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Abstract. Changes in the concentration of free amino acids in biological tissues 
is a sign of impaired protein metabolism in patients with cancer. Recently, 
Raman spectroscopy has been used for early diagnostics of oncological 
diseases. The concentrations of individual components of biological tissue (for 
instance, the concentrations of amino acids) can be obtained by decomposing 
the tissue Raman spectrum. This study was designed to evaluate the effect of 
noise in the Raman spectra of individual amino acids on the result of the 
decomposition of the spectra of an amino acid mixture. As a decomposition 
method, we used Multivariate Curve Resolution-Alternating Least Squares 
(MCR–ALS) analysis and investigate experimental Raman spectra of amino 
acids and mathematically simulated Raman spectra of amino acid mixtures. 
Noise with different signal-to-noise ratios (SNR) was artificially added to both 
the experimental spectra of pure amino acids and the spectra of the mixtures. 
Concentration values for each amino acid obtained as a result of applying the 
MCR–ALS analysis have been compared with the corresponding true values 
and the correlation coefficients have been calculated. The results show a less 
pronounced negative effect of noise in the case when the spectra of pure amino 
acids (which were used as a basis for the MCR–ALS analysis) are noisy, and a 
more pronounced negative effect when the spectrum of the mixture is noisy. 
The accuracy of reconstruction of an amino acid is also negatively affected by 
strong background fluorescence in the amino acid spectrum. Moreover, the 
results indicate that using the basis spectra with a high SNR (SNR = 5) makes 
it possible to successfully estimate the amino acid concentrations in a mixture 
even when the Raman spectrum of the mixture is noisy and has a low SNR 
(SNR < 5). © 2021 Journal of Biomedical Photonics & Engineering.  
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1 Introduction 

Cancer is the second leading cause of death worldwide. 
The most common type of cancer was lung cancer. 
According to the World Health Organization, there was 
about 2.21 million new cases in 2020. Moreover, lung 

cancer was the most common cause of cancer death in 
2020 (1.80 million deaths). It is well known that lung 
cancer risk and mortality can be reduced by early 
detection of cases [1]. 

It is also known that during the malignant tumor 
development, changes in protein metabolism occur in the 
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patient's body. Many researchers have described changes 
in plasma free amino acid (PFAA) profiles in patients 
with cancer. Kubota, Meguid, and Hitch [2] analyzing 
PFAA in venous blood of patients with breast cancer, 
gastrointestinal tract cancer, and head and neck cancer 
suggested that PFAA profiles correlate diagnostically 
with the organ-site origin of three different kinds of 
malignant tumors. Miyagi et al. [3] determined the 
characteristics of the PFAA profiles in cancer patients 
with one of five types of cancer: lung, gastric, colorectal, 
breast, or prostate cancer. PFAA profiling for detecting 
lung cancer was also studied by Shingyoji et al. [4], Zhao 
et al. [5], and Proenza et al. [6]. These findings suggest 
that PFAA profiling has great potential for improving 
early detection of lung cancer.  

It makes us look for new methods to analyze PFAA 
profiles. Recently, Raman spectroscopy has been used 
for early diagnostics of oncological diseases. Bratchenko 
et al. [7] have shown that this method can be used in the 
diagnosis of cancer, such as skin neoplasms. Moreover, 
Raman spectroscopy is an optical method that is relevant 
for the analysis of liquid media. So, we believe that 
Raman spectroscopy can be used for non-invasive 
analysis of blood plasma. The Raman spectra of PFAAs 
are specific and can be used to successfully evaluate 
PFAAs’ concentration in a mixture of different 
substances by the Raman spectrum of this mixture.  

In this study, we use Multivariate Curve Resolution–
Alternating Least Squares (MCR–ALS) method to 
analyze the Raman spectra of amino acid mixtures. This 
method is widely used to reconstruct the concentration 
profiles of chemicals analysis [8, 9]. Recently, MCR–
ALS method has found wide biological and medical 
applications [8, 10] and has been used for the analysis of 
spectral data when it is required to determine the 
concentrations of complex mixture components from 
spectra. For example, Xu and Rice [11] used a MCR 
spectral unmixing in fluorescence imaging. Chen et 
al. [12] used Raman spectroscopic detection of keratin 
with MCR analysis for automatic oral cancer diagnosis. 
Iwasaki et al. [13] investigated the possibilities of 
discrimination of breast cancer cells from normal 
mammary epithelial cells by Raman microspectroscopy 
and MCR analysis. It should be noted that the use of 
MCR–ALS analysis makes it possible not only to 
estimate the concentrations of components, but also to 
obtain their “pure” Raman spectra [14]. 

However, the MCR–ALS analysis can be sensitive to 
noise in the Raman spectra analyzed. In the practical 
application, the efficiency of evaluation of PFAAs’ 
concentration in a mixture may decrease due to the fact 
that the Raman spectra contain a noise signal. We also 
suppose that, if MCR–ALS uses a known predetermined 
basis of amino acids, the result can be affected by noise 
in both the pure amino acid Raman spectra of the basis 
and Raman spectra of the mixtures. On the one hand, we 
can provide high-quality registration of basis Raman 
spectra (that is, the spectra of pure amino acids that are 
used in the MCR–ALS analysis) with high signal-to-
noise ratio (SNR) using a spectroscopic setup with high 

spectral resolution and increasing integration time. In 
addition, pure amino acids may be available for 
registration (or Raman microscopy of the samples may 
be used). And finally, it is enough to record the spectra 
(which are used as the basis) only once – then one can 
use them when analyzing other samples of mixtures. On 
the other hand, in a clinical setting, high-quality 
recording of Raman spectra can be difficult due to the 
large patient flow and limited time to examine a patient. 
Therefore, it can be assumed that the Raman spectra, 
which are subject to analysis by the MCR–ALS method, 
will have a lower SNR than the previously obtained 
Raman spectra of amino acids used as a basis for the 
MCR–ALS analysis. 

This study was designed to evaluate an effect of the 
noise in Raman basis spectra of amino acids and Raman 
spectra of a mixture on their reconstruction from the 
mixture. 

2 Materials and Methods 

The experimental Raman spectra used in our study are 
recorded using a portable spectroscopic setup which 
includes a thermally stabilized LML-785.0RB-04 laser 
diode module as an excitation source (785 ± 0.1 nm 
central wavelength, 200 mW laser power) and a  
QE 65 Pro spectrometer (OceanOptics, Inc., USA) with 
CCD detector operating at –15 °C [15]. 

We used 20 standard proteinogenic amino acids (see 
Table 1 and Fig. 1). Amino acids are presented in 
crystalline powder form. The amino acids in the crystal 
form were placed onto the metal-coated slide. All spectra 
were registered at the room temperature. The registration 
of spectra using this system was carried out in  
800–1000 nm with 0.2 nm spectral resolution that 
corresponds to the 240–2236 cm-1. The Raman signal of 
amino acids was acquired from 3 accumulations each of 
5 sec integration time. The mean Raman spectrum for 
each amino acid was averaged over three registered 
spectra.  

The preprocessing of the registered data includes only 
cosmic ray and dark noise removal that are automatically 
applied in the “Spectra Suite” software package 
(OceanOptics, Inc., USA) [16]. Examples of recorded 
and preprocessed spectra is shown in Fig. 1.  

Then we have modeled amino acid mixtures. The 
“mixture” means the sum of 20 standard proteinogenic 
amino acids (see Table 1), taken in different quantities, 
that is, with different concentrations. The concentration 
of amino acids in the mixtures is chosen so that the 
mixtures correspond to real PFAA profiles of blood 
plasma samples studied by other researchers [3–6]. 

We define a Raman spectrum of an amino acid 
mixture as a mathematical sum of the products of the pure 
amino acid spectra of and its concentrations in the 
mixture: 

 (1)( ) ( ) ( )1 1 ,M A A AN ANS c s c sl l l= ´ + ×××+ ´
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Table 1 The standard proteinogenic amino acids. 

Amino acid Glycine Alanine Valine Isoleucine 

Letter code Gly Ala Val Ile 

Formula C2H3NO C3H5NO C5H9NO C6H11NO 

Skeleton 
formula 

 
   

	
Amino acid Leucine Serine Threonine Aspartic acid 

Letter code Leu Ser Thr Asp 

Formula C6H11NO C3H5NO2 C4H7NO2 C4H5NO3 

Skeleton 
formula 

    
	

Amino acid Glutamic acid Asparagine Glutamine Lysine 

Letter code Glu Asn Gln Lys 

Formula C5H7NO3 C4H6N2O2 C5H8N2O2 C6H12N2O 

Skeleton 
formula 

 
  

 

	
Amino acid Arginine Cysteine Methionine Phenylalanine 

Letter code Arg Cys Met Phe 

Formula C6H12N4O C3H5NOS C5H9NOS C9H9NO 

Skeleton 
formula 

 
 

 
 

	
Amino acid Tyrosine Tryptophan Histidine Proline 

Letter code Tyr Trp His Pro 

Formula C9H9NO2 C11H10N2O C6H7N3O C5H7NO 

Skeleton 
formula 
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Fig. 1 Recorded and preprocessed Raman spectra of the amino acids. 

where  – are the concentrations of pure amino 

acids in the mixture,  – are the pure 

amino acid spectra.  
Using information on PFAA profiles in lung cancer 

patients [3–6], we have artificially modelled 10 Raman 
spectra: 5 spectra of lung cancer patient PFAA profiles 
and 5 spectra of control group PFAA profiles. 
Concentrations of amino acids in the mixtures are 
presented in Table 2. 

The next step in our study was the simulation of a 
noise in the Raman spectra. It should be noted that the 
spectra recorded have a noise signal due to the 
spectroscopic setup. However, in this study, we 
investigate the effect of additively added noise. 
Therefore, the noise contained in the Raman spectra 
initially is not taken into account. 

We added the noise as the random value process with 
hypothetically normal distribution, zero mean value and 
various standard deviations. In this case, the formula for 
a Raman spectrum looks like this: 

 (2) 

where  is an original Raman spectrum,  is 

the a noise spectrum. 
To simulate different noise levels, we evaluated an 

additive noise level from a signal-to-noise ratio (SNR) 
metric proposed in [15]: 

 (3) 

where is the Raman signal level (intensity of Raman 

peak in 980–1025 cm–1 band); is the noise standard 

deviation.  
To investigate the effect of the noise, it is necessary 

to compare different combinations of a noisy mixture and 
noisy basis spectra. For this purpose, we simulated 
Raman spectra of pure amino acids with SNRs equal to 
1, 5, and 10 and Raman spectra of mixtures with SNRs 
equal to 2, 3, 4, and 5. Examples of the noisy spectra are 
shown in Fig. 2.  
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Table 2 Concentrations of amino acids in the mixtures. 

Amino 
acids 

Concentrations of amino acids, µM 

Lung cancer patients Control patients 

№1 [4] №2 [4] №3 [5] №4 [3] №5 [6] №1 [4] №2 [4] №3 [5] №4 [3] №5 [6] 
Gly 214.3 208 298 220.7 133 209.7 203.5 454 207.2 120 
Ala 324.2 366.5 643 356.1 213 343.1 353.5 611 348.1 231 
Val 215.1 242.1 241 225.8 140 220.5 230 281 222.4 152 
Ile 64.7 73.9 158 66.6 35.3 60.8 64.4 190 61.6 36.1 
Leu 117.6 135.2 188 123.8 83.5 118.8 125.2 166 120.1 87.6 
Ser 107.8 110.7 253 113.6 68.1 108.8 106.7 258 108.5 60.8 
Thr 115.8 122.6 270 122.8 68.8 118.5 121.8 214 119.8 74.7 
Asp 0 0 105 0 8.6 0 0 54 0 5.8 
Glu 0 0 211 0 39.7 0 0 210 0 37.1 
Asn 42.6 47.9 0 44.7 31.6 45.2 46.1 0 45.7 24 
Gln 547.4 577.5 0 555.3 355 586.9 587.1 0 585.3 360 
Lys 183.9 195.7 325 192.9 78.2 189.1 191.6 279 189.8 83.1 
Arg 93.1 100.4 101 96.4 0 95.1 96.4 96 95.4 0 

Cys 0 0 84 0 0 0 0 68 0 0 

Met 24.2 26.9 57 25.6 16.1 25.8 26.8 61 26.1 14.8 
Phe 59.5 66.5 139 61.3 40.3 59.6 61.3 109 59.5 35.4 
Tyr 65.9 71.9 74 67.4 45.3 65.2 67.3 71 65.5 43.2 
Trp 51.3 56.4 53 54.2 0 57 59.6 298 57.3 0 

His 69.7 74.1 238 74.1 34.7 69.7 81.2 184 80.3 38.4 
Pro 141.6 157.3 129 151.1 99.3 132.3 138.6 339 135.1 121 
	

	

	
Fig. 2 Raman spectrum of alanine with different SNRs. 
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For unmixing spectra by MCR–ALS analysis we used 
a protocol by Felten et al. [14]. The main idea of MCR–
ALS is to decompose the Raman spectra matrix D into 
smaller matrices C and ST:  

 (4) 

where C represents the concentration profiles for each of 
the amino acids, ST is the pure amino acid spectra matrix, 
and E is the error matrix.  

As a basis (ST), we used the noisy amino acid spectra 
of 20 standard proteinogenic amino acids (see Table 1) to 
which we added noise in the previous step. After initial 
estimation is given for C, it is optimized iteratively using 
an alternative least squares algorithm (ALS) until 
convergence is reached [14].  

3 Results and Discussion 

In this study, we investigated the following combinations 
of a mixture and basis spectra: 

- no noise in mixture spectra, no noise in basis spectra; 

- no noise in mixture spectra, SNR = 10 for basis 
spectra; 

- no noise in mixture spectra, SNR = 5 for basis 
spectra; 

- no noise in mixture spectra, SNR = 1 for basis 
spectra; 

- SNR = 10 for mixture spectra, no noise in basis 
spectra [17]; 

- SNR = 5 for mixture spectra, no noise in basis 
spectra [17]; 

- SNR = 1 for mixture spectra, no noise in basis 
spectra [17]; 

- SNR = 5 for mixture spectra, SNR = 5 for basis 
spectra; 

- SNR = 4 for mixture spectra, SNR = 5 for basis 
spectra; 

- SNR = 3 for mixture spectra, SNR = 5 for basis 
spectra; 

- SNR = 2 for mixture spectra, SNR = 5 for basis 
spectra.	
As a result of the MCR–ALS analysis, we have 

obtained a matrix of amino acid concentrations in the 
mixture spectra. Concentrations for each amino acid have 
been compared with the corresponding true values and 
the correlation coefficients have been calculated between 
the true concentration array and the obtained 
concentration array (see Tables 3, 4, 5). 

Each concentration array corresponds to one of the 
amino acids and different mixtures (all the mixtures 
which we investigated). That is, each element of the array 
is a concentration of an amino acid in a mixture spectrum 
(a spectrum of one of the mixtures we used). The 
correlation coefficient indicates the degree of linear 
relation of the arrays and varies in the range between –1 
and +1, where zero value corresponds to completely 
uncorrelated arrays. 

Table 3 Correlation coefficients between obtained and true amino acid concentration values for the case of the noise 
added to basis spectra only. 

Amino acids 
SNR 

(no noise) 10 5 1  

Gly 1.000 1.000 1.000 0.996  
Ala 1.000 1.000 1.000 0.999  
Val 1.000 1.000 1.000 0.998  
Ile 1.000 0.999 1.000 0.988  

Leu 1.000 0.997 0.999 0.908  
Ser 1.000 0.999 1.000 0.994  
Thr 1.000 1.000 1.000 0.999  
Asp 1.000 0.997 1.000 0.996  
Glu 1.000 1.000 1.000 1.000  
Asn 1.000 1.000 1.000 0.999  
Gln 1.000 1.000 1.000 1.000  
Lys 1.000 1.000 0.999 0.982  
Arg 1.000 1.000 1.000 0.994  
Cys 1.000 0.987 0.999 0.998  
Met 1.000 1.000 1.000 0.998  
Phe 1.000 1.000 1.000 1.000  
Tyr 1.000 0.988 0.979 0.989  
Trp 1.000 0.999 0.999 0.996  
His 1.000 1.000 1.000 0.998  
Pro 1.000 0.999 1.000 1.000  

,TD C S E= ´ +
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Table 4 Correlation coefficients between obtained and true amino acid concentration values for the case of the noise 
added to mixture spectra only [17]. 

Amino acids 
SNR 

(no noise) 10 5 1  

Gly 1.000 0.999 0.991 0.966  

Ala 1.000 0.999 0.995 0.959  

Val 1.000 0.997 0.989 0.934  

Ile 1.000 0.991 0.977 0.760  

Leu 1.000 0.983 0.883 0.139  

Ser 1.000 0.987 0.773 0.547  

Thr 1.000 0.998 0.997 0.988  

Asp 1.000 0.992 0.988 0.661  

Glu 1.000 1.000 0.999 0.943  

Asn 1.000 0.999 0.998 0.984  

Gln 1.000 1.000 0.999 0.979  

Lys 1.000 0.998 0.964 0.703  

Arg 1.000 0.998 0.982 0.846  

Cys 1.000 0.968 0.948 0.599  

Met 1.000 0.997 0.953 -0.005  

Phe 1.000 1.000 1.000 0.994  

Tyr 1.000 0.923 0.448 0.344  

Trp 1.000 0.991 0.966 0.641  

His 1.000 0.999 0.990 0.901  

Pro 1.000 0.998 0.992 0.899  
 

Table 3 shows the correlation coefficients for the case 
when the basis spectra are noisy with a different SNR, 
and the mixtures have no noise. For comparison, Table 4 
shows the results that we obtained in the previous study, 
when we investigated the effect of noise in the mixture 
Raman spectra on the quality of unmixing spectra [17]. 

As one can see from Table 3, the correlation 
coefficient between true and reconstructed 
concentrations of amino acids equals 1 for the case 
without noise. In the case of noisy Raman spectra, the 
quality of reconstruction of amino acid concentrations is 
expected to decrease. Nevertheless, in the cases of SNR 
from 10 to 1, the correlation coefficients are high for all 
amino acids and ranges from 0.90 to 1. 

Paying attention to the comparison of these results 
with those obtained in the previous study (see Table 4), 
one can see the following. While in the case of a noise in 
the basis spectra, amino acids were reconstructed 
successfully with any of the considered SNRs, in the case 
of a noise in the mixture spectrum we failed to 
reconstruct all amino acids when SNR is less than 10. So, 
when SNR = 5, three out of 20 amino acids are 
reconstructed with an accuracy of less than 90%, and in 
the case of SNR = 1 there are already 11 such amino 
acids. 

The results of our previous study [17] show that the 
concentrations of amino acids are restored with lower 
correlation coefficients if their Raman spectra have no 
intense peaks. That is, the ratio between Raman peaks 
and background, apparently caused by fluorescence, is 

not high (compare the Raman spectra of cysteine, 
tyrosine, tryptophan with weak background fluorescence 
and the Raman spectra of glutamic acid, methionine, 
phenylalanine with strong background fluorescence in 
Fig. 1). 

It can be concluded that a noise in the Raman 
spectrum of an amino acid mixture decreases the quality 
of reconstruction more than a noise in the basis, which is 
used in MCR–ALS. This may be due to the random 
nature of the noise we added to the spectra. It has zero 
mean value; therefore, during MCR–ALS analysis (see 
Eq. 4), the noise components compensate each other. 

Table 5 demonstrates the correlation coefficients of 
reconstruction of mixture Raman spectra with different 
SNR using noisy basis Raman spectra of amino acids 
(SNR = 5). As expected, at higher mixture SNR 
(SNR > 4) the correlation coefficients are in a range from 
0.9 to 1 for almost all amino acids except cysteine and 
tyrosine, which are characterized by low Raman peaks in 
all spectral range (see Fig. 1). For noisier mixture Raman 
spectra with SNR = 3 and SNR = 2 MCR–ALS method 
failed to reconstruct 5 and 6 amino acids with high 
quality, respectively. It should be noted that one of the 
failed components is cysteine, which either is absent in 
mixtures analyzed or its concentration is low. 

As in our previous study [17], the concentrations of 
leucine, serine, cysteine, tyrosine, tryptophan are restored 
with lower correlation coefficients because random noise 
overlaps their spectra (which have a low ratio between 
Raman peaks and background fluorescence).

¥
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Table 5 Correlation coefficients between obtained and true amino acid concentration values for the case of the noise 
added to both basis spectra (SNR = 5 for all the cases) and mixture spectra. 

Amino acids 
SNR of mixture Raman spectra 

5 4 3 2  
Gly 0.996 0.995 0.988 0.991  

Ala 0.994 0.990 0.988 0.956  

Val 0.986 0.991 0.985 0.968  

Ile 0.996 0.991 0.961 0.906  

Leu 0.863 0.821 0.798 -0.085  

Ser 0.876 0.869 0.628 0.571  

Thr 0.992 0.986 0.985 0.949  

Asp 0.983 0.947 0.941 0.964  

Glu 0.998 0.999 0.997 0.996  

Asn 0.997 0.983 0.991 0.971  

Gln 0.999 1.000 0.997 0.995  

Lys 0.969 0.939 0.928 0.776  

Arg 0.992 0.993 0.987 0.941  

Cys 0.555 0.650 0.727 0.403  

Met 0.982 0.984 0.964 0.929  

Phe 1.000 0.999 0.999 0.999  

Tyr 0.451 0.666 0.214 0.589  

Trp 0.907 0.903 0.876 0.829  

His 0.991 0.992 0.966 0.978  

Pro 0.991 0.992 0.984 0.947  
 

It should be noted that the correlation coefficients for 
the cases of the basis spectra with noise and without noise 
are comparable. Thus, the approach proposed makes it 
possible to estimate amino acid concentrations from 
noisy Raman spectra of the mixture using basis spectra 
with noise, and this can be done almost as efficiently as 
if using pure basis spectra without noise. 

Nevertheless, the presence of fluorescence in the 
spectra is not the only problem. The form of the 
spectrum, that is, the presence of Raman peaks in certain 
wavelength ranges, has a strong influence on the result of 
the decomposition of the mixture spectrum. For example, 
in the cases of SNR = 1 and SNR = 2, one can see 
extremely low negative correlation values for leucine 
(Leu) and methionine (Met) (see Tables 4 and 5). It can 
be explained by the fact that the Raman spectra of these 
amino acids do not contain peaks that are unique to only 
these amino acids; moreover, the spectra are noisy. Thus, 
the MCR method is not efficient enough in this case.  

Having studied the effect of noise in Raman spectra 
on the reconstruction of the concentration of amino acids 
in the artificially modelled mixtures, we should check the 
obtained relations for real mixtures, when the noise is of 
different nature. It is very clear that the real mixture 
samples (i.e., biological tissue samples) may contain 

other components such as lipids and proteins. In this case, 
the resolved spectra of the components may have some 
background contribution incorporated, a final estimation 
of component concentrations should be performed by 
fixing the pure spectra of the amino acids and leaving free 
the background contribution, which requires the 
correction of the protocol settings. In addition, the 
efficiency of reconstruction may be affected by removing 
background fluorescence and normalization of the basis 
spectra in order to equalize their intensities. Therefore, 
our future research will be devoted to experiments on real 
mixtures of amino acids and study of the influence of 
basis spectra preprocessing. 
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