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Abstract: In this paper, by using t-norms, we introduce fuzzy subalgebras and fuzzy d-ideals of d-algebra
and investigate some properties of them. Moreover, we define the cartesian product and intersection of fuzzy

subalgebras and fuzzy d-ideals of d-algebra. Finally, by homomorphisms of d-algebras, we consider the image
and pre-image of them.
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1. Introduction and Preliminaries

eggers and Kim [1] introduced the notion of d-algebras and investigated the properties of them.
N Neggers et al. [2] introduced the concepts of d-ideals in d-algebra. Urge to deal with uncertainty by
tools different from that of probability lead the way to fuzzy sets, rough sets and soft sets. Zadeh introduced
fuzzy sets [3]. Akram and Dar [4] introduced the notions of fuzzy subalgebras and d-ideals in d-algebras and
investigated some of their results. Al-Shehrie [5] introduced the notions of fuzzy dot d-ideals of d-algebras and
some properties are investigated. Dejen [6] investigated product of fuzzy dot d-ideals and strong fuzzy relation

and the corresponding strong fuzzy dot d-ideals. The triangular norms, t-norms, originated from the studies of
probabilistic metric spaces in which triangular inequalities were extended using the theory of T-norms. Later,
Hohle [7], Alsina et al. [8] introduced the t-norms into fuzzy set theory and suggested that the t-norms be used
for the intersection of fuzzy sets. Since then, many other researchers presented various types of t-norms for
particular purposes [9,10].

The author by using norms, investigated some properties of fuzzy algebraic structures [11-15]. In this
paper, we introduce the notion of fuzzy subalgebras (as FST (X)) and fuzzy d-ideals (as FDIT (X)) of d-algebras
X by using t-norm T and then we investigate different characterizations and several basic properties which are
related to them. Next we define cartesian product and intersection of them and we obtain some new results
about them. Finally we show that the image and pre-image of them are also FST(X) and FDIT(X) uner
homomorphisms of d-algebras.

2. Preliminaries

The following definitions and preliminaries are required in the sequel of our work and hence presented
in brief.

Definition 1. [1] A nonempty set X with a constant 0 and a binary operation * is called a d-algebra, if it satisfies
the following axioms:

1. xxx =0,
2. 0%xx=0,
3. ifxsy=0andy*x =0,thenx =y, forallx,y € X.

Definition 2. [2] Let S be a non-empty subset of a d-algebra X, then S is called subalgebra of X if x xy € S, for
allx,y € S.

Definition 3. [2] Let X be a d-algebra and I be a subset of X, then I is called d-ideal of X if it satisfies following
conditions:
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1.0el,
2. ifxxye€landy €I, thenx €1,
3. ifxclandy € X, thenxxy € I.

Definition 4. [1] A mapping f : X — Y of d-algebras is called a homomorphism if f(x *y) = f(x) * f(y), for
all x,y € X.

Definition 5. [16] Let X be an arbitrary set. A fuzzy subset of X, we mean a function from X into [0,1]. The
set of all fuzzy subsets of X is called the [0, 1]-power set of X and is denoted [0, 1]X. For a fixed s € [0, 1], the
set yts = {x € X : u(x) > s} is called an upper level of .

Definition 6. [16] Let f : X — Y be a mapping of sets and y € [0,1]¥ and v € [0,1]. Define f(p) € [0,1]" and
f1(v) € [0,1]%, defined by

_ ) osup{u(x) | x € G, f(x) =y} iff ' (y) #O
fy) = { 0 i fl(y) =@
forally € Y. Also f~1(v)(x) = v(f(x)) forall x € X.

Definition 7. [17] A t-norm T is a function T : [0, 1] x [0,1] — [0, 1] having the following four properties:

1. T(x,1) = x (neutral element),

2. T(x,y) < T(x,z) if y < z (monotonicity),
3. T(x,y) = T(y, x) (commutativity),

4. T(x,T(y,z)) = T(T(x,y),z) (associativity),

forall x,y,z € [0,1].
We say that T is idempotent if for all x € [0,1],T(x, x) = x.

Example 1. The basic t-norms are Ty, (x,y) = min{x,y},Tp(x,y) = max{0,x +y — 1} and T,(x,y) = xy, which
are called standard intersection, bounded sum and algebraic product respectively.

Lemma 1. [17] Let T be a t-norm. Then
T(T(x,y), T(w,z)) = T(T(x,w), T(y,2)),
forall x,y,w,z € [0,1].

3. Main results

Definition 8. Let y be a fuzzy subset in d-algebra X. Then y is called a fuzzy subalgebra of X under t-norm

Tiff u(x*xy) > T(u(x), u(y)) for all x,y € X. Denote by FST(X), the set of all fuzzy subalgebras of X under
t-norm T.

Example 2. Let X = {0,1,2} be a set given by the following Cayley table:

Then (X, *,0) is a d-algebra. Define fuzzy subset y : (X, *,0) — [0,1] as

(= { 035 ifx=0,
PX=9 025 ifx £0.
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T(a,b) = Ty(a,b) = abforallab € [0,1] then u € FST(X).
In the following propositions we investigate relation between y € FST(X) and subalgebras of X.

Proposition 1. Let u € [0,1]X and T be idempotent. Then yu € FST(X) if and only if the upper level y; is either empty
or a subalgebra of X for every t € [0,1].

Proof. Let y € FST(X) and x,y € yy. Then

p(xxy) > T(u(x), uy)) = T(tt) =t

Thus x * y € y; and so y; will be a subalgebra of X for every t € [0, 1].
Conversely, let y; is either empty or a subalgebra of X for every t € [0,1]. Let t = T(u(x), u(y)) and
X,y € S. As iy is a subalgebra of X so x xy € yy and thus p(x *y) >t = T(u(x), u(y)). Then p € FST(X). O

In the following proposition we prove that any subalgebra of a d-algebra X can be realized as a level
subalgebra of some fuzzy subalgebra of X.

Proposition 2. Let A be a subalgebra of a d-algebra X and y € [0,1]° such that
)t ifxeA
with t € (0,1). If T be idempotent, then y € FST(X).

Proof. We know that A = y;. Let x,y € X and we investigate the following conditions;

1. Ifx,y € A, thenx*xy € A and so
plexy) =t >t =T(4t) = T(p(x), p(x)).
2. Ifxe Aandy ¢ A, then p(x) = tand pu(y) = 0 and so

p(xxy) >0="T(t0) = T(u(x) uy)).

3. Ifx¢ Aandy € A, then y(x) = 0and u(y) = t and so

T(0,t) = T(p(x), p(y))-

4 Ifx ¢ Aandy ¢ A, then u(x) = 0and p(y) = 0 and so

plxxy) =20

p(xxy) >0="T(0,0) = T(u(x), u(y))-

Thus from (1)-(4) we get that u € FST(X).
O

Corollary 1. Let A be a subset of X. Then the characteristic function x o € FST(X) if and only if A is a subalgebra of
X.

Now under some conditions we prove that jis = y; for every s, t € [0,1].

Proposition 3. Let y € FST(X) and s,t € [0,1]. If s < t, then ps = p; if and only if there is no x € X such that
s <pu(x) <t

Proof. Lets < t and ps = . If there exists x € X such thats < u(x) < t, then x € s but x ¢ p; which is
contradicting the hypothesis.



Eng. Appl. Sci. Lett. 2022, 5(1), 27-36 30

Conversely, let there isno x € X such thats < p(x) < t. Asx € ps so x € py then s C py. If x € piy then
u(x) > t>ssox € us then py C p,. Therefore ps = py. O

Definition 9. u € [0,1]% is called fuzzy d-ideal of X under t-norm T if it satisfies the following inequalities:

L p(0) > p(x),
2. f(x) = T(u(xxy), p(y)),
3. u(x*y) > T(u(x),uly)) forallx,y € X.

The set of all fuzzy d-ideals of X under t-norm T is denoted by FDIT(X).

Corollary 2. Let u € FDIT(X). Then

1. y € FST(X).
2. u(0) > p(x) and p(x) > T(T(u(x), u(y)), u(y)) forall x,y € X.

Example 3. Let X = {0,1,2,3} be a set given by the following Cayley table:

WIN R O *
WN R~ OO
WN OO
W o oOoOoN
O O O W

Then (X, *,0) is a d-algebra. Define fuzzy subset u : (X, *,0) — [0,1] as
(x) = [ 065 ifx=0
PX=9 015 ifx 0
T(a,b) = Ty(a,b) = abforallab € [0,1] then u € FDIT(X).

Definition 10. Let u € [0,1]X and v € [0,1]". The cartesian product of y and v is denoted by u x v: X x Y —
[0,1] and is defined by (u x v)(x,y) = T(p(x),v(y)) forall (x,y) € X x Y.

In the following propositions we investigate the properties of cartesian product FST(X) and FDIT(X).
Proposition 4. Let y € FST(X) and v € FST(Y). Then y x v € FST(X x Y).

Proof. Let (x1,11), (x2,¥2) € X x Y. Then

HXV)(x1 % X2, Y1 *xY2)

(ﬂ(xl x2),v(y1 % y2))

(T(p(x1), p(x )) T(v(y1),v(y2)))
(T(p(x1),v(y1)), T(p(x2),v(y2))) (Lemma 1)
((m ><V)(x1/3/1) ( xv)(x2,¥2))-

(1 xv)((x1,y1) * (x2,42))

v
48439

Thus
(> v)((r1,y1) * (x2,92)) = T((0 x v)(x1,1), (B X V) (x2,42))
andsoyu xv € FST(X xY). O

Proposition 5. Let y € FDIT(X) andv € FDIT(X). Then u x v € FDIT(X x Y).

Proof. 1. Let(x,y) € X x Y. Then (u x v)(0,0) = T(u(0),)v(0)) > T(u(x),)v(x)).
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2. Letx; € Xand y; € Y fori = 1,2, then

( xv)(x1,y1) = T(u(x1),v(y1))

(T(p(x1 % x2), p(x2)), T(v(y1 * y2), v(y2)))

(T(u(x1 % x2),v(y1 *y2)), T(p(x2),v(y2))) (Lemma 1)
( )(x1 % x2,y1 % y2), (1 X v)(x2,¥2))

( ) v)

(x1,y1) * (x2,¥2), (1 x v)(x2,42)).

X Then (p x v)(x1,y1) > T((p x v)(x1,51) * (x2,42), (4 X v)(x2,¥2))-

(1 xv)((x1,11) * (x2,92)) = (4 X v)(x1 % x2,y1 * 2)
(n(x1 % x2),v(y1 *y2))
(T(u(x1), p(x2)), T(v(y1), v(y2)))
(T(u (

(

v
=l R

T(pu(x1),v(y1)), T(u(x2),v(y2))) (Lemma 1)
(1 xv)(x1,y1), (1 x v)(x2,12)).

Thus
(1 xv)((x1, 1) * (x2,42)) = T((1 x v)(x1,y1), (4 X V) (x2,42))-

Therefore from (1) -(3) we get that y x v € FDIT(X x Y). O
Proposition 6. Let yu € [0,1]X and v € [0,1)Y. If u x v € FDIT(X x Y), then at least one of the following two
statements must hold.

1. u(0) > p(x) forall x € X.
2. v(0) > v(y) forally € Y.

Proof. Let none of the statements (1) and (2) holds, then we can find (x,y) € X x Y such that #(0) < p(x) and
v(0) < v(y). Thus
(> v)(x,y) = T(p(x),v(y)) > T(p(0),v(0)) = (p x v)(0,0)

and it is contradiction with y x v € FDIT(X x Y). [

Proposition 7. Let u € [0,1]X and v € [0,1]Y. If u x v € FDIT(X x Y) and T be idempotent, then we obtain the
following statements:

1. If u(0)

> u(x), then either v(0) > u(x) or v(0) > v(y) forall (x,y) € X x Y.
2. Ifv(0) > v(y), then either u(0) > >

v(y) or u(0) > u(x) forall (x,y) € X X Y.

Proof. 1. Let #(0) > u(x) and we have (x,y) € X x Y such that v(0) < u(x) and v(0) < v(y). Then
#(0) > u(x) > v(0) and so v(0) = T(u(0),v(0)). Thus

(nxv)(x,y) = T(p(x),v(y)) > T(v(0),v(0)) = v(0) = T(#(0),v(0)) = (# x v)(0,0)

and it is contradiction with u x v € FDIT(X x Y).
2. Letv(0) > v(y) such that for (x,y) € X x Y wehave u(0) < v(y) and 1(0) < p(x).Sov(0) > v(y) > u(0)

and p(0) = T(u(0),v(0)). Thus
(nxv)(x,y) = T(u(x),v(y)) > T(1(0),u(0)) = pu(0) = T(u(0),v(0)) = (u x v)(0,0)

and it is contradiction with y x v € FDIT(X x Y). O

Now we prove the converse of Proposition 5.

Proposition 8. If y x v € FDIT(X x Y) and T be idempotent, then u € FDIT(X) orv € FDIT(Y).
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Proof. We prove that 1 € FDIT(X) and the proof v € FDIT(Y) is similar. As Proposition 6 we have that

u(0) > p(x) 1

for all x € X and from Proposition 7(1), we have either v(0) > u(x) or v(0) > v(y) for all (x,y) € X x Y thus
(u xv)(x,0) = T(u(x),v(0)) = u(x). Let (x,y), (%,y) € X x Yandas u x v € FDIT(X x Y) so

(rxv)(x,y) = T((nxv)((x,y) * (£,4), (1 xv)(%,4))) = T((p x v)((x* X,y 7)), (4 x v)(£,9)))

thus
(mxv)(xy) = T((xv)((x =%,y *y)), (1 xv)(%,7)))

and by putting y = y = 0 we will have

(nxv)(x,0) = T((4 x v)((x*%£,0%0)), (u x v)(%,0)))
and so
p(x) = T(p(x x 2), u(X)). €
Also since yt x v € FDIT(X x Y) so
(nxv)((xy) * (£,9)) = T((p x v)(x,y), (p x v)(%,¥))

thus

(n xv)(x 2,y xy) = T((p > v)(xy), (pxv)(%,9))
and by letting y = y = 0 we get that

(pxv)(xxx,0%0) > T((uxv)(x,0),(nxv)(%0))

which means that
plaox k) = T(p(x), (). ®)
Thus from Egs. (1)-(3), we have that y € FDIT(X). O

Definition 11. Let A : S — [0, 1] be a fuzzy set in a set S. The strongest fuzzy relation on S under t-norm T is
fuzzy relation on A with g : S x S — [0,1] given by

palxy) = T(A(x), A(y))
forallx,y € S.
Proposition 9. Let T be idempotent. Then
A € FDIT(X) <= pa € FDIT(X x X).

Proof. Let A € FDIT(X).

1. Letx € X then pu4(0,0) = T(A(0), A(0)) > T(A(x), A(x)) = pa(x, x).
2. Let (x1,x2), (y1,y2) € X x X. Then

pa(x1,x2) = T(A(x1), A(x2))
> T(T(A(x1+y1), A1), T(A(x2 % y2), A(y2)))
= T(T(A(x1xy1), A(x2 *1/2)) T(A(y1), A(y2))) (Lemma 1)
=T(pa(x1 = y1,x2%y2), pay1,y2))
=T(pa((x1,x2) * (y1,¥2)), Ha(y1,y2))-
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Thus
pa(xy,x2) > T(pa((x1,x2) * (y1,92)), Ha(y1,y2))-
3. Let (x1,x2), (y1,y2) € X x X. Then

pa((x1,x2) * (y1,y2)) = pa(x1*y1, x2 % y2)
= T(A(x1*xy1), A(x2 % y2))
> T(T(A(x1), A(y1)), T(A(x2), A(y2))) (Lemma 1)
= T(T(A(x1), A(x2)), T(A(y1), A(y2)))
= T(pa(x1,x2), pa(y1,y2))-

So
na((x1,x2) * (y1,¥2)) = T(pa(x1,x2), pa(y1,y2))-

Then (1)-(3) give us p4 € FDIT(X x X).
Conversely, suppose that iy € FDIT(X x X).

1. Let x € X then
and

So pa(x,0) = T(A(x), A(0)) = A(x).
2. Let (x1,x2), (y1,y2) € X x X, then

pa(x1,x2) > T(pa(xt,x2) * (y1,y2)), #a(y1,y2))) = T(pa)(x1) * y1, (x2 % (y2), #a(y1,¥2))-
If weletx, =y, =0, then
#a(x1,0) > T(pa(xr xy1,0%0), 1a(y1,0)).

Thus A(x1) > T(A(x1 *y1), A(y1)).
3. Let (x1,x2), (y1,y2) € X x X, then

pa((x1,x2) % (y1,¥2)) > T(pa(x1,x2), na(y1,y2))
and
pa(xixy1,x20%y2) > T(pa(x1,x2), ha(y1,v2))-
By letting x, = y» = 0, we get that
pa(x1%y1,0) % 0) > T(pa(x1,0), pa(y1,0))
and thus A(x1 xy1) > T(A(x1), A(y1))-

Now, from (1)-(3), we have A € FDIT(X). O

Definition 12. Let u € [0,1]% and v € [0,1]X. The intersection of u and v is denoted by uNv : X — [0,1] and
is defined by (xNv)(x) = T(p(x),v(x)) forall x € X.

In the following propositions we investigate the intersection of two y,v € FST(X) and u,v € FDIT(X).

Proposition 10. If u,v € FST(X), then yNv € FST(X).
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Proof. Let x,y € X. Then

Thus (pNv)(xxy) > T((pNv)(x),(uNv)(y)) andso pNv € FST(X). O
Proposition 11. If u,v € FDIT(X), then yNv € FDIT(X).

Proof. Let x,y € X. Then
1.

and thus

Then
(mnv)(xxy) > T((uNv)(x), (gNv)(y)).

Now from (1)-(3), we get u Nv € FDIT(X). O

In the following propositions we consider FST(X) and FDIT(X) under homomorphisms of d-algebras.

Proposition 12. If u € FST(X) and f : X — Y be a homomorphism of d-algebras, then f(u) € FST(Y).

Proof. Lety1, 12 € Y and x1, xp € X such that f(x1) = y; and f(x2) = y. Then

F(r)(y1*y2) =sup{u(x1*x2) | x1,x2 € X, f(x1) = y1, f(x2) = y2}
> sup{T(u(x1), u(x2)) | x1,%2 € X, f(x1) = y1, f(x2) = 2}
= T(sup{pu(x1) | x1 € X, f(x1) = y1},sup{p(x2) | x2 € X, f(x2) = y2})

= T(f(n) (1), f(1)(y2))-

Thus
F()(yr*y2) > T(fF(1)(y1), f(1)(y2))

and then f(u) € FST(Y). O

Proposition 13. Ifv € FST(Y) and f : X — Y be a homomorphism of d-algebras, then f~'(v) € FST(X).
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Proof. Let x1,x, € X. Then

Thus

then f~1(v) € FST(X). O
Proposition 14. If u € FDIT(X) and f : X — Y be a homomorphism of d-algebras, then f(u) € FDIT(Y).

Proof. 1. Letx € Xandy € Y with f(x) = y. Now

f(1)(0) = sup{p(0) [ 0 € X, f(0) = 0} = sup{u(x) | x € X, f(x) =y} = f(1)(y)-

2. Letx,x; € X such that f(x) =y, f(x1) = y1. Now

f()(y) =sup{u(x) [x € X, f(x) =y}
> sup{T(pu(x*x1),u(x1)) | 6,21 € X, f(x) =y, f(x1) = y1}
= T(sup{pu(x*x1) | x,x1 € X, f(x) =y, f(x1) = y1},sup{p(x1) | x1 € X, f(x1) =y1})
= T(sup{pu(x*x1) | x,x1 € X, f(xxx1) =y*y1},sup{p(x1) | x1 € X, f(x1) = y1}
=T(f(1)(y*y1), (1) (v1))-

Therefore
S (y) = T )y *y), £ (1) (y1)-
3. Letyy,y2 € Y and xq,x2 € X such that f(x1) = y1 and f(x2) = y». Then

= sup{p(x1 *x2) | x1,%2 € X, f(x1) = y1, f(x2) = 2}

> sup{T(pu(x1), u(x2) | x1,%2 € X, f(x1) = y1, f(x2) = 2}

= T(sup{pu(x1) | x1 € X, f(x1) = y1},sup{p(x2) | 2 € X, f(x2) = y2})
= T(f(1) (1), f(1)(y2))-

Thus from (1)-(3), we have that f(u) € FDIT(Y). O

f(1)(y1*y2)

Proposition 15. Ifv € FDIT(Y) and f : X — Y be a homomorphism of d-algebras, then f~'(v) € FDIT(X).

Proof. 1. Let x € X. Then

2. Letx,x; € X. As

So
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3. Let x1,xp € X. Then

Then
W) x2) > T(FH (W) (), fH(0) (2)).
Therefore, from (1)-(3,) we have f~!(v) € FDIT(X). O
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