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1. Introduction

'E ntropy was originally a concept in statistical physics. In 1948, Shannon first extended this concept to
the process of channel communication [1], thus creating the discipline of “information theory". The
concept of graph entropy was defined by Rashevsky in 1955 for studying the relations between the topological

properties of graphs and their information content [2]. In fact, topological index is topological invariant
derived from molecular graphs of compounds [3], which establishes the relationship between the structure
and properties of the molecule. The first topological index was introduced in 1947 by Wiener [4], and was
initially used for modelling boiling points of alkane molecules.

Let G be a simple undirected graph with vertex set V(G) and edge set E(G). The distance dg(u,v)
between two vertices u, v of G is the length of a shortest (1, v)-path in G. The Wiener index of a graph G
is defined as 1

W(G)=5 ¥ Do),
ueV(G)
where Dg (1) = Yoev(G) 46 (1, v) is the total distance of vertex u. It remains, to this day, one of the most popular
and widely studied topological indices in mathematical chemistry.

In subsequent studies, scholars have proposed many topological indices, such as the Randi¢ index [5],
the Zagreb indices [6,7], the atom-boud connectivity index [8] and so on. Hundreds of different topological
indices have been applied to QSAR (quantitative structure-activity relationship)/QSAR (quantitative
structure-property relationship) modelings. Besides, they are also used for the discrimination of isomers [9],
which is significant for the coding and the computer processing of chemical structures. In 1977, Bonchev and
Trinajsti¢ [10] introduced an molecular entropy measure based on distances, which is also called information
indices, to interpret the molecular branching. They found that the information indices have greater ability for
discrimination between isomers than those topological indices based on adjacency, incidence or polynomial
coefficients of adjacency matrix. Dehmer et al., [11] introduced Hosoya entropy in 2014. In 2015, Mowshowitz
and Dehmer [12] established the connections between the information content of a graph and Hosoya entropy.
For more research in this area, readers can refer to the paper [13].

Base on the previous research, Konstantinova [14] proposed the marginal entropy of a graph G as follows:

Dg(u) o Dg(u)

In(G) = -
p(G) wetr(y Zuev(cy Do (u) % Tuev(c) Do (u)
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1
= 1+log, W(G) - ——— D¢ (u)log, Dg(u)
2> 2W(G) ud;(:G) G 82 -G
1
= ————~ Y Dg(u)log, Dg(u) +log, S Dg(u).
ZueV(G) DG(”) ueV(G) 2 2 ueV(G)

In 2021, Sahin [15] obtained the marginal entropy of paths, stars, double stars, cycles and vertex-transitive
graphs. On this basis, we give the quantitative calculation formula of marginal entropy for the complete
bipartite graphs, complete multipartite graphs, firefly graphs, lollipop graphs, clique-chain graphs, Cartesian
product and join of two graphs, which extends the results of Sahin.

2. Preliminaries

We first introduce several special kinds of graphs. Defined by Aouchiche et al., [16], a firefly graph
Fotn-2s—2t-1(6>0,t>0,n-25-2t-1>0)is a graph of order n that consists of s triangles, f pendent paths of
length 2 and n - 2s - 2t - 1 pendent edges, sharing a common vertex. The lollipop graph C;, ¢ (shown in Figure
1), first used in [17], is obtained by attaching a vertex of cycle Cg to an end vertex of path P,_¢_1. The class of
clique-chain graphs G;(ay, a2, ...,a4,a4.1) is composed of d + 1 cliques K, Ky, ..., Ko, Ky, where n; > 1 for
1<i<d+1and Y1<icq41 ai = 1, the edges between two adjacent cliques is full. The graph G»(3,2,2) (shown in
Figure 1) is an example. Obviously, the diameter of clique-chain graph G is d.

(051
w1

o o o ———9 V2

w2

Un—g+2 V3

Figure 1. The lollipop graph Cp ¢ and clique-chain graph G;(3,2,2).

Definition 1. For two simple graphs G; and Gy, the Cartesian product G; 0 G; of them is defined with vertex
set V(G1OGy) = V(Gy1) x V(Gy) and edge set E(G1 0G) = {uv,u = (u1,v1),v = (uy, vz)|[u1 = Uy and v1v; €
E(Gy)] or [v1 = vp and uquy € E(G1)]}.

Definition 2. For two simple graphs G; and Gy, the join G v G; of them is defined with vertex set V(G v Gy) =
V(G1)uV(Gy)) and edge set E(Gy v Gy) = E(G1) UE(Gy) u{uvju e V(Gy),ve V(Gy)}.

Lemma 1. ([18]) Let G = Gy O Gy, for two vertices u = (uq,v1) and v = (up,v2) of G, where u; € V(Gy),v; € V(Gz),
i =1,2. Then we have dg(u,v) = dg, (u1,u2) +dg,(v1,02).

3. Main results

First, we consider the complete bipartite graph K, ;.

Theorem 1. The marginal entropy of the complete bipartite graph K, , is given by the following formula

10g2 [(211 +b- 2)(2a2+ab—2a) (Zb ta-— 2)(2h2+uh—2b)]
242 +2b2 + 2ab - 2a - 2b

Ip(Kpp)=1- +log, (a®> +b* +ab-a-b).

Proof. Let A and B be the parts of K, , with a, b vertices, respectively. We have,

® Dk,,(u)=b+2(a-1)=2a+b-2forucA,
* Dk,,(u)=a+2(b-1)=2b+a-2forueB.
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By the definition of the marginal entropy, Ip(K, ;) can be computed as,

1
ID(Kﬂ,b) = _Z—D(u) Z D(u)logzD(u)+10g2 Z D(T/l)
ueV(Kep) ueV(Kyp) ueV(Kyp)
1
= - 2a+b-2)log,(2a+b-2 2b+a-2)log,(2b+a-2
a(2a+b—2)+b(2b+a—2)[l§q(( ar )log,(2a + ))+u§3(( +a-2)logy(2b+a ))]
+10g2(a(2a+b—2)+b(2b+a—2))
1
= _2a2+2b2+2ab_2a_zb[a((2a+b—2)log2(2a+b—2))+b((2b+a—2)log2(2b+a—2))]
+log, (2a® +2b% + 2ab — 2a - 2b)
- 1 2 4 ab— _ 2 b _
- 2a2+2b2+2ab_2a_2b[(2a +ab-2a)log, (2a+b-2)+ (26> +ab-2b)log, (2b+a 2)]
+log, (2(a* +b* +ab-a-b))
logz [(2{1+b—2)(2”2+”b_2”)(2b+a—2)(2b2+”b_2b)] ) ,
= 1- Y TR P PR +log, (a“+b"+ab-a-D).
This completes the proof. O

As a generalization, we have the following result. Since bipartite graph is also special multipartite graph,
when 4; = 0 holds for i > 3 in Theorem 2, one can get the result of Theorem 1 from Theorem 2 by simply
deduction.

Theorem 2. The marginal entropy of the complete multipartite graph Kg, a,,...a, is given by the following formula

25‘:1 (n +a; - 2) log, (n +a; - 2)
n2-2n+ Yk a2

i

ID(Kal,ﬂz,...,llk) ==

k
+log, [n* -2n+ 3 a?].
i=1

Proof. Let V; be the part of Ky, 4,,...a, With a; vertices. Then for u € V;
D(u)=aj+ap+...+a;_1+aj1+...+ap+2(a;-1)=n-a;+2(a;-1) =n+a; - 2.

Therefore, we have

> D(u):zk:a,-(n+ai—2):n2—2n+zk:af.

ueV (Kay, .0, ) i=1 i=1

By definition of marginal entropy, Ip(Kg, a,,...,) can be computed as

1
Ip(Kay,..qr) = 5 D) > D(u)log, D(u) +1log, > D(u)
ueV(Kay,....a;.) ueV(Kay,..a,) ueV(Kay,..a,)
k
1(n+a;-2)log, (n+a;-2 k
- _21*1( i~2) ng( 5 d )+log2[n2—2n+za12].
n2-2n+ Y a; i=1
This completes the proof. O

In the next, we present the calculation formulas of the marginal entropy for firefly graph, lollipop graph
and clique-chain graph by giving a specific vertex set partition to them respectively.

Theorem 3. The marginal entropy of the n-vertex firefly graph Fs; ,_os_p—1 is given by the following formula,
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1
C2(n2-2n-s-3t+tn+1)

+(n-2s-2t-1)(2n+t-3) log2(2n+t—3)] +t(Bn+t-7)log,(3n+t-7)

Ip(Fs tp-2s-2t-1) [(n+£-1)logy(n+t-1)+25(2n+t - 4) log,(2n + - 4)

+t(2n+t-5)log,(2n+t->5) +log2(n2 -2n-s-3t+tn+1).

Proof. First, denote the unique vertex with maximum degree n — t — 1 by ug, we partition the rest vertices of
Fs t n—2s—2:-1 as following:

A: the set of all the vertices in triangles,
¢ B: the set of pendent vertex x such that d(x,ug) =1,
C: the set of pendent vertex x such that d(x, ug) =2,
D= V(Fs,t,n—Zs—Zt—l)\(A uBuCuU {Mo}).

According to the definition of firefly graph, |A| = 2s, |B| =n-2s-2t-1,|C| = ¢, |D| = t and |A|+|B|+|C|+
|ID|+1 = n. By direct calculation, D(ug) =n+t-1;forue A, D(u) =2n+t-4; foru € B, D(u) = 2n+t-3; for
ueC,D(u)=3n+t-7;forueD, D(u) =2n+t->5. Therefore, we have

D(u) = (n+t-1)+2s2n+t-4)+(n-25-2t-1)2n+t-3)+t(Bn+t-7) +t(2n+t-5)
MEV(Ps,t,n—Zs—Zt—l)

= 2 —4An-2s—-6t+2tn+2,

and then

1
2n2 —4n-2s—6t+2tn+2

+(n=25-2t=1)(2n+t-3)log,(2n+t-3)| + t(3n+t-7)logy(3n+t-7)

Ip(Fs tp-2s-2t-1) [(n +t-1)logy(n+t—1)+2s(2n+t—4)log,(2n +t—4)

+t(2n +t - 5)log,(2n +t - 5) + log, (2n* — 4n — 25 — 6t + 2tn +2)

1
= 1- -1l -1)+2s(2 -4)1 2 -4
2(”2—2n—s—3t+tn+1)[(n+t Jogy(n+t-1)+2s(2n+1t-4)log,(2n +t-4)

+(n—-2s-2t- 1)(2n+t—3)log2(2n+t—3)] +t(Bn+t-7)log,(3n+t-7)
+t(2n+t-5)log,(2n+t->5) +10g2(7’12 -2n-s-3t+tn+1).

This completes the proof. O

Theorem 4. The marginal entropy of the lollipop graph Cy,¢ is given by the following formula,
(i) If g is odd, then

12

I C = —2—1 3_
D(Crg) 082 4n3+5g3—6ng2—12g2+12ng—10n+7g

n-g+1

[ > [z ~(n+1)i+=~ (2n ~ g%+ 2n+2g - 1)]
i=1

xlog, [i2 -(n+1)i+ Z(Zn2 - +2n+2g—1)]

=

8

7
+2 3 [(n—g)i+%L(—an—g2+4ng—2n+2g—1)]
i=n—g+2

xlog, | (n - g)1+ 2n2—g2+4ng—2n+2g—1)]]

+log, [4n° +5¢° - 6ng? — 12¢* + 12ng - 10n + 7g].
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(ii) If g is even, then

12
 4nB+5¢3 —6ng? —12¢2 +12ng — 4n + 4g

Ip(Cng) = -2-log,3
x[ [iz—(n+1)i+i(2n2—g2+2n+2g)]

xlog, [~ (n+1)i+ i(an ~g*+2n+2g)]
"% 1
+2 Z [(n-g)i+~(-2n*-g* +4ng-2n+2g)]
i=n-g+2 4
xlog, [(n-g)i+ %L(—an - g% +4ng-2n+ 29)]
J&(an +¢%-2ng +2n-2g) logZ[i(an +¢%-2ng+2n —2g)]]
+log, [4n3 +5¢% —6ng? —12¢% + 12ng — 4n + 4g}.

Proof. (i) If gis odd, then we obtain D(v;) according to the following A; to As.

(A7) 1<i<n-g+1. Then

n-g+l 2n— g+1
D(v;) Z(Z—J)+ Z G-+2 ¥ (-
j=i+1 j=n-g+2
_ z(z; )+(n—g—1+2)2(n—g—z+1)+(2n_%g_2i+g)(%)

1
= -(n+1)i+ E(an—g2+2n+2g—1).

(A2) n—g+2£i£n—gT_1.Then

D) = 23j+ Y (i-)

g+1. ¢-1. (2i-n+g-1)(n-g)
EE)+ .

.1
(n—g)z+Z(—an—g2+4ng—2n+2g—1).
(A3) n—gz;3 <i<n, D(v;) = D(v2-g-i+2), and in this casen—g+2§2n—g—i+2§n—%.

In summary, we have

Z D(U) = A] +A2+A3
veV(Cnyg)

n-g+1
= [1 -(n+1)i+- (2n g2+2n+2g—1)]
i=1

8—
s
+2 Z [(n—g)i+1(—2n2—g2+4ng—2n+2g—1)]
i=n—-g+2 4

= 11—2(4713 +5¢° —6ng” —12¢% + 12ng — 101 + 7).
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Therefore, we have

12
413 +5¢3 —6ng? —12¢2 +12ng - 10n +7g

Ip(Cyg) = -2-log,3
n-g+1 1
x[ [iz—(n+1)i+Z(an—g2+2n+2g—1)]
i=1
xlog, [* - (n+1)i+ - (Zn ~g*+2n+2g-1)]

8=
”*T

+2 Z [(n-g)i+- (2n - +4ng-2n+2g-1)]
n-g+2

xlogz[ (n-g)i+—~ ( -2n? g2+4ng—2n+2g—1)]]
+log, [411 + Sg3 - 6ng - 12g2 +12ng-10n + 7g].
(ii) If g is even, then we obtain D(v;) according to the following B; to By.

(B1) 1<i<n-g+1. Then

n-g+1 an g
D(v;) = Z(z—])+ Y o(j-i)+2 Z (j-1) (n—§+1—i)
j=1 j=i+l j=n—-g+2

i(i-1) (m-g-i+2)(n-g-i+1)
2 2

3ot (8- 81
+(2n 58 21+2)(2 1)+ (n 2+1 i)
= iz—(n+1)i+jI(an—g2+2n+2g).

(Bp) n—g+2§i§n—§.Then

g1 _
2., g '
D(wi) = 2),j+5+2,(i-))
j=1 j=1
_ 88y, 8, 2iznrg=2)(n-g)
2°2 2 2
= (n—g)i+i( g +4ng -2n+2g).
(Bs) i=n-%+1. Then
L
D) = 2% j+5+ ¥ (i-))
j=1 j=1
_ 88 .8 (2i-n+g-2)(n-g)
2°2 2 2
= i(Zn +¢% - 2ng +2n-2g).

(Bg) n- % +2<i<n, D(v;) = D(v2;-g-is2), and in thiscase n - g+2<2n-g-i+2<n- %.
In summary, we have

Z D(U) Bl+Bz+B3+B4

veV(Cug)

n—-g+1

[iz -(n+1)i+ i(an —-g%+2n +2g)]
i=1
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+2 Z [(n—g)i+1(—2n2—g2+4ng—2n+2g)]+1(2n2+g2—2ng+2n—2g)
i=n-g+2 4 4

= 11—2(4713 +5¢% —6ng? —12¢% + 12ng — 4n + 4g).

Therefore, we have

12
4B +5¢3 —6ng? —12¢% + 12ng — 4n + 4g

Ip(Cng) = -2-log,3
n—-g+1 1
><[ [iZ—(n+1)i+1(2n2—g2+2n+2g)]
i=1
x log, [i2 -(n+1)i+ %(2112 —g%+2n +29)]
n-$

+2 Z [(n—g)i+1(—2n2—g2+4ng—2n+2g)]
i=n—-g+2 4

xlog, [(n-g)i+ i(—an — g% +4ng-2n+ 29)]
+i(2n2 +¢% - 2ng+2n-2g) logz[%(an +¢%-2ng+2n —Zg)]]

+log, [4713 +5¢° —6ng? —12¢% + 12ng — 4n + 4g].

This completes the proof.
O

Theorem 5. Let G be the n-vertex clique-chain graph Gy(a1,az, ... ,a4,a4,1). Then the marginal entropy of G is given
by the following formula

S ﬂk[( A i~ Kla; + ay — 1) log, ( X945 |i — Kla; +ay - 1)] d+1d+1 d+1
(@) == +1 i—klaga; + ) a” +n).
p(G) ST SO o+ 20 0 v ogz(kzl;| |aka; Z i )

Proof. Denote the set of all vertices in clique K, by Vj, then V(G) = L,IdJrl Vi.ForueVi, (1<k<d+1),

k-1 d+1 d+1
D(u) = ay - 1+Z(k—zal Yo (i-k)aj =) |i—kla; +a, - 1.
i=1 i=k+1 i=1
Then, we have
d+1 d+1 d+1d+1 d+1 ) d+1
> D(u):Zak(Z|i—k|a,-+ak—1):ZZ —klaga; + 3 a "+ ay
1ueV(G) k=1  i=1 k=1 i=1 k=1 k=1
and
d+1 d+1 ) d+1 )
> D(u)log,D(u) =3 ak[( S li-kl+ax-1)log, (] |1—k|+ak—1)].
ueV(G) k=1 i=1 i=1
Therefore, recall that Z ak =n, we have
1 d+1 d+1 d+1
Ip(G) = a i—kla;+a,-1)lo i—kla;+a, -1
p(G) Z,;z+1 d+1|1 k|akaz+2d+1ﬂk +ZZ+11111<1<21 k[(;| |2 + a ) gZ(;' la; + a )]
d+1d+1 d+1 d+1
+log2(z > |i = k|ajay + Zak +Zak)
k=1 i=1
1 Ya(S Jiogs (3 )
= ai i —k|a; +a,-1)lo li-kla; +a;-1
Zd+1 S i~ Klaga; + Y3 a2 +n i i Z & i1 l
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d+1d+1 d+1

+log, ( 1;1 ; |i — klaga; + k; a2 + n).

This completes the proof. O

In the following, we provide the calculation formulas of marginal entropy under two kinds of graph
operations, Cartesian product and join. For convenience, in the following discussion we let n, n; equals to
[V(G)|, [V(G;)| and let m, m; equals to |[E(G)|, |E(G;)| with i € {1,2}, respectively. Similarly, we can omit
the subscript G when it does not cause ambiguity, such as d(u,v) = dg(u,v), di(u,v) = dg,(u,v), do(u,v) =
dg,(u,v), D1(u) = Dg,(u), V1 = V(G1), d1(u) =dg, (u) etc.

Theorem 6. Let G1 and Gy be simple connected graphs and G = Gy 0 Gp. Then the marginal entropy of G is given by
the following formula

YineV; Logel, [nle(M1) + nlDz(Ul)] log, [n2D1(ul) +1q Dz(Ul)]
2n2W(Gy) +2n5W(Gy)

In(G)=1- +log, [ngwml)m%vv(cz)].

Proof. By Definition 1 and Lemma 1, for u = (u1,v1) € V(G) = V4 x V,, the total distance of u is computed in
the following

D(u)

d(u,v)
v=(1p,v2)eV(G)

= 2 X [dl(ulluz)erz(Ul/Uz)]

upyeVy vpeVj

= Vol > di(ur,up) +|[Vi] Y. do(v1,02)

uyeVy (%]

= naD1(uy) +n1Da(01).

By definition of marginal entropy, Ip(G) can be computed as

1
Ip(G) = -=————— > D(u)log,D(u)+log, Y D(u)
2uev(G) D(u) ueV(G) ueV(G)

 Tuev, Lojevy (m2D1(ur) +n1Dy(v1)) logy (1201 (u1) +m1Da(01))
ZuleVl ZvleV2 (nZDl(ul) + nlDZ(Ul))
+log, Y Y (n2Dy(u1)+n1Da(v1))

ureV3 v1€Vp
Zuevs Lojevs (n2D1 (u1) + 11 D2(v1) ) log, (12D1(u1) + 1 D2 (v7))
n% Zulevl Dl(ul) + n% ZU16V2 DZ(Ul)

+log, (n% Z D1(u1)+n% Z Dz(vl))

u1€V1 ’01€V2
_ Yupevy Sogev, (m2D1(u1) + 11D (1)) log, (n2D1 (u1) + 11D (v1))
2n3W(Gy) + n2W(Gy)

+log, (BW(Gy) +niW(Gy)).
This completes the proof. O

Theorem 7. Let Gy and Gy be simple graphs (not necessarily connected) and G = Gy v Gy. Then the marginal entropy
of G is given by the following formula

1
In(G) = 1- 2 —d -2)1 2 —d -2
p(G) 2(n%+n§+n1nz—nz—nz—mz—mz)[u;:,l( ny +ny —dq(u) -2)log, (21 +ny —dq (u) - 2)

+ Y (2np +ny —da(u) -2)log, (212 + ny — dp (u) —2)] +log, [n% + 13+ nyny — o — 1y — 1y - mz].
ueVy
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Proof. By Definition 2, for u € V(G) = V; u V,, we have

o D(u)=dy(u)+|Vo|+2(|Va| - dqy(u) - 1) =21y + np —dy (u) -2 foru e V4,
o D(u)=dy(u)+ V1| +2(|Va| - da(u) 1) = 2np + 1y —dp(u) -2 for u € V5.

By definition of marginal entropy, Ip(G) can be computed as

1
—_ D(u)log, D(u) +1log D(u)
Z:MEV(G) D(u) ue\;(:G) 2 ? ue\;(:G)

1

T Yuer, D) + Tey D(u)[ ZV D(u)log, D(u) + 21; D(u)log, D()]

+log,[ ¥ D)+ Y. D(u)]

ueVy ueV,

Ip(G)

1
Yuev, (2m1 +np —dy(u) =2) + Tyey, (2n2 + 1y —da(u) - 2)

x[ Z (2n1 +1p —dq(u) —2)log2 (2711 +1y—di(u) —2)

ueVy

+ > (2np +ny —dy(u) - 2)log, (2np + 11 — do(u) —2)]

ueVy

+10g2[ > (2m+np—di(u)-2)+ ) (2n2+n1—d2(u)—2)]

ueVy ueVy

1
n1(2ny +ny =2) = ¥yey, d1(u) +na(2ng + 11 = 2) = ¥yey, da(u)

x[ S (201 +np —dq(u) -2)log, (217 + np — dy (u) - 2)

ueVy

+ > (2np + 1y —dy(u) - 2) log, (2np + 1y — d (1) —2)]

ueVy,

+log, [n1(2n1 +np=2)= > dy(u) +np(2np+ny -2) - . dz(u)]

ueVy ueVs

1
2(n3 +nZ +nyny —ny - ny —my —my)

X[ Z 2n1+n2—d1(u)—2)log2 (2?11 +n2—d1(u)—2)

ueVy

+ > (2np + 1y —dy(u) -2) log, (2n2+n1—d2(u)—2)]

MEVZ

= 1—

+log, [n% + n% +N1Ny — Ny — Ny — My — mz].
This completes the proof.

4. Summary and discussions

In this paper, the marginal entropies of the complete bipartite graphs, complete multipartite graphs, firefly
graphs, lollipop graphs, clique-chain graphs, Cartesian product and join of two graphs are obtained. For some
other specific types of graphs, the existing results can be useful. For example, applying Cartesian product

operation to Py, and Py, Py and Cy,, C;; and C, we can get grid graph, cylinder graph and torus graph with

order mn, respectively. In addition, Sahin obtained the marginal entropy for paths and cycles [15], so the

formulas for above three special types of graphs can be done if readers are interested. And we note that

K, = K, v K. Since the join of any two graphs must be connected, one can also get Theorem 1 by Theorem 7.

Similarly, Kg; ay,....a, = Kay + - .. + Kg, 0ne can also study the multiple operations of graphs.

Acknowledgments: The authors are grateful to the anonymous referee for careful reading and valuable comments which
result in an improvement of the original manuscript. This work was supported by the Natural Science Foundation of

Qinghai Province (No. 2021-Z]-703).



Open J. Discret. Appl. Math. 2022, 5(1), 59-68 68

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

[1] Shannon, C., & Weaver, W. (1949). Mathematical Theory of Communications. University of Illinois, Urbana.
[2] Rashevsky, N. (1955). Life, information theory, and topology. Bulletin of Mathematical Biophysics, 17, 229-235.
[3] Bonchev, D., Mekenyan, O., & Trinajsti¢, N. (1981). Isomer discrimination by topological indormation approach.
Journal of Computational Chemistry, 2(2), 127-148.
[4] Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1),
17-20.
[5] Randi¢, M. (1975). On characterization of molecular branching. Journal of the American Chemical Society, 97(23),
6609-6615.
[6] Gutman, I, Rus¢i¢, B., Trinajsti¢, N., & Wilcox, C. E. (1975). Graph theory and molecular orbitals. XII. Acyclic
polyenes. The Journal of Chemical Physics, 62, 3399-3405.
[7] Gutman, I, & Trinajsti¢, N. (1972). Graph theory and molecular orbitals. Total 7-electron energy of alternant
hydrocarbons. Chemical Physics Letters, 17, 535-538.
[8] Estrada, E., Torres, L., Rodriguez, L., & Gutman, I. (1998). An atom-bond connectivity index: Modelling the enthalpy
of formation of alkanes. Indian Journal of Chemistry, 37, 849-855.
[9] Hosoya, H. (1971). Topological index. A new proposed quantity characterizing the topological nature of structural
isomers of saturated hydrocarbons. Bulletin of the Chemical Society of Japan, 44(9), 2332-2339.
[10] Bonchev, D., & Trinajsti¢, N. (1977). Information theory, distance matrix, and molecular baranching. The Journal of
Chemical Physics, 67(10), 4517-4533.
[11] Dehmer, M., Mowshowitz, A., & Shi, Y. (2014). Structural differentiation of graphs using Hosoya-based indices. PLoS
ONE, 9(7), €102459. https:/ /doi.org/10.1371/journal.pone.0102459.
[12] Mowshowitz, A., & Dehmer, M. (2015). The Hosoya entropy of a graph. Entropy, 17, 1054-1062.
[13] Dehmer, M., & Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181, 57-78.
[14] Konstantinova, E. V. (2006). General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer
Science, Berlin, Springer, 831-852.
[15] Sahin, B. (2021). On marginal entropy of graphs. Croatica Chemica Acta, 94(2), 1-4.
[16] Aouchiche, M., Hansen, P, & Lucas, C. (2011). On the extremal values of the second largest Q-eigenvalue. Linear
Algebra and its Applications, 435, 2591-2606.
[17] Fallat, S. M., Kirkland, S., & Pati, S. (1992). Minimizing algebraic connectivity over connected graphs with fixed girth,
Discrete Mathematics, 254, 115-142.
[18] Yeh, Y. N., & Gutman, L. (1994). On the sum of all distances in composite graphs, Discrete Mathematics, 135, 359-365.
@ © 2022 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
BY

(http:/ /creativecommons.org/licenses /by /4.0/).


https://doi.org/10.1371/journal.pone.0102459
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Main results
	Summary and discussions

