil for enhancing drought 
and salinity tolerance [38]. A study reported the 
transformation of two microsperma seeded lentil 
varieties namely, Bari Masur-4 and Bari Masur-5 
in Bangladesh using A. tumefaciens strain 
LBA4404 [127]. The development of lentil 
transgenic plants can also benefit from the recent 
advancement in next generation sequencing 
technologies with the identification of putative 
genes for traits such as drought tolerance 
[44,128], heat tolerance [45,129,130], cold 
acclimation [131], disease resistance [132,133], 
and agronomical traits [134] through 
transcriptomic analysis. Apart from these genes, 
functionally characterized and validated genes 
from several heterologous systems, such as 
WRKY transcription factor genes [135,136], NAC 
transcription factor genes [137], and DREB 
transcription factors genes [138], may also be 
used for abiotic and biotic stress tolerance.  
 
Though, genetic engineering has been a very 
useful technique to introduce the useful genes 
across the kingdom to targeted crops, there have 
been several disadvantages to this approach, 
like the insertion of transgenes into the undesired 
location in the genome, leading to disruption of 
some functional genes; the insertion of multiple 
copies of the transgenes leading to gene 
silencing; and concern related to horizontal gene 
flow [139,140,141]. These concerns have 
prompted the utilization of alternative 
technologies like cisgenesis and genome editing 
[142]. Cisgenic plants are produced by the 
introduction of a natural gene from a crossable or 
sexually compatible plant along with their native 
promoter and terminator in the normalsense 
orientation. As cisgenic plants do not harbor any 

transgene, they lower some of the concern 
associated with transgenic plants [142]. 
However, on the issue of safety, regulators could 
treat cisgenic similer to the transgenic depending 
on the regulations. Though, cisgenesis have not 
been reported in lentil till now, cisgenesis may be 
exploited to improve lentil for various traits. 
 
Genome editing is an excellent choice for precise 
modification of a plant genome as it allows 
targeting specific locations within the genome to 
add, remove, or alter genetic material with high 
accuracy, significantly advancing plant breeding 
compared to other methods [143,144]. Genome 
editing relies on the use of site-directed 
nucleases (SDNs) for recognizing specific DNA 
sequences and producing double-stranded DNA 
breaks (DSBs) at targeted sites. Meganucleases 
(MN), Zinc Finger Nucleases (ZFNs), 
Transcription Activator-Like Effector Nucleases 
(TALENs), and Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR)-associated 
proteins (CRISPR/Cas) are the various site-
directed nucleases that are used for targeted 
DNA breaks [145,146,147,148,149]. However, 
CRISPER/Cas is the most used site-directed 
nucleases in comparison to meganucleases, zinc 
finger nucleases, and TALENs because it is 
simple and cheaper [150]. Though genome 
editing has been used towards improvement of 
various crops, there is no report available for 
lentil. However, genome editing may be an 
efficient choice to improve the lentils for various 
agronomical traits and mitigation of various biotic 
and abiotic stresses. 
 

6. CONCLUSION 
 
Recent breakthroughs in lentil genomics have 
greatly contributed to overcoming the constraints 
of traditional breeding approaches, notably in 
terms of poor yields, vulnerability to stress, and 
the problems imposed by rainfed agriculture. The 
use of contemporary genomic technologies, 
including molecular markers and next-generation 
sequencing, has sped the discovery of critical 
genes and quantitative trait loci (QTLs) linked to 
yield, disease resistance, and nutritional value. 
These developments have enabled the 
generation of superior lentil varieties with 
improved agronomic features by marker-assisted 
and genomic selection, resulting in increased 
worldwide lentil output and quality. Furthermore, 
we propose that sophisticated crop improvement 
methods, such as genetic engineering, 
cisgenesis, and genome editing, might be used 
to enhance lentil breeding in the future. 
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7. FUTURE PROSPECTUS 
 

Lentil, being one of the important pulse                          
crops in Asia and America, requires more 
attention in developing varieties with high yield 
potential, nutritional qualities, and climate 
resilience. Significant progress has been made in 
genomic research in lentil. The availability of 
various datasets in the large genomic databases 
has made faster progress in genetic 
improvement. Future opportunities for lentil 
research include increased examination of 
genomic resources to better understand the 
genetic basis of complex features like drought 
tolerance and nutrient efficiency. In the                    
context of improving lentil genotypes for complex 
traits, this information will fasten the realized 
genetic gain in breeding programs. The use of 
gene editing technologies like CRISPR/Cas has 
the potential to produce lentil varieties with 
customized features by precisely modifying 
certain genes. Furthermore, incorporating 
phenomics, bioinformatics, and machine     
learning into breeding projects may result in 
more efficient selection procedures and the 
creation of climate-resilient lentil varieties. As 
genetic data becomes more abundant, worldwide 
collaboration and data sharing will be critical for 
driving lentil development and guaranteeing food 
security in the face of global problems like 
climate change, population expansion, and 
malnutrition. 
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