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Abstract

Aims/ Objectives: In this article, we use Adomian Decomposition method (ADM) for solving
initial value problems in the higher order ordinary differential equations. Many researchers
have used the ADM in order to find convergent as well as exact solutions of different types of
equations. Therefore, the ADM is considered as an effective and successful method for solving
differential equations. In this paper, we presented some suggested amendments to the ADM by
using a new differential operator in order to find solutions for higher order types of equations.
We demonstrated the effectiveness of this method through many examples and we find out that
we get an approximate solutions using the proposed amendments. We can conclude that the
suggested modification of ADM is afftective and produces reliable results.

Keywords: Adomian decomposition method; initial conditions; higher order ordinary differential
equation.
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1 Introduction

Adomian Decomposition Method (ADM) is a new and accomplished method for solving linear and
non-linear ordinary differential equation [1,2,3]. In recent years, ADM has been used in a wide
range for solving linear and non-linear equation in applied sciences for as in [4,5]. This method
attracted the attention of many scientists and researchers. In [6] Yahya Qaid Hasan and Sumayah
Ghaleb Othman studied non-linear oscillatory systems of higher order, and they show the accuracy
of the solutions arrived at using this article is to find approximate solutions with high efficiency by
using ADM. For this reason, we introduce a new differential operator which can be used in order
to get reliable solutions for initial value problems in the higher ordinary differential equations.

1.1 General construction structure of equation

We suggest a new differential operator L as follows:

L(.) = e−kx d(m+1)

dx(m+1)
ekx(.), (1)

whereas m ≥ 1, k constant, g(x,y) is given function.

If we put m = 1, in eq. (1), we have:

Ly = e−kx d(2)

dx(2)
ekx(y),

= e−kx d

dx
[ekxy′ + kekxy],

= e−kx[ekxy′′ + kekxy′ + kekxy′ + k2ekxy],

= e−kx[ekxy′′ + 2kekxy′ + k2ekxy],

y′′ + 2ky′ + k2y = g(x, y), (2)

if we put m = 2, in eq. (1), by the same way, we obtain:

y′′′ + 3ky′′ + 3k2y′ + k3y = g(x, y), (3)

if we put m = 3, in eq. (1), we obtain:

y′′′′ + 4ky′′′ + 6k2y′′ + 4k3y′ + k4y = g(x, y), (4)

if we put m = 4, in eq. (1), we obtain:

y(5) + 5ky(4) + 10k2y(3) + 10k3y(2) + 5k4y′ + k5y = g(x, y), (5)

so we continue and finally we get:

m∑
n=0

kn
(
m

n

)
y(m−n+1) +

m∑
n=0

kn+1

(
m

n

)
y(m−n) = g(x, y). (6)

Theorem: If m∈N then

e−kx d(m+1)

dx(m+1)
ekx(y) =

m∑
n=0

kn
(
m

n

)
y(m−n+1) +

m∑
n=0

kn+1

(
m

n

)
y(m−n), (7)

Proof: We prove that by mathematical induction:
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If m = 1, this statement is

e−kx d2

dx2
ekxy =

1∑
n=0

kn
(
1

n

)
y(2−n) +

1∑
n=0

kn+1

(
1

n

)
y(1−n),

where the left-hand side is y′′+2ky′+k2y, and the right-hand side is y′′+2ky′+k2y, then equation

e−kx d2

dx2
ekxy =

1∑
n=0

kn
(
1

n

)
y(2−n) +

1∑
n=0

kn+1

(
1

n

)
y(1−n),

is holds.
We must now prove Sh =⇒ Sh+1. That is, we must show that if

e−kx d(h+1)

dx(h+1)
ekxy =

h∑
n=0

kn
(
h

n

)
y(h−n+1) +

h∑
n=0

kn+1

(
h

n

)
y(h−n).

Then

e−kx d(h+2)

dx(h+2)
ekxy =

h+1∑
n=0

kn
(
h+ 1

n

)
y(h−n+2) +

h+1∑
n=0

kn+1

(
h+ 1

n

)
y(h−n+1),

we use direct proof, suppose

e−kx d(h+1)

dx(h+1)
ekxy =

h∑
n=0

kn
(
h

n

)
y(h−n+1) +

h∑
n=0

kn+1

(
h

n

)
y(h−n).

Then

e−kx d(h+2)

dx(h+2)
ekxy = e−kx d(h+1)

dx(h+1)
(ekxy′ + kekxy),

= e−kx d(h+1)

dx(h+1)
ekxy′ + e−kx d(h+1)

dx(h+1)
kekxy,

=
h∑

n=0

kn
(
h

n

)
y(h−n+2) +

h∑
n=0

kn+1

(
h

n

)
y(h+1−n)

+

h∑
n=0

kn+1

(
h

n

)
y(h−n+1) +

h∑
n=0

kn+2

(
h

n

)
y(h−n),

= yh+2 +

h∑
n=1

kn
(
h

n

)
y(h−n+2) +

h∑
n=0

kn+1

(
h

n

)
y(h−n+1)+

kyh+1 +

h∑
n=1

kn+1

(
h

n

)
y(h−n+1) +

h∑
n=0

kn+2

(
h

n

)
y(h−n),

= yh+2 +

h∑
n=1

kn
(
h

n

)
y(h−n+2) +

h∑
n=1

kn
(

h

n− 1

)
y(h−n+2)+

kyh+1 +

h∑
n=1

kn+1

(
h

n

)
y(h−n+1) +

h∑
n=1

kn+1

(
h

n− 1

)
y(h−n+1),

= y(h+2) +

h∑
n=1

kn[

(
h

n

)
+

(
h

n− 1

)
]y(h−n+2)+
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kyh+1 +

h∑
n=1

kn+1[

(
h

n

)
+

(
h

n− 1

)
]y(h−n+1),

=

h+1∑
n=0

kn
(
h+ 1

n

)
y(h−n+2) +

h+1∑
n=0

kn+1

(
h+ 1

n

)
y(h−n+1).

Therefore

e−kx d(m+1)

dx(m+1)
ekxy =

m∑
n=0

kn
(
m

n

)
y(m−n+1) +

m∑
n=0

kk+1

(
m

n

)
y(m−n).

It follows by induction that

e−kx d(m+1)

dx(m+1)
ekxy =

m∑
n=0

kn
(
m

n

)
y(m−n+1) +

m∑
n=0

kk+1

(
m

n

)
y(m−n). (8)

2 Adomian Decomposition Method

We consider the ordinary differential equation in (6):
with initial conditions

y(0) = c0, y
′(0) = c1, y

′′(0) = c2, ..., y
(m)(0) = ci.

Where i = 0, 1, 2, 3, ...
The differential operator L for equation (6) as below:

Ly = g(x, y) (9)

where

L(.) = e−kx d(m+1)

dx(m+1)
ekx(.), (10)

and the invers differential operator L−1 is:

L−1(.) = e−kx

∫ x

0

...

∫ x

0︸ ︷︷ ︸
(m+1)

ekx(.) dx...dx︸ ︷︷ ︸
(m+1)

. (11)

Applying L−1 on both sides of eq. (9), we have

y(x) = γ(x) + L−1(g(x, y)), (12)

where γ(x) the part arising from using the auxiliary conditions.

By Adomian method we obtian the solution who gives in the form y(x) and the function g(x, y) is
infinite series

y(x) =

∞∑
n=0

yn(x), (13)

and

g(x, y) =

∞∑
n=0

An, (14)

where the component yn(x) for this solution y(x) you must find it in a repeated formula. Appointed
algorithms were seen in [2,7] to formulate Adomian polynomials, the below algorithm:

A0 = h(y0),
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A1 = y1h
′(y0),

A2 = y2h
′(y0) +

1

2!
y21h

′′(y0),

A3 = y3h
′(y0) + y1y2h

′′(y0) +
1

3!
y31h

′′′(y0), (15)

...

Can be used to structure Adomian polynomilas, when h(y) is a non-linear function. From (12),(13)
and (14), we obtian:

∞∑
n=0

yn(x) = γ(x) + L−1
∞∑

n=0

An. (16)

The components y(x) which we obtain by Adomian Decomposition Method, can be clarify as follows:

y0 = γ(x),

yn+1 = L−1An, n ≥ 0, (17)

which gives
y1 = L−1A0,

y2 = L−1A1,

y3 = L−1A2, (18)

...

From (15) and (18), we can define the components yn(x), and therefore the series solution of y(x)
in (14) we can get it directiy.

ψn(x) =

n−1∑
i=0

yi, (19)

it can be used to approximate the exact solution.

3 Numerical Applications

In this section, we give some examples of different order to show the accuracy and speed of this
method.

Prblem 1. Take into account the following propblem: When m = 1, k = 2 in Eq. (6) we get:

y′′ + 4y′ + 4y = (6 + 8x+ 4x2)ex
2

+ x2 − ln y, (20)

y(0) = 1, y′(0) = 0,

with exact solution ex
2

. Eq.(20) we can write it as below:

Ly = (6 + 8x+ 4x2)ex
2

+ x2 − ln y, (21)

where the differential operator in (1) become

L(.) = e−2x d2

dx2
e2x(.),

and

L−1(.) = e−2x

∫ x

0

∫ x

0

e2x(.)dxdx.

Applying the L−1 on Eq. (21) and using initial conditions, we have

y(x) = ((1 + 2x)e−2x + L−1(6 + 8x+ 4x2)e2x − L−1 ln y, (22)
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we can replace y(x) in Eq (22) by yn(x) as:

∞∑
n=0

yn(x) = ((1 + 2x)e−2x + L−1(6 + 8x+ 4x2)e2x)− L−1 ln yn,

where
y0 = ((1 + 2x)e−2x + L−1(6 + 8x+ 4x2)e2x),

yn+1 = −L−1An, n ≥ 0,

where An Adomian polynomials defind by:

An = ln yn,

A0 = ln y0,

A1 =
y1
y0

Then

y0 = 1 + x2 +
7x4

12
− x5

15
+
x6

5
− 4x7

315
+

23x8

504
− x9

945
+

139x10

16200
+ ...,

y1 =
−x4

12
+
x5

15
− 13x6

360
+
x7

63
− x8

224
+

x9

2835
− 37x10

907200
+ ...,

y2 =
x6

360
− x7

315
+

11x8

20160
+

29x9

45360
− 223x10

907200
+ ...

The general solution given by series shape as follows:

y(x) = y0(x) + y1(x) + y2(x) =

1 + x2 +
x4

2
+
x6

6
+

841x8

20160
− x9

15120
+

209x10

25200
+ ...

Table 1. Comparison of numerical between ADM y =
∑2

i=0 yi(x) and exact solution

y = ex
2

x Exact ADM Absolute Error

0.0 1.0000 1.0000 0.0000
0.2 1.04081 1.04081 0.0000
0.4 1.171351 1.171351 0.0000
0.6 1.43333 1.43333 0.0000
0.8 1.89648 1.89637 0.00011

—– Exact —- ADM

Fig. 1. The Approximation solution for ADM y =
∑2

i=0 yi(x) and Exact solution

y = ex
2
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Problem 2. Put m = 2, k = 2, in equation (6), we have

y′′′ + 6y′′ + 12y′ + 8y = 27ex + 8x2 + 24x+ 12 + (x2 + ex)
2 − y2, (23)

y(0) = y′(0) = 1, y′′(0) = 3,

with the exact solutions y(x) = x2 + ex. Rewrite Eq.(23) as below:

Ly = 27ex + 8x2 + 24x+ 12 + (x2 + ex)
2 − y2, (24)

where

L(.) = e−2x d3

dx3
e2x(.)

and, the invers operator defin by

L−1(.) = e−2x

∫ x

0

∫ x

0

∫ x

0

e2x(.)dxdxdxdx(.).

To take L−1 on Eq. (24) and using initial condition, we get:

y(x) = [1 + 3x+ 4x2]e−2x + L−1[27ex + 8x2 + 24x+ 12 + (x2 + ex)
2 − y2], (25)

where
y0 = [1 + 3x+ 4x2]e−2x + L−1[27ex + 8x2 + 24x+ 12 + (x2 + ex)

2

yn+1 = −L−1An, n ≥ 0,

where An Adomian polynomials define by:

A0 = y20 ,

A1 = 2y0y1.

The first few components are thus determined as follows:

y0 = 1 + x+
3x2

2
+
x3

3
− x4

8
+

7x5

40
− 59x6

720
+

31x7

720
− 221x8

13440
+

1997x9

362880
− 263x10

172800
+ ...,

y1 =
−x3

6
+
x4

6
− x5

6
+

29x6

360
− 17x7

420
+

139x8

10080
− x9

280
+

451x10

1814400
+ ...,

y2 =
x6

360
− x7

420
+

3x8

1120
− 169x9

90720
+

2101x10

1814400
,

y3 =,
−x9

15120
+

x10

8640
+ ...,

y(x) = 1 + x+
3x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
+

x7

5040
+

x8

40320
+

x9

362880
+

x10

3628800
+ ...

We note that, through this example we get the exact solution.

Problem 3. To put in the Eq. (6) m = 4, k = 1 we get:

y(5) + 5y(4) + 10y(3) + 10y(2)) + 5y′ + y = 32ex + e4x − y4, (26)

y(0) = y′(0) = y′′(0) = y′′′(0) = y′′′′(0) = 1,

Eq. (26) rewrite it as follows:
Ly = 32ex + e4x − y4, (27)

where L gives the formula:

L(.) = e−x d5

dx5
ex(.)
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and

L−1 = e−x

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

ex(.)dxdxdxdxdx.

To take L−1 on Eq. (27) and using initial condition, we get:

y(x) = [(1 + x+
x2

2
+
x3

6
+
x4

24
) + (x+ x2 +

x3

2
+
x4

6
) + (

x2

2
+
x3

2
+
x4

4
) + (

x3

6
+
x4

6
) + (

x4

24
)]e−x

+L−1(32ex + e4x)− y4,

where

y0 = [(1 + x+
x2

2
+
x3

6
+
x4

24
) + (x+ x2 +

x3

2
+
x4

6
) + 4(

x2

2
+
x3

2
+
x4

4
) + (

x3

6
+
x4

6
) + (

x4

24
)]e−x

+L−1(32ex + e4x),

yn+1 = −L−1An, n ≥ 0,

where An Adomian polynomials defind by

A0 = y40 ,

A1 = 4y30y1,

then

y0 = 1 + x+
x2

2
+
x3

6
+
x4

8
− x5

15
+
x6

24
− 29x7

2520
+

5x8

1344
− 29x9

72576
+

719x10

3628800
+ ...,

y1 =
−x5

120
+

x6

720
− 11x7

5040
− x8

4480
− 19x9

60480
− 19x10

201600
+ ...,

y2 =
x10

907200
+ ...,

The general solution given by series shape as follows:

y(x) = y0(x) + y1(x) + y2(x) =

1 + x+
x2

2
+
x3

6
+
x4

8
− 3x5

40
+

31x6

720
− 23x7

1680
+

47x8

13440
− 37x9

51840
+

127x10

1209600
+ ...

Table 2. Comparison of numerical between ADM y =
∑2

i=0 yi(x) and exact solution
y = ex

x Exact ADM Absolute Error

0.0 1.0000 1.0000 0.0000
0.1 1.10517 1.10518 0.00001
0.2 1.2214 1.22151 0.00011
0.3 1.34986 1.35036 0.0005
0.4 1.49182 1.49325 0.00143
0.5 1.64872 1.65188 0.00316
0.6 1.82212 1.82805 0.00593
0.7 2.01375 2.02369 0.00994
0.8 2.22554 2.24088 0.01534
0.9 2.4596 2.48182 0.02222
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—– Exact —- ADM

Fig. 2. The Approximation solution for ADM y =
∑2

i=0 yi(x) and Exact solution
y = ex.

Problem 4. Consider the linear problem when m = 6, k = 1
2
in Eq.(6) we get

y(7) + 7(
1

2
)y(6) + 21(

1

2
)2y(5) + 35(

1

2
)3y(4) + 35(

1

2
)4y(3) + 21(

1

2
)5y(2) + 7(

1

2
)6y′ + (

1

2
)7y =

5040 + 17640x+ 13230x2 + 3675x3 +
3675x4

8
+

441x5

16
+

49x6

64
+

x7

128
, (28)

y(0) = y′(0) = y′′(0) = y′′′(0) = y′′′′(0) = y′′′′′(0) = y′′′′′′ = 0

Eq.(28) can be write as follows:

Ly = 5040 + 17640x+ 13230x2 + 3675x3 +
3675x4

8
+

441x5

16
+

49x6

64
+

x7

128
. (29)

The differential operator L for Eq.(28) is:

L(.) = e
−1
2

x d7

dx7
e

1
2
x(.),

and

L−1(.) = e−
1
2
x

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

e
1
2
x(.)dxdxdxdxdxdxdx.

Applying the L−1 on Eq.(29) and using initial conditions, we get the exact solution .

y(x) = x7.

4 Conclusion

In this paper, we presented a new modification of the ADM and tested its reliability. Through the
illustrative examples presented in this paper, we found that by using the new differential operator,
we get solutions that approximate the exact solution. We can conclude that the modified ADM is
a reliable and effective method to solve initial value problems of higher order.

Competing Interests

Authors have declared that no competing interests exist.

52



Othman and Hasan; AJPAS, 9(3): 44-53, 2020; Article no.AJPAS.59956

References

[1] Adomian G, Rach R. Modied decomposition solution of linear and nonlinear boundary-value
problems. Nonlinear Anal. 1994;23(5):61-59.

[2] Adomian G. A review of the decomposition method and some recent results for nonlinear
equation. Math Comput Model. 1992;13(7):17-43.

[3] Hasan YQ, Zhu LM. Solving singular boundary value problems of higher-order ordinary
differential equations by modied Adomian decomposition method. Commun Nonlinear Sci
Numer Simul. 2009;14:2592-2596.

[4] Babolian E, Biazar J. Solving the problem of biological species living together by Adomian
decomposition method. Appl Math Comput. 2002;129:339-343.

[5] Deeba E, Dibeh G, Xie S. An algorithm for solving bond pricing problem. Appl Math Comput.
2002;128:81-94.

[6] Hasan YQ, Othman SG. Adomian decomposition method for solving oscillatory systems of
higher order. AMSJ. 2020;9(3):937-943.

[7] Adomian G. Solving forntier problems of physics: The decomposition method. kluwer. Boston.
MA; 1994.

——————————————————————————————————————————————–
c⃝ 2020 Othman and Hasan; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sdiarticle4.com/review-history/59956

53

http://creativecommons.org/licenses/by/4.0

	Introduction
	General construction structure of equation

	Adomian Decomposition Method
	Numerical Applications
	Conclusion

